

Dynamic analysis

of firmware components

in IoT devices

Sergey Anufrienko

06.07.2022

Version 1.0

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

1

© 2022 AO KASPERSKY LAB

Research object and procedure .. 2

System-level emulation using Renode .. 3

Describing the emulated platform ... 4

Starting emulation ... 6

Exchanging data with the emulated system ... 9

Conclusions on this tool .. 11

Application-level debugging using GDB and QEMU ... 12

Conclusions on this tool .. 14

Application-level debugging using the Qiling Framework ... 14

Conclusions on this tool ... 17

Bonus: using GDB for debugging on a real-world device ... 17

Conclusions on this tool ... 20

Conclusion .. 21

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

2

© 2022 AO KASPERSKY LAB

Firmware analysis is an essential part of security research and targeted search

for vulnerabilities in IoT products, vehicle components, industrial control

systems, and a multitude of other types of software/hardware systems

designed for various purposes.

The overall size of device firmware and the volume of software code in individual

binary files can often be quite large. In such cases, it can be a good idea to

conduct dynamic analysis of the firmware to save time and effort. Dynamic

analysis allows the researcher to see how specific code works, find the call chain

that leads to the execution of a specific branch, do fuzzing, and much more.

This article examines conventional methods of dynamic analysis:

• Combining QEMU and GDB, and debugging directly on the target system.

It also discusses some less obvious but at the same time more interesting

methods:

• The Renode emulator, a tool for full system emulation that has largely

been neglected by the security research community.

• The Qiling framework, a tool for emulating APIs of operating systems and

environments (such as UEFI). This tool is inherently similar to qemu-user,

but is highly flexible and adaptable because it is written in Python, a high-

level programming language.

Each tool has its own strong points and shortcomings, and can be suitable for a

specific range of tasks to varying degrees.

We will demonstrate some of the capabilities of these tools using the firmware

of a network video recorder from a major manufacturer. It is worth noting that

our research will be conducted without having the actual device on hand.

As a bonus case study, we will demonstrate debugging using GDB on another

device that we have on hand – a head unit from a major car brand.

Research object and procedure

Using the analysis of a network video recorder’s firmware as an example, we will

show some of the difficulties encountered by security researchers when

analyzing device firmware and possible ways to overcome these difficulties

using a modern and effective toolset.

https://github.com/renode/renode
https://github.com/qilingframework/qiling

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

3

© 2022 AO KASPERSKY LAB

The general workflow of a firmware researcher can be divided into several

stages:

1. Determine the format of the firmware, unpack it, and analyze the

component parts of multi-component firmware.

2. Conduct an initial analysis of the data obtained: determine the target

architecture, the OS, and the purpose of individual files.

3. Conduct static analysis of those parts of the firmware which are of

interest, and determine whether dynamic analysis is necessary and what

its scope should be.

4. Choose targets for dynamic analysis and tools for implementing it.

5. Attempt to run the component to be analyzed using the tool selected.

6. Set up "stubs" to bypass parts of the software that either do not require

emulation or cannot be emulated, and to define the initial state.

7. Analyze the results of running the code being analyzed using the selected

tool.

The video recorder selected for our firmware research is based on the HiSilicon

platform and runs Linux. The firmware downloaded from the manufacturer's

website consists of a single file in which the binwalk tool detected a CramFS

file system. After unpacking the file, we find uImage – a combined image of the

Linux kernel and initramfs – as well as several encrypted scripts and TAR archives.

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 uImage header, header size: 64 bytes, header

CRC: 0xCA9A1902, created: 2019-08-23 07:16:16, image size: 4414954 bytes,

Data Address: 0x40008000, Entry Point: 0x40008000, data CRC: 0xDE0F30AC, OS:

Linux, CPU: ARM, image type: OS Kernel Image, compression type: none, image

name: "Linux-3.18.20"

64 0x40 Linux kernel ARM boot executable zImage

(little-endian)

2464 0x9A0 device tree image (dtb)

16560 0x40B0 LZMA compressed data, properties: 0x5D,

dictionary size: 33554432 bytes, uncompressed size: -1 bytes

4401848 0x432AB8 device tree image (dtb)

After obtaining basic information about the object of our research, we attempt

to employ the tools mentioned above to obtain more information, including

additional files. Among these files, we identify potential targets for further

analysis.

