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Firmware analysis is an essential part of security research and targeted search 

for vulnerabilities in IoT products, vehicle components, industrial control 

systems, and a multitude of other types of software/hardware systems 

designed for various purposes. 

The overall size of device firmware and the volume of software code in individual 

binary files can often be quite large. In such cases, it can be a good idea to 

conduct dynamic analysis of the firmware to save time and effort. Dynamic 

analysis allows the researcher to see how specific code works, find the call chain 

that leads to the execution of a specific branch, do fuzzing, and much more. 

This article examines conventional methods of dynamic analysis:  

• Combining QEMU and GDB, and debugging directly on the target system.  

It also discusses some less obvious but at the same time more interesting 

methods:  

• The Renode emulator, a tool for full system emulation that has largely 

been neglected by the security research community.  

• The Qiling framework, a tool for emulating APIs of operating systems and 

environments (such as UEFI). This tool is inherently similar to qemu-user, 

but is highly flexible and adaptable because it is written in Python, a high-

level programming language. 

Each tool has its own strong points and shortcomings, and can be suitable for a 

specific range of tasks to varying degrees.  

We will demonstrate some of the capabilities of these tools using the firmware 

of a network video recorder from a major manufacturer. It is worth noting that 

our research will be conducted without having the actual device on hand.  

As a bonus case study, we will demonstrate debugging using GDB on another 

device that we have on hand – a head unit from a major car brand.  

Research object and procedure  

Using the analysis of a network video recorder’s firmware as an example, we will 

show some of the difficulties encountered by security researchers when 

analyzing device firmware and possible ways to overcome these difficulties 

using a modern and effective toolset. 

  

https://github.com/renode/renode
https://github.com/qilingframework/qiling
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The general workflow of a firmware researcher can be divided into several 

stages:  

1. Determine the format of the firmware, unpack it, and analyze the 

component parts of multi-component firmware.  

2. Conduct an initial analysis of the data obtained: determine the target 

architecture, the OS, and the purpose of individual files.  

3. Conduct static analysis of those parts of the firmware which are of 

interest, and determine whether dynamic analysis is necessary and what 

its scope should be.  

4. Choose targets for dynamic analysis and tools for implementing it.  

5. Attempt to run the component to be analyzed using the tool selected.  

6. Set up "stubs" to bypass parts of the software that either do not require 

emulation or cannot be emulated, and to define the initial state. 

7. Analyze the results of running the code being analyzed using the selected 

tool. 

The video recorder selected for our firmware research is based on the HiSilicon 

platform and runs Linux. The firmware downloaded from the manufacturer's 

website consists of a single file in which the binwalk tool detected a CramFS 

file system. After unpacking the file, we find uImage – a combined image of the 

Linux kernel and initramfs – as well as several encrypted scripts and TAR archives. 

DECIMAL       HEXADECIMAL     DESCRIPTION 

----------------------------------------------------------------------------- 

0             0x0             uImage header, header size: 64 bytes, header 

CRC: 0xCA9A1902, created: 2019-08-23 07:16:16, image size: 4414954 bytes, 

Data Address: 0x40008000, Entry Point: 0x40008000, data CRC: 0xDE0F30AC, OS: 

Linux, CPU: ARM, image type: OS Kernel Image, compression type: none, image 

name: "Linux-3.18.20" 

64            0x40            Linux kernel ARM boot executable zImage 

(little-endian) 

2464          0x9A0           device tree image (dtb) 

16560         0x40B0          LZMA compressed data, properties: 0x5D, 

dictionary size: 33554432 bytes, uncompressed size: -1 bytes 

4401848       0x432AB8        device tree image (dtb) 

After obtaining basic information about the object of our research, we attempt 

to employ the tools mentioned above to obtain more information, including 

additional files. Among these files, we identify potential targets for further 

analysis. 