System-level emulation using Renode

Renode is a tool designed to emulate the entire target system, including the

interactions between multiple virtual processors, each of which may have its own

architecture and firmware, virtual memory chips, sensors, displays and other

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

4

© 2022 AO KASPERSKY LAB

peripheral devices. Renode also enables you to interlink emulated hardware with

real hardware implemented as a programmable logic device (an FPGA chip).

It is worth noting that, although Renode is primarily designed to emulate

Embedded/IoT devices running embedded operating systems, it can also run

full-fledged operating systems such as Linux or QNX. The project’s repository on

GitHub provides relevant examples of these different scenarios. Please refer to

documentation for a list of debug boards for which Renode provides out-of-

the-box support for at least some peripherals.

Renode developers primarily position it as a tool designed to make embedded

software development, debugging, and automated testing easier. However, it

can also be used as a dynamic analysis tool to analyze the behavior of systems.

Useful features provided by Renode include:

• Support for ARM Cortex-A/M, x86, RISC-V, SPARC, and POWER

architectures

• Capability to emulate any peripheral device in C#

• Interconnection of virtual devices using I2C, SPI, USB, Ethernet, and other

interfaces

• Capability to connect to the emulated system with the GDB debugger for

debugging purposes, and to analyze and change CPU registers, the state

of system memory, virtual devices, and much more at any time, including

by scripting.

• Capability to write handlers for specific events (for example, reading from

/ writing to specific memory addresses) in Python or C#.

• Capability to write plug-ins in .NET languages to implement new

commands, such as commands that import function and variable names

from IDA/Ghidra SRE.

Describing the emulated platform

Peripheral devices that are part of single-chip systems are normally available via

Memory Mapped I/O (MMIO) – physical memory regions to which registers of

the corresponding peripheral modules are mapped. Renode provides the

capability to build an on-chip system from building blocks using a configuration

file with the .repl (REnode PLatform) extension that describes which devices

should be mapped to which memory addresses.

Information about available peripheral devices and the memory map for the

platform employed can be found in SoC documentation (if publicly available). If

the documentation is not available, you can find this information through other

means, such as by analyzing the contents of the Device Tree Blob (DTB), a data

https://github.com/renode/renode/blob/master/scripts/single-node/versatile.resc
https://github.com/renode/renode/blob/master/scripts/single-node/litex_vexriscv_linux.resc
https://github.com/renode/renode/blob/master/scripts/single-node/hifive_unleashed.resc
https://renode.readthedocs.io/en/latest/introduction/supported-boards.html
https://dotnet.microsoft.com/languages/

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

5

© 2022 AO KASPERSKY LAB

block describing the platform that is required by the Linux kernel to run Linux on

embedded devices.

In the firmware being analyzed, the DTB block is attached to the end of the

uImage file (according to information from the binwalk tool). After converting

the DTB into a readable format (DTS) using the dtc tool, we can use it to create

a platform description for Renode:

uart0: UART.PL011 @ sysbus 0x12080000

 -> gic@6

 size: 0x1000

uart1: UART.PL011 @ sysbus 0x12090000

 -> gic@7

 size: 0x1000

uart2: UART.PL011 @ sysbus 0x120a0000

 -> gic@8

 size: 0x1000

uart3: UART.PL011 @ sysbus 0x12130000

 -> gic@20

 size: 0x1000

timer0: Timers.SP804 @ sysbus 0x12000000

 -> gic@1

memory: Memory.MappedMemory @ sysbus 0x40000000

 size: 0x8000000

sysCtl: Miscellaneous.ArmSysCtl @ sysbus <0x12050000, +0x1000>

 procId: 0x0C000191

pl310: Cache.PL310 @ sysbus <0x10700000, +0x10000>

gic: IRQControllers.GIC @ {

 sysbus new Bus.BusMultiRegistration { address: 0x10301000; size: 0x1000;

region: "distributor"};

 sysbus new Bus.BusMultiRegistration { address: 0x10300100; size: 0x100;

region: "cpuInterface"}

 }

 0 -> cpu@0

 itLinesNumber: 2

 numberOfCPUs: 1

cpu: CPU.Arm @ sysbus

 cpuType: "cortex-a9"

sysbus:

 init:

 Tag <0x12080000, 0x12080FFF> "UART0"

 Tag <0x12090000, 0x12090FFF> "UART1"

 Tag <0x120A0000, 0x120A0FFF> "UART2"

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

6

© 2022 AO KASPERSKY LAB

The above platform description for Renode was created using a minimal set of

peripheral devices listed in the Device Tree, which includes serial interfaces

(UART), the system clock, RAM, and an interrupt controller. This should be

enough to at least run something, and then we can proceed according to the

situation. An example of a serial interface description in DTS is shown below:

uart@12080000 {

 compatible = "arm,pl011\0arm,primecell";

 reg = <0x12080000 0x1000>;

 interrupts = <0x00 0x06 0x04>;

 clocks = <0x02 0x23>;

 clock-names = "apb_pclk";

 status = "okay";

};

Luckily for us, all the necessary devices in this case were already available in the

Renode library: the PL011 serial port, the SP804 clock, and the standard ARM

interrupt controller. However, in many cases, a minimal implementation of a

specific device that is not included in Renode has to be written or, alternatively,

stub tags can be used instead (as described below).

Starting emulation

An initialization script has to be prepared to run something useful on the

platform obtained. The script normally loads executable code into the platform’s

memory, configures processor registers, sets additional event handlers,

configures the output of debug messages (if necessary), etc.

:name: HiSilicon

:description: To run Linux on HiSilicon

using sysbus

$name?="HiSilicon"

mach create $name

machine LoadPlatformDescription @platforms/cpus/hisilicon.repl

logLevel 0

sysbus LogAllPeripheralsAccess true

create externals ###

showAnalyzer sysbus.uart0

redirect memory for Linux ###

sysbus Redirect 0xC0000000 0x40000000 0x8000000

load binaries ###

sysbus LoadBinary "/home/research/out/uImage" 0x40008000

sysbus LoadAtags "console=ttyS0,115200 mem=128M@0x40000000 nosmp maxcpus=0"

0x8000000 0x40000100

set registers ###

cpu SetRegisterUnsafe 2 0x40000100 # atags

cpu PC 0x40008040

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

7

© 2022 AO KASPERSKY LAB

The script loads the uImage file into the platform’s memory at the address taken

from the binwalk output, configures kernel arguments (Linux expects ATAGS to

be passed at the offset of 0x100 bytes from the start of RAM, and the address

is also passed in the r2 register), and passes control to address 0x40008040
because the first 0x40 bytes are taken by the uImage header.

The initialization script may also perform many additional actions, such as setting

different processor registers (e.g., if code execution does not begin from the

entry point) or write any value to the platform memory (e.g., if it’s necessary to

patch specific instructions in the executable code loaded at previous steps). It

can also enable the GDB server or print debug information about all peripheral

access attempts:

Start GDB server on localhost:3333

machine StartGdbServer 3333

Write 2 NOP instructions (ARM Thumb) at address 0xdeadbeef

sysbus WriteDoubleWord 0xdeadbeef 0x46c046c0

Print all queries to virtual devices to console

sysbus LogAllPeripheralsAccess true

The Renode emulator provides enough capabilities to quickly start the dynamic

analysis of the firmware being studied. Now we can start emulation:

Starting

emulation

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

8

© 2022 AO KASPERSKY LAB

The console output shows that the emulator apparently entered an infinite loop

while checking some condition (register value in memory) and refuses to

continue execution:

We start by looking at the unpacked Device Tree and try to find out which

device corresponds to the address requested. We determine that this should be

the address of the Flash Memory Controller (NOR/NAND memory controller):

flash-memory-controller@10000000 {

 compatible = "hisilicon,hisi-fmc";

 reg = <0x10000000 0x1000 0x14000000 0x10000>;

 reg-names = "control\0memory";

 clocks = <0x02 0x2c>;

 #address-cells = <0x01>;

 #size-cells = <0x00>;

...

We can try to trick the system into continuing execution. Instead of adding a

full-fledged Flash memory controller to the platform description file, we can try

to emulate only the register requested by adding a stub tag. But first we need to

find out which value is expected by the kernel in the register located at address

0x10000018 to continue execution. Through a search on GitHub, we find the

source code of the controller’s driver in the Linux kernel (drivers/mtd/spi-

nor/hisi-sfc.c) and we notice that the register in question is used in the

wait_op_finish function:

static inline int wait_op_finish(struct hifmc_host *host)

{

 u32 reg;

 return readl_poll_timeout(host->regbase + FMC_INT, reg,

 (reg & FMC_INT_OP_DONE), 0, FMC_WAIT_TIMEOUT);

}

Infinite query

at the address

0x1000001

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

9

© 2022 AO KASPERSKY LAB

The FMC_INT_OP_DONE constant is equal to 1. Therefore, to skip the loop, the

kernel needs to read 1 from the FMC_INT register. This can be ensured by adding

the following tag after Tag <0x120A0000, 0x120A0FFF> "UART2" in the

platform description:

Tag <0x10000018, 0x1000001C> "FMCINT" 0x1

Now the value 1 will always be read at address 0x10000018. In addition to setting

a fixed value, Renode enables you use Python scripts embedded in the platform

description to implement a more sophisticated logic for handling address-based

read/write operations. Examples of this usage scenario can be found in startup

scripts and platform description files provided with Renode.

Next, we restart the emulator. Now, the window of the terminal connected to the

virtual serial port uart0 displays the standard Linux shell, with which you can

interact as usual:

This means that we were able to partially run the firmware of the network video

recorder without actually having the recorder on hand. In the next steps, we can

use the tools available in the emulated file system to decrypt the encrypted

firmware files, extract kernel modules that provide the recorder functionality and

analyze their logic, etc.

Exchanging data with the emulated system

Previously, we extracted several encrypted tar.lzma archives from the video

recorder's firmware file. After a quick analysis of the files and scripts present in

Starting

emulation

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

10

© 2022 AO KASPERSKY LAB

the system running in Renode, we can see that these archives are decrypted

using the /bin/ded application, which in turn queries the /dev/hikded device

provided by the hik_ded.ko kernel module. This kernel module in its turn queries

another kernel module, hik_hal.ko, which actually decrypts the encryption key

and the encrypted archive. To avoid wasting time on a detailed analysis of the

entire process using static analysis tools, we can run this chain in the emulator to

complete processing the encrypted files and then download the decrypted

archives.

First we need to find a way to transfer the encrypted files to the emulated

system. The only on-chip devices available in our virtual system that can be used

for communication are the RAM and serial ports. However, the total size of the

archives is too large for transferring them through a serial port (with its low

transfer speed) to be practicable. Therefore, we will try to transfer them through

RAM. As regards virtual serial ports, Renode supports setting up communication

with them from a host system via the TCP server or creating a pty device (the

latter works only in Linux and macOS).

We use a familiar command to load an encrypted file into the memory of the

virtual machine:

sysbus LoadBinary "/home/research/out/sys_app.tar.lzma" 0x48000000

The sys_app.tar.lzma file will be loaded into physical memory at the address

specified. We can retrieve it from there by using the /dev/mem device, which

can be used in Linux to read and write directly to physical memory.

dd if=/dev/mem of=/sys_app.tar.lzma.encrypted bs=1M seek=1152 count=10

Now we can decrypt the data using standard tools included in the firmware:

ded -d /sys_app.tar.lzma.encrypted /sys_app.tar.lzma

tar -atvf /sys_app.tar.lzma

After verifying that the file was successfully decrypted, we need to transfer the

decryption results from the virtual machine. This can also be done through

/dev/mem. However, the out-of-the-box configuration of Renode does not

include a command for saving a fragment of physical memory contents to a file,

while commands that provide communication with memory through the GDB

server work with virtual addresses. We'll have to implement this capability with a

simple plug-in:

using System;