System-level emulation using Renode 

Renode is a tool designed to emulate the entire target system, including the 

interactions between multiple virtual processors, each of which may have its own 

architecture and firmware, virtual memory chips, sensors, displays and other 
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peripheral devices. Renode also enables you to interlink emulated hardware with 

real hardware implemented as a programmable logic device (an FPGA chip). 

It is worth noting that, although Renode is primarily designed to emulate 

Embedded/IoT devices running embedded operating systems, it can also run 

full-fledged operating systems such as Linux or QNX. The project’s repository on 

GitHub provides relevant examples of these different scenarios. Please refer to 

documentation for a list of debug boards for which Renode provides out-of-

the-box support for at least some peripherals. 

Renode developers primarily position it as a tool designed to make embedded 

software development, debugging, and automated testing easier. However, it 

can also be used as a dynamic analysis tool to analyze the behavior of systems. 

Useful features provided by Renode include: 

• Support for ARM Cortex-A/M, x86, RISC-V, SPARC, and POWER 

architectures 

• Capability to emulate any peripheral device in C# 

• Interconnection of virtual devices using I2C, SPI, USB, Ethernet, and other 

interfaces 

• Capability to connect to the emulated system with the GDB debugger for 

debugging purposes, and to analyze and change CPU registers, the state 

of system memory, virtual devices, and much more at any time, including 

by scripting. 

• Capability to write handlers for specific events (for example, reading from 

/ writing to specific memory addresses) in Python or C#. 

• Capability to write plug-ins in .NET languages to implement new 

commands, such as commands that import function and variable names 

from IDA/Ghidra SRE. 

Describing the emulated platform 

Peripheral devices that are part of single-chip systems are normally available via 

Memory Mapped I/O (MMIO) – physical memory regions to which registers of 

the corresponding peripheral modules are mapped. Renode provides the 

capability to build an on-chip system from building blocks using a configuration 

file with the .repl (REnode PLatform) extension that describes which devices 

should be mapped to which memory addresses. 

Information about available peripheral devices and the memory map for the 

platform employed can be found in SoC documentation (if publicly available). If 

the documentation is not available, you can find this information through other 

means, such as by analyzing the contents of the Device Tree Blob (DTB), a data 

https://github.com/renode/renode/blob/master/scripts/single-node/versatile.resc
https://github.com/renode/renode/blob/master/scripts/single-node/litex_vexriscv_linux.resc
https://github.com/renode/renode/blob/master/scripts/single-node/hifive_unleashed.resc
https://renode.readthedocs.io/en/latest/introduction/supported-boards.html
https://dotnet.microsoft.com/languages/
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block describing the platform that is required by the Linux kernel to run Linux on 

embedded devices. 

In the firmware being analyzed, the DTB block is attached to the end of the 

uImage file (according to information from the binwalk tool). After converting 

the DTB into a readable format (DTS) using the dtc tool, we can use it to create 

a platform description for Renode: 

uart0: UART.PL011 @ sysbus 0x12080000 

    -> gic@6 

    size: 0x1000 

 

uart1: UART.PL011 @ sysbus 0x12090000 

    -> gic@7 

    size: 0x1000 

 

uart2: UART.PL011 @ sysbus 0x120a0000 

    -> gic@8 

    size: 0x1000 

 

uart3: UART.PL011 @ sysbus 0x12130000 

    -> gic@20 

    size: 0x1000 

 

timer0: Timers.SP804 @ sysbus 0x12000000 

    -> gic@1 

 

memory: Memory.MappedMemory @ sysbus 0x40000000 

    size: 0x8000000 

 

sysCtl: Miscellaneous.ArmSysCtl @ sysbus <0x12050000, +0x1000> 

    procId: 0x0C000191 

 

pl310: Cache.PL310 @ sysbus <0x10700000, +0x10000> 

 

gic: IRQControllers.GIC @ { 

        sysbus new Bus.BusMultiRegistration { address: 0x10301000; size: 0x1000; 

region: "distributor"}; 

        sysbus new Bus.BusMultiRegistration { address: 0x10300100; size: 0x100; 

region: "cpuInterface"} 

    } 

    0 -> cpu@0 

    itLinesNumber: 2 

    numberOfCPUs: 1 

 

cpu: CPU.Arm @ sysbus 

    cpuType: "cortex-a9" 