...

namespace Antmicro.Renode.Plugins.MemoryDumpPlugin {

 public sealed class MemoryDumpCommand : Command {

 public override void PrintHelp(ICommandInteraction writer) {

 base.PrintHelp(writer);

https://renode.readthedocs.io/en/latest/host-integration/uart.html
https://renode.readthedocs.io/en/latest/host-integration/uart.html

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

11

© 2022 AO KASPERSKY LAB

 writer.WriteLine(String.Format("{0} address length \"file\"", Name));

 }

 [Runnable]

 public void Run(ICommandInteraction writer, HexToken address, HexToken

length, StringToken fileName) {

 byte[] memory =

monitor.Machine.SystemBus.ReadBytes((ulong)address.Value, (int)length.Value);

 File.WriteAllBytes(fileName.Value, memory);

 }

 public MemoryDumpCommand(Monitor monitor) : base(monitor, "dump_memory",

"Dump memory to file.") { }

 }

}

After loading the plug-in, the Renode console will support a new command,

dump_memory, which can be used to extract data from the VM memory and unpack

the archive. Further analysis of the files extracted is beyond the scope of this

article and will be omitted.

Conclusions on this tool

We have examined a practical example of using the Renode emulator to run and

decrypt firmware files from a real-world device. In this case, thanks to Renode's

support of the peripherals used in the HiSilicon SoC, we were able to use a fully

functional Linux terminal without having to write any code.

At the same time, where necessary, the modular architecture of the emulator

and its scripting capabilities make it relatively easy to implement support for any

lacking functionality at a level that is sufficient to conduct research.

The emulator’s versatility enables it to run full-fledged operating systems such

as Linux or QNX as well as small embedded real-time operating systems such as

FreeRTOS, mBed OS, embOS, etc.

One of the distinguishing features of this tool is its use of system-level

emulation. As a result of this, it can be difficult to use it to fuzz-test or debug a

user-space application that runs in an emulated operating system.

The tool’s shortcomings include the lack of detailed documentation, with existing

documentation describing only the most basic usage scenarios. When

implementing something more complicated, such as a new peripheral device, or

when trying to understand how a specific built-in command works, you have to

repeatedly refer to the project repository on GitHub and study the source code

of both the emulator itself and bundled peripheral devices.

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

12

© 2022 AO KASPERSKY LAB

Application-level debugging using GDB and

QEMU

Strictly speaking, in our particular case third-party tools are not really required for

dynamic analysis of user-space applications: the operating system we are using,

i.e., Linux, enables limited debugging of these applications using the standard GDB.

The firmware to be analyzed is designed for the ARM architecture, while our

research is being conducted on an x86_64 system, so we will need QEMU with

support for user-mode ARM emulation to run ELF files.

To conduct our experiment, we need to extract the file system that we have

already seen in the Renode terminal from the firmware to be analyzed and to

install the qemu-user and gdb-multiarch packages:

sudo apt install gcc-arm-linux-gnueabihf libc6-dev-armhf-cross qemu-user-

static gdb-multiarch

Now we can run the chroot command and switch to an environment that is

similar to the one we saw in Renode. QEMU, which was installed at the previous

step, provides transparent emulation of ARM instructions. However, when using

this approach, only user-level programs will be available for running and

debugging because the Linux kernel in the chroot environment will be inherited

from the host operating system.

Thanks to the built-in GDB server, QEMU is able to debug Linux applications that

were compiled for the ARM architecture by using the GDB debugger on an x86

system.

chroot

in an ARM

environment

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

13

© 2022 AO KASPERSKY LAB

As an example, we will try to debug /bin/ded:

qemu-arm-static -g 9999 -L ~/out/cpio/bin/ded

Next, we start GDB in another terminal window:

The debugger started and stopped at the entry point of /bin/ded.