 

sysbus: 

    init: 

        Tag <0x12080000, 0x12080FFF> "UART0" 

        Tag <0x12090000, 0x12090FFF> "UART1" 

        Tag <0x120A0000, 0x120A0FFF> "UART2" 
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The above platform description for Renode was created using a minimal set of 

peripheral devices listed in the Device Tree, which includes serial interfaces 

(UART), the system clock, RAM, and an interrupt controller. This should be 

enough to at least run something, and then we can proceed according to the 

situation. An example of a serial interface description in DTS is shown below: 

uart@12080000 { 

    compatible = "arm,pl011\0arm,primecell"; 

    reg = <0x12080000 0x1000>; 

    interrupts = <0x00 0x06 0x04>; 

    clocks = <0x02 0x23>; 

    clock-names = "apb_pclk"; 

    status = "okay"; 

}; 

Luckily for us, all the necessary devices in this case were already available in the 

Renode library: the PL011 serial port, the SP804 clock, and the standard ARM 

interrupt controller. However, in many cases, a minimal implementation of a 

specific device that is not included in Renode has to be written or, alternatively, 

stub tags can be used instead (as described below). 

Starting emulation 

An initialization script has to be prepared to run something useful on the 

platform obtained. The script normally loads executable code into the platform’s 

memory, configures processor registers, sets additional event handlers, 

configures the output of debug messages (if necessary), etc. 

:name: HiSilicon 

:description: To run Linux on HiSilicon 

 

using sysbus 

$name?="HiSilicon" 

mach create $name 

machine LoadPlatformDescription @platforms/cpus/hisilicon.repl 

logLevel 0 

sysbus LogAllPeripheralsAccess true 

 

### create externals ### 

showAnalyzer sysbus.uart0 

 

### redirect memory for Linux ### 

sysbus Redirect 0xC0000000 0x40000000 0x8000000 

 

### load binaries ### 

sysbus LoadBinary "/home/research/out/uImage" 0x40008000 

sysbus LoadAtags "console=ttyS0,115200 mem=128M@0x40000000 nosmp maxcpus=0" 

0x8000000 0x40000100 

 

 

### set registers ### 

cpu SetRegisterUnsafe 2 0x40000100 # atags 

cpu PC 0x40008040 
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The script loads the uImage file into the platform’s memory at the address taken 

from the binwalk output, configures kernel arguments (Linux expects ATAGS to 

be passed at the offset of 0x100 bytes from the start of RAM, and the address 

is also passed in the r2 register), and passes control to address 0x40008040 
because the first 0x40 bytes are taken by the uImage header. 

The initialization script may also perform many additional actions, such as setting 

different processor registers (e.g., if code execution does not begin from the 

entry point) or write any value to the platform memory (e.g., if it’s necessary to 

patch specific instructions in the executable code loaded at previous steps). It 

can also enable the GDB server or print debug information about all peripheral 

access attempts: 

# Start GDB server on localhost:3333 

machine StartGdbServer 3333 

 

# Write 2 NOP instructions (ARM Thumb) at address 0xdeadbeef 

sysbus WriteDoubleWord 0xdeadbeef 0x46c046c0 

 

# Print all queries to virtual devices to console 

sysbus LogAllPeripheralsAccess true 

The Renode emulator provides enough capabilities to quickly start the dynamic 

analysis of the firmware being studied. Now we can start emulation: 

 

  

Starting 

emulation 
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The console output shows that the emulator apparently entered an infinite loop 

while checking some condition (register value in memory) and refuses to 

continue execution: 

 

We start by looking at the unpacked Device Tree and try to find out which 

device corresponds to the address requested. We determine that this should be 

the address of the Flash Memory Controller (NOR/NAND memory controller): 

flash-memory-controller@10000000 { 

    compatible = "hisilicon,hisi-fmc"; 

    reg = <0x10000000 0x1000 0x14000000 0x10000>; 

    reg-names = "control\0memory"; 

    clocks = <0x02 0x2c>; 

    #address-cells = <0x01>; 

    #size-cells = <0x00>; 

... 

We can try to trick the system into continuing execution. Instead of adding a 

full-fledged Flash memory controller to the platform description file, we can try 

to emulate only the register requested by adding a stub tag. But first we need to 

find out which value is expected by the kernel in the register located at address 

0x10000018 to continue execution. Through a search on GitHub, we find the 

source code of the controller’s driver in the Linux kernel (drivers/mtd/spi-

nor/hisi-sfc.c) and we notice that the register in question is used in the 

wait_op_finish function: 

static inline int wait_op_finish(struct hifmc_host *host) 

{ 

    u32 reg; 

 

    return readl_poll_timeout(host->regbase + FMC_INT, reg, 

        (reg & FMC_INT_OP_DONE), 0, FMC_WAIT_TIMEOUT); 

} 

Infinite query 

at the address 

0x1000001 
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The FMC_INT_OP_DONE constant is equal to 1. Therefore, to skip the loop, the 

kernel needs to read 1 from the FMC_INT register. This can be ensured by adding 

the following tag after Tag <0x120A0000, 0x120A0FFF> "UART2" in the 

platform description: 

Tag <0x10000018, 0x1000001C> "FMCINT" 0x1 

Now the value 1 will always be read at address 0x10000018. In addition to setting 

a fixed value, Renode enables you use Python scripts embedded in the platform 

description to implement a more sophisticated logic for handling address-based 

read/write operations. Examples of this usage scenario can be found in startup 

scripts and platform description files provided with Renode. 

Next, we restart the emulator. Now, the window of the terminal connected to the 

virtual serial port uart0 displays the standard Linux shell, with which you can 

interact as usual: 

 

This means that we were able to partially run the firmware of the network video 

recorder without actually having the recorder on hand. In the next steps, we can 

use the tools available in the emulated file system to decrypt the encrypted 

firmware files, extract kernel modules that provide the recorder functionality and 

analyze their logic, etc. 

Exchanging data with the emulated system 

Previously, we extracted several encrypted tar.lzma archives from the video 

recorder's firmware file. After a quick analysis of the files and scripts present in 

Starting 

emulation 
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the system running in Renode, we can see that these archives are decrypted 

using the /bin/ded application, which in turn queries the /dev/hikded device 

provided by the hik_ded.ko kernel module. This kernel module in its turn queries 

another kernel module, hik_hal.ko, which actually decrypts the encryption key 

and the encrypted archive. To avoid wasting time on a detailed analysis of the 

entire process using static analysis tools, we can run this chain in the emulator to 

complete processing the encrypted files and then download the decrypted 

archives. 

First we need to find a way to transfer the encrypted files to the emulated 

system. The only on-chip devices available in our virtual system that can be used 

for communication are the RAM and serial ports. However, the total size of the 

archives is too large for transferring them through a serial port (with its low 

transfer speed) to be practicable. Therefore, we will try to transfer them through 

RAM. As regards virtual serial ports, Renode supports setting up communication 

with them from a host system via the TCP server or creating a pty device (the 

latter works only in Linux and macOS). 