GDB QEMU 1

GDB QEMU 2

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

14

© 2022 AO KASPERSKY LAB

Conclusions on this tool

Obviously, one of the limitations of this approach (in contrast to Renode) is that,

when using qemu-user, we cannot load the Linux kernel and its modules, which

implement a substantial part of the functionality in the case of the firmware we

are analyzing. Specifically, the /bin/ded tool from the above example returns an

error, even though it runs flawlessly and correctly decrypts encrypted files when

it is run in the Renode emulator. In addition, this approach will not work if the

firmware being analyzed is not based on Linux. This is because qemu-user works

by converting ARM executable code to x86_64 instructions and directly relays

system calls to the Linux kernel. However, the method we will examine next does

not have this limitation.

Application-level debugging using the Qiling

Framework

Qiling is an advanced multi-platform framework for emulating binary files. It can

emulate a multitude of platforms and environments, including:

• Emulation of Windows, MacOS, Linux, QNX, BSD, UEFI, DOS, MBR, and

Ethereum Virtual Machine

• Support for x86, x86_64, ARM, ARM64, MIPS, and 8086 architectures

• Support for various executable file formats, including PE, Mach-O, ELF,

COM, and MBR.

The framework itself was written in Python, which makes adapting its

functionality to our specific needs sufficiently easy. The Qiling Framework uses

the Unicorn engine, which is simply an emulator of machine instructions, while

Qiling provides high-level functions such as file system emulation, dynamic

libraries, loading various formats of executable files, etc.

Compared to QEMU, the Qiling Framework can emulate more platforms,

provides flexible configuration of the emulation process, including the capability

to modify executing code on-the-fly. In addition, it is a cross-platform

framework, which means it can be used to emulate Windows or QNX executables

on Linux, and vice versa. The Qiling Framework repository also contains examples

of running the AFL fuzzer in Unicorn mode for Linux and QNX executables. We’ll

take advantage of this later.

For our first encounter with Qiling, our equivalent hello-world example will be

to use Qiling to start the familiar ded tool from the firmware being analyzed.

https://github.com/unicorn-engine/unicorn
https://github.com/AFLplusplus/AFLplusplus/blob/stable/unicorn_mode/README.md

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

15

© 2022 AO KASPERSKY LAB

To do so, we will copy the device file system to examples/rootfs/hikroot
and write the following simple script named examples/hikded_arm_linux.py:

import sys

sys.path.append("..")

from qiling import Qiling

from qiling.const import QL_VERBOSE

def run_sandbox(path, rootfs, verbose):

 ql = Qiling(path, rootfs, verbose = verbose)

 ql.run()

if __name__ == "__main__":

 run_sandbox(["rootfs/hikroot/bin/ded"], "rootfs/hikroot", QL_VERBOSE.DEFAULT)

When operating at the DEFAULT logging verbosity level, the Qiling Framework

sends information about emulated system calls to the console similarly to the

strace Linux tool.

Now we can try to start the AFL++ fuzzer, which will use Qiling as a runtime

environment. In most cases, this type of fuzzer will run very slowly. However,

thanks to the fact that the Qiling Framework can emulate a broad variety of

environments and operating systems, as well as its support for UEFI and various

microprocessor architectures, in some cases this may be the only way to do

fuzzing with minimal effort.

The ded tool examined earlier is not suitable as a target for fuzzing because its

code is too simple and will return an error and exit due to the inability to open the

/dev/hikded device regardless of the input data. This is why we will use another

tool, hrsaverify, from the same firmware. It is used to validate encrypted files

and takes the path to the file to be validated as an argument. The Qiling

Framework already has several examples of running the AFL++ fuzzer in the

examples/fuzzing directory of its repository. We will adapt the example

named linux_x8664 to run hrsaverify. The modified script for running the

fuzzer is shown below:

import unicornafl as UcAfl

UcAfl.monkeypatch()

import os, sys

from typing import Any, Optional

sys.path.append("../../..")

from qiling import Qiling

from qiling.const import QL_VERBOSE

from qiling.extensions import pipe

def main(input_file: str):

 ql = Qiling(["../../rootfs/hikroot/usr/bin/hrsaverify", "/test"],

"../../rootfs/hikroot",

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

16

© 2022 AO KASPERSKY LAB

 verbose=QL_VERBOSE.OFF, # keep qiling logging off

 console=False, # thwart program output

 stdin=None, stdout=None, stderr=None) # don't care about stdin/stdout

 def place_input_callback(uc: UcAfl.Uc, input: bytes, persistent_round: int,

data: Any) -> Optional[bool]:

 """Called with every newly generated input."""

 with open("../../rootfs/hikroot/test", "wb") as f:

 f.write(input)

 def start_afl(_ql: Qiling):

 """Callback from inside."""