We use a familiar command to load an encrypted file into the memory of the 

virtual machine: 

sysbus LoadBinary "/home/research/out/sys_app.tar.lzma" 0x48000000 

The sys_app.tar.lzma file will be loaded into physical memory at the address 

specified. We can retrieve it from there by using the /dev/mem device, which 

can be used in Linux to read and write directly to physical memory. 

dd if=/dev/mem of=/sys_app.tar.lzma.encrypted bs=1M seek=1152 count=10 

Now we can decrypt the data using standard tools included in the firmware: 

ded -d /sys_app.tar.lzma.encrypted /sys_app.tar.lzma 

tar -atvf /sys_app.tar.lzma 

After verifying that the file was successfully decrypted, we need to transfer the 

decryption results from the virtual machine. This can also be done through 

/dev/mem. However, the out-of-the-box configuration of Renode does not 

include a command for saving a fragment of physical memory contents to a file, 

while commands that provide communication with memory through the GDB 

server work with virtual addresses. We'll have to implement this capability with a 

simple plug-in: 

using System; 

... 

 

namespace Antmicro.Renode.Plugins.MemoryDumpPlugin { 

    public sealed class MemoryDumpCommand : Command { 

        public override void PrintHelp(ICommandInteraction writer) { 

            base.PrintHelp(writer); 

https://renode.readthedocs.io/en/latest/host-integration/uart.html
https://renode.readthedocs.io/en/latest/host-integration/uart.html
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            writer.WriteLine(String.Format("{0} address length \"file\"", Name)); 

        } 

 

        [Runnable] 

        public void Run(ICommandInteraction writer, HexToken address, HexToken 

length, StringToken fileName) { 

            byte[] memory = 

monitor.Machine.SystemBus.ReadBytes((ulong)address.Value, (int)length.Value); 

            File.WriteAllBytes(fileName.Value, memory); 

        } 

 

        public MemoryDumpCommand(Monitor monitor) : base(monitor, "dump_memory", 

"Dump memory to file.") { } 

    } 

} 

After loading the plug-in, the Renode console will support a new command, 

dump_memory, which can be used to extract data from the VM memory and unpack 

the archive. Further analysis of the files extracted is beyond the scope of this 

article and will be omitted. 

Conclusions on this tool 

We have examined a practical example of using the Renode emulator to run and 

decrypt firmware files from a real-world device. In this case, thanks to Renode's 

support of the peripherals used in the HiSilicon SoC, we were able to use a fully 

functional Linux terminal without having to write any code. 

At the same time, where necessary, the modular architecture of the emulator 

and its scripting capabilities make it relatively easy to implement support for any 

lacking functionality at a level that is sufficient to conduct research. 

The emulator’s versatility enables it to run full-fledged operating systems such 

as Linux or QNX as well as small embedded real-time operating systems such as 

FreeRTOS, mBed OS, embOS, etc. 

One of the distinguishing features of this tool is its use of system-level 

emulation. As a result of this, it can be difficult to use it to fuzz-test or debug a 

user-space application that runs in an emulated operating system. 

The tool’s shortcomings include the lack of detailed documentation, with existing 

documentation describing only the most basic usage scenarios. When 

implementing something more complicated, such as a new peripheral device, or 

when trying to understand how a specific built-in command works, you have to 

repeatedly refer to the project repository on GitHub and study the source code 

of both the emulator itself and bundled peripheral devices. 
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Application-level debugging using GDB and 

QEMU 

Strictly speaking, in our particular case third-party tools are not really required for 

dynamic analysis of user-space applications: the operating system we are using, 

i.e., Linux, enables limited debugging of these applications using the standard GDB. 

The firmware to be analyzed is designed for the ARM architecture, while our 

research is being conducted on an x86_64 system, so we will need QEMU with 

support for user-mode ARM emulation to run ELF files. 

To conduct our experiment, we need to extract the file system that we have 

already seen in the Renode terminal from the firmware to be analyzed and to 

install the qemu-user and gdb-multiarch packages: 

sudo apt install gcc-arm-linux-gnueabihf libc6-dev-armhf-cross qemu-user-

static gdb-multiarch 

Now we can run the chroot command and switch to an environment that is 

similar to the one we saw in Renode. QEMU, which was installed at the previous 

step, provides transparent emulation of ARM instructions. However, when using 

this approach, only user-level programs will be available for running and 

debugging because the Linux kernel in the chroot environment will be inherited 

from the host operating system. 

 

Thanks to the built-in GDB server, QEMU is able to debug Linux applications that 

were compiled for the ARM architecture by using the GDB debugger on an x86 

system.  

chroot 

in an ARM 

environment 
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As an example, we will try to debug /bin/ded: 

qemu-arm-static -g 9999 -L ~/out/cpio/bin/ded 

Next, we start GDB in another terminal window: 

 

 

The debugger started and stopped at the entry point of /bin/ded. 

GDB QEMU 1 

GDB QEMU 2 
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Conclusions on this tool 

Obviously, one of the limitations of this approach (in contrast to Renode) is that, 

when using qemu-user, we cannot load the Linux kernel and its modules, which 

implement a substantial part of the functionality in the case of the firmware we 

are analyzing. Specifically, the /bin/ded tool from the above example returns an 

error, even though it runs flawlessly and correctly decrypts encrypted files when 

it is run in the Renode emulator. In addition, this approach will not work if the 

firmware being analyzed is not based on Linux. This is because qemu-user works 

by converting ARM executable code to x86_64 instructions and directly relays 

system calls to the Linux kernel. However, the method we will examine next does 

not have this limitation. 

Application-level debugging using the Qiling 

Framework 

Qiling is an advanced multi-platform framework for emulating binary files. It can 

emulate a multitude of platforms and environments, including: 

• Emulation of Windows, MacOS, Linux, QNX, BSD, UEFI, DOS, MBR, and 

Ethereum Virtual Machine 

• Support for x86, x86_64, ARM, ARM64, MIPS, and 8086 architectures 

• Support for various executable file formats, including PE, Mach-O, ELF, 

COM, and MBR. 

The framework itself was written in Python, which makes adapting its 

functionality to our specific needs sufficiently easy. The Qiling Framework uses 

the Unicorn engine, which is simply an emulator of machine instructions, while 

Qiling provides high-level functions such as file system emulation, dynamic 

libraries, loading various formats of executable files, etc. 

Compared to QEMU, the Qiling Framework can emulate more platforms, 

provides flexible configuration of the emulation process, including the capability 

to modify executing code on-the-fly. In addition, it is a cross-platform 

framework, which means it can be used to emulate Windows or QNX executables 

on Linux, and vice versa. The Qiling Framework repository also contains examples 

of running the AFL fuzzer in Unicorn mode for Linux and QNX executables. We’ll 

take advantage of this later. 

For our first encounter with Qiling, our equivalent hello-world example will be 

to use Qiling to start the familiar ded tool from the firmware being analyzed.  

https://github.com/unicorn-engine/unicorn
https://github.com/AFLplusplus/AFLplusplus/blob/stable/unicorn_mode/README.md
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To do so, we will copy the device file system to examples/rootfs/hikroot 
and write the following simple script named examples/hikded_arm_linux.py: 

import sys 

sys.path.append("..") 

 

from qiling import Qiling 

from qiling.const import QL_VERBOSE 

 

def run_sandbox(path, rootfs, verbose): 

    ql = Qiling(path, rootfs, verbose = verbose) 

    ql.run() 

 

if __name__ == "__main__": 

    run_sandbox(["rootfs/hikroot/bin/ded"], "rootfs/hikroot", QL_VERBOSE.DEFAULT) 

When operating at the DEFAULT logging verbosity level, the Qiling Framework 

sends information about emulated system calls to the console similarly to the 

strace Linux tool. 

Now we can try to start the AFL++ fuzzer, which will use Qiling as a runtime 

environment. In most cases, this type of fuzzer will run very slowly. However, 

thanks to the fact that the Qiling Framework can emulate a broad variety of 

environments and operating systems, as well as its support for UEFI and various 

microprocessor architectures, in some cases this may be the only way to do 

fuzzing with minimal effort. 