 # We start our AFL forkserver or run once if AFL is not available.

 # This will only return after the fuzzing stopped.

 try:

 if not _ql.uc.afl_fuzz(input_file=input_file,

 place_input_callback=place_input_callback,

exits=[ql.os.exit_point]):

 _ql.log.warning("Ran once without AFL attached")

 os._exit(0)

 except UcAfl.UcAflError as ex:

 if ex.errno != UcAfl.UC_AFL_RET_CALLED_TWICE:

 raise

 # Image base address

 ba = 0x10000

 # Set a hook on main() to let unicorn fork and start instrumentation

 ql.hook_address(callback=start_afl, address=ba + 0x8d8)

 # Okay, ready to roll

 ql.run()

if __name__ == "__main__":

 if len(sys.argv) == 1:

 raise ValueError("No input file provided.")

 main(sys.argv[1])

The first thing we should look for is the base address of the executable file (in

our case, 0x10000), the address of the main function. Sometimes it is necessary

to additionally set hooks on other addresses that, when encountered, should be

considered as a crash by the fuzzer. For example, when running AFL in a QNX

environment (in the qnx_arm directory), this type of additional handler is set for

the address of the SignalKill function in libc. In the case of hrsaverify, no

additional handlers are needed. It should also be kept in mind that all files that

must be available to the running application should be put into sysroot, and

their relative paths should be passed (in this case, ../../rootfs/hikroot/).

AFL++ is started with the following command:

AFL_AUTORESUME=1 AFL_PATH="$(realpath ./AFLplusplus)" PATH="$AFL_PATH:$PATH" afl-

fuzz -i afl_inputs -o afl_outputs -U -- python ./fuzz_arm_linux.py @@

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

17

© 2022 AO KASPERSKY LAB

The AFL fuzzer will start, and after some time we will see some crashes:

Conclusions on this tool

Qiling is a promising tool whose main advantages are its high flexibility,

extensibility, and support for a broad variety of architectures and environments.

The framework can serve as a substitute for qemu-user in cases where using

the latter is not possible (for example, unsupported target OS or the lack of

required additional capabilities, such as setting arbitrary handles for any memory

addresses, special handling of interrupts, etc.). However, its high flexibility and

shallow learning curve due to its use of Python also contribute to its low

emulation speed.

Bonus: using GDB for debugging on a real-world

device

Developers deliberately leave various engineering interfaces (such as the UART

console, JTAG, etc.) on many devices’ circuit boards. These interfaces are often

deactivated on the software or hardware level, are password-protected, or have

some other form of access restriction. However, in many cases an interface is

immediately accessible or a researcher is able to gain access to it during

AFL++

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

18

© 2022 AO KASPERSKY LAB

research. In such cases, communication with the system being analyzed is

possible via the command line or the JTAG debugger.

When using JTAG, you can read or write contents to ROM or RAM, set

breakpoints, manage peripheral devices by writing to addresses corresponding

to their I/O registers, analyze the state of processor registers, etc.

When using UART, it is often possible to interact with the first-stage bootloader

(such as U-Boot) and with the command shell of the operating system that has

been loaded. When combined with the ability to modify ROM contents or other

ways to write/edit files in the device file system (such as downloading files over

the network via FTP), this opens up the possibility of interactively debugging

applications directly on the device. To use this method, you usually have to start

by compiling the GDB server for the target architecture and OS.

To demonstrate this method, we will connect a debugger to the head unit of a

multimedia system for one of the more popular car brands, which runs the QNX

real-time operating system.