The ded tool examined earlier is not suitable as a target for fuzzing because its 

code is too simple and will return an error and exit due to the inability to open the 

/dev/hikded device regardless of the input data. This is why we will use another 

tool, hrsaverify, from the same firmware. It is used to validate encrypted files 

and takes the path to the file to be validated as an argument. The Qiling 

Framework already has several examples of running the AFL++ fuzzer in the 

examples/fuzzing directory of its repository. We will adapt the example 

named linux_x8664 to run hrsaverify. The modified script for running the 

fuzzer is shown below: 

import unicornafl as UcAfl 

UcAfl.monkeypatch() 

 

import os, sys 

from typing import Any, Optional 

 

sys.path.append("../../..") 

from qiling import Qiling 

from qiling.const import QL_VERBOSE 

from qiling.extensions import pipe 

 

def main(input_file: str): 

    ql = Qiling(["../../rootfs/hikroot/usr/bin/hrsaverify", "/test"], 

"../../rootfs/hikroot", 
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            verbose=QL_VERBOSE.OFF, # keep qiling logging off 

            console=False,          # thwart program output 

            stdin=None, stdout=None, stderr=None) # don't care about stdin/stdout 

 

    def place_input_callback(uc: UcAfl.Uc, input: bytes, persistent_round: int, 

data: Any) -> Optional[bool]: 

        """Called with every newly generated input.""" 

        with open("../../rootfs/hikroot/test", "wb") as f: 

            f.write(input) 

 

    def start_afl(_ql: Qiling): 

        """Callback from inside.""" 

        # We start our AFL forkserver or run once if AFL is not available. 

        # This will only return after the fuzzing stopped. 

        try: 

            if not _ql.uc.afl_fuzz(input_file=input_file, 

                                   place_input_callback=place_input_callback, 

exits=[ql.os.exit_point]): 

                _ql.log.warning("Ran once without AFL attached") 

                os._exit(0) 

 

        except UcAfl.UcAflError as ex: 

            if ex.errno != UcAfl.UC_AFL_RET_CALLED_TWICE: 

                raise 

 

    # Image base address 

    ba = 0x10000     

    # Set a hook on main() to let unicorn fork and start instrumentation 

    ql.hook_address(callback=start_afl, address=ba + 0x8d8) 

    # Okay, ready to roll 

    ql.run() 

 

if __name__ == "__main__": 

    if len(sys.argv) == 1: 

        raise ValueError("No input file provided.") 

 

    main(sys.argv[1]) 

The first thing we should look for is the base address of the executable file (in 

our case, 0x10000), the address of the main function. Sometimes it is necessary 

to additionally set hooks on other addresses that, when encountered, should be 

considered as a crash by the fuzzer. For example, when running AFL in a QNX 

environment (in the qnx_arm directory), this type of additional handler is set for 

the address of the SignalKill function in libc. In the case of hrsaverify, no 

additional handlers are needed. It should also be kept in mind that all files that 

must be available to the running application should be put into sysroot, and 

their relative paths should be passed (in this case, ../../rootfs/hikroot/). 

AFL++ is started with the following command: 

AFL_AUTORESUME=1 AFL_PATH="$(realpath ./AFLplusplus)" PATH="$AFL_PATH:$PATH" afl-

fuzz -i afl_inputs -o afl_outputs -U -- python ./fuzz_arm_linux.py @@ 
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The AFL fuzzer will start, and after some time we will see some crashes: 

 

Conclusions on this tool 

Qiling is a promising tool whose main advantages are its high flexibility, 

extensibility, and support for a broad variety of architectures and environments. 

The framework can serve as a substitute for qemu-user in cases where using 

the latter is not possible (for example, unsupported target OS or the lack of 

required additional capabilities, such as setting arbitrary handles for any memory 

addresses, special handling of interrupts, etc.). However, its high flexibility and 

shallow learning curve due to its use of Python also contribute to its low 

emulation speed. 

Bonus: using GDB for debugging on a real-world 

device 

Developers deliberately leave various engineering interfaces (such as the UART 

console, JTAG, etc.) on many devices’ circuit boards. These interfaces are often 

deactivated on the software or hardware level, are password-protected, or have 

some other form of access restriction. However, in many cases an interface is 

immediately accessible or a researcher is able to gain access to it during 

AFL++ 
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research. In such cases, communication with the system being analyzed is 

possible via the command line or the JTAG debugger. 

When using JTAG, you can read or write contents to ROM or RAM, set 

breakpoints, manage peripheral devices by writing to addresses corresponding 

to their I/O registers, analyze the state of processor registers, etc. 

When using UART, it is often possible to interact with the first-stage bootloader 

(such as U-Boot) and with the command shell of the operating system that has 

been loaded. When combined with the ability to modify ROM contents or other 

ways to write/edit files in the device file system (such as downloading files over 

the network via FTP), this opens up the possibility of interactively debugging 

applications directly on the device. To use this method, you usually have to start 

by compiling the GDB server for the target architecture and OS. 

To demonstrate this method, we will connect a debugger to the head unit of a 

multimedia system for one of the more popular car brands, which runs the QNX 

real-time operating system. 

The QNX SDK includes a modified GDB debugger with its own remote debugging 

protocol that is incompatible with the standard GDB server. This is why the 

pdebug daemon must be run on the device instead of the GDB server, after first 

copying it from the SDK if it is not already present on the device. The daemon 

can communicate with the remote GDB debugger via TCP or a serial port, which 

means that at least one of these device communication methods must be 

available for debugging to be possible. 

We added the pdebug daemon to the device file system by modifying the 

memory contents. Let's run it: 

http://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/p/pdebug.html
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The port used for the connection is TCP port 22, which is the only port on the 

device being analyzed that is available for remote connections, while all other 

ports on the device are protected by the firewall. Now we can connect to the 

daemon using the GDB debugger that is included in the QNX Software 

Development Platform (SDK), and select a process to be debugged from the list 

of running processes or start a new process. 

 

Starting the 

pdebug daemon 

GDB 

is connected 

to the head unit 

via TCP 
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Please refer to official documentation for a concise guide on debugging with 

GDB in QNX. 

 

In addition to using the device being analyzed for debugging, you can use other 

suitable devices. For example, the QNX 6.6 operating system used in this 

example can also be run on an easily accessible and affordable BeagleBone Black 

board. Although its hardware is different from that of the device being analyzed, 

you will most likely be able to analyze some of the applications from the firmware 

by simply copying pdebug to a partially compatible board and running it. 

This could prove very useful, especially since modifying a device’s firmware to 

load the pdebug daemon into it, as demonstrated in this section, takes significant 

time and effort. Therefore, it may be less resource-intensive to just copy 

individual files from the firmware and run them on a compatible processor. 

Conclusions on this tool 

In the initial stages of research, it is usually difficult or even impossible to access 

various debugging interfaces of industrial devices. This means that it will most 

likely take some effort to ensure such access by activating disabled interfaces, 

soldering the missing electronic components onto the board, modifying the 

firmware, etc. However, after completing this intermediate task, debugging 

directly on the device may substantially simplify the rest of the research 

process. 

GDB 

is connected 

to process 

with ID 24584 

https://www.qnx.com/developers/docs/6.4.1/neutrino/prog/using_gdb.html
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Conclusion 

Naturally, this article does not cover all of the diverse issues that the author 

encounters when researching device firmware. Nonetheless, it attempts to 

cover those issues which are most frequently encountered in the initial stages of 

research, and discusses problems that the author believes are potential 

stumbling blocks for the inexperienced researcher. 

The author hopes that this overview of tools will make the work of beginning 

researchers easier and will accelerate their immersion into the subject matter of 

device firmware dynamic analysis. 

The author also hopes that this overview will encourage the more experienced 

researchers to contribute to further development of the tools and frameworks 

described in this article. 

If you would like more information, or feel like sharing your thoughts, please send a message to the 

author or to ics-cert@kaspersky.com. 
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