The QNX SDK includes a modified GDB debugger with its own remote debugging

protocol that is incompatible with the standard GDB server. This is why the

pdebug daemon must be run on the device instead of the GDB server, after first

copying it from the SDK if it is not already present on the device. The daemon

can communicate with the remote GDB debugger via TCP or a serial port, which

means that at least one of these device communication methods must be

available for debugging to be possible.

We added the pdebug daemon to the device file system by modifying the

memory contents. Let's run it:

http://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/p/pdebug.html

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

19

© 2022 AO KASPERSKY LAB

The port used for the connection is TCP port 22, which is the only port on the

device being analyzed that is available for remote connections, while all other

ports on the device are protected by the firewall. Now we can connect to the

daemon using the GDB debugger that is included in the QNX Software

Development Platform (SDK), and select a process to be debugged from the list

of running processes or start a new process.

Starting the

pdebug daemon

GDB

is connected

to the head unit

via TCP

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

20

© 2022 AO KASPERSKY LAB

Please refer to official documentation for a concise guide on debugging with

GDB in QNX.

In addition to using the device being analyzed for debugging, you can use other

suitable devices. For example, the QNX 6.6 operating system used in this

example can also be run on an easily accessible and affordable BeagleBone Black

board. Although its hardware is different from that of the device being analyzed,

you will most likely be able to analyze some of the applications from the firmware

by simply copying pdebug to a partially compatible board and running it.

This could prove very useful, especially since modifying a device’s firmware to

load the pdebug daemon into it, as demonstrated in this section, takes significant

time and effort. Therefore, it may be less resource-intensive to just copy

individual files from the firmware and run them on a compatible processor.

Conclusions on this tool

In the initial stages of research, it is usually difficult or even impossible to access

various debugging interfaces of industrial devices. This means that it will most

likely take some effort to ensure such access by activating disabled interfaces,

soldering the missing electronic components onto the board, modifying the

firmware, etc. However, after completing this intermediate task, debugging

directly on the device may substantially simplify the rest of the research

process.

GDB

is connected

to process

with ID 24584

https://www.qnx.com/developers/docs/6.4.1/neutrino/prog/using_gdb.html

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

21

© 2022 AO KASPERSKY LAB

Conclusion

Naturally, this article does not cover all of the diverse issues that the author

encounters when researching device firmware. Nonetheless, it attempts to

cover those issues which are most frequently encountered in the initial stages of

research, and discusses problems that the author believes are potential

stumbling blocks for the inexperienced researcher.

The author hopes that this overview of tools will make the work of beginning

researchers easier and will accelerate their immersion into the subject matter of

device firmware dynamic analysis.

The author also hopes that this overview will encourage the more experienced

researchers to contribute to further development of the tools and frameworks

described in this article.

If you would like more information, or feel like sharing your thoughts, please send a message to the

author or to ics-cert@kaspersky.com.

mailto:sergey.anufrienko@kaspersky.com
mailto:ics-cert@kaspersky.com

DYNAMIC ANALYSIS OF FIRMWARE COMPONENTS

IN IOT DEVICES

22

© 2022 AO KASPERSKY LAB

Kaspersky Industrial Control Systems Cyber Emergency Response Team (Kaspersky ICS CERT)

is a global project of Kaspersky aimed at coordinating the efforts of automation system vendors,

industrial facility owners and operators, and IT security researchers to protect industrial enterprises

from cyberattacks. Kaspersky ICS CERT devotes its efforts primarily to identifying potential and

existing threats that target industrial automation systems and the industrial internet of things.

Kaspersky ICS CERT ics-cert@kaspersky.com

https://ics-cert.kaspersky.com/
mailto:ics-cert@kaspersky.com

	Research object and procedure
	System-level emulation using Renode
	Describing the emulated platform
	Starting emulation
	Exchanging data with the emulated system
	Conclusions on this tool

	Application-level debugging using GDB and QEMU
	Conclusions on this tool

	Application-level debugging using the Qiling Framework
	Conclusions on this tool

	Bonus: using GDB for debugging on a real-world device
	Conclusions on this tool

	Conclusion

