
An Unauthenticated Journey to Root :
Pwning Your Company’s Enterprise Software Servers

Yvan Genuer

Onapsis
ygenuer@onapsis.com

Pablo Artuso

Onapsis
partuso@onapsis.com

1. Abstract

Companies consist of a plethora of software,
hardware, vendors, and solutions working to-
gether to keep the business running and alive.
When it comes to Enterprise Software, because
of its intrinsic criticality and complexity, com-
panies rely on expert vendors in the field. SAP,
one of the largest Enterprise Software vendors,
is definitively part of this list. With huge pres-
ence around the globe, SAP systems could be
found in almost every mid-to-large company
providing one of the most critical actions: Ad-
ministrating the company’s business.

This paper will illustrate an in-depth anal-
ysis performed against one of the most im-
portant assets of every company: its SAP im-
plementation. All phases of the research will
be depicted, starting from the introduction of
each analysed component, continuing with the
techniques that helped us find the vulnerabil-
ities, up to discussing all security measures
that could be followed in order to be protected
against them. Furthermore, post exploitation
scenarios will be discussed which will help to
better illustrate the impact that the found flaws
could have, not only in technical but also in
business terms.

2. Keywords

SAP, Enterprise Software, RCE, root, Solution
Manager, SolMan, Host Agent, CVE-2020-6207,
CVE-2020-6234, CVE-2020-6236

3. Acknowledgements

To our leader, Nahuel D. Sánchez, who helped
us throughout the research, providing support,
sharing discussions and pushing us in order to
get the best out of ourselves.

4. Introduction

Enterprise software is one of the most impor-
tant topics when discussing about company’s
assets. They usually manage sensitive and crit-
ical information. It is because of this reason
that companies opt for experts in the field to
trust one of their most critical assets. SAP is
one of the largest vendors of Enterprise Soft-
ware. They have been successfully develop-
ing business applications for almost 50 years.
With more than 450k customers and presence
in more than 180 countries, is possible to be-
lieve that almost every mid to large company
today is using SAP systems for keeping its
business up and running.

The list of products that SAP offers is very ex-
tensive. Customers may choose which product
to use based on their particular needs. How-
ever, there is one particular solution that will
be present in every customer network: SAP
Solution Manager (SolMan).

This paper is the outcome of an extensive
security research performed against the SAP
Solution Manager: the core component of every
SAP implementation. A completely practical
attack which leverages not only the power of
SolMan but also the relation with its agents
will be presented.

1

mailto:ygenuer@onapsis.com
mailto:partuso@onapsis.com

4.1. Solution Manager

In SAP landscapes, the SAP Solution Manager
(SolMan) could be compared to a domain con-
troller system in the Microsoft world. It is a
technical system that is highly connected with
powerful privileges to all other SAP systems.
Once an SAP system is connected to the solu-
tion manager it receives the name of "managed"
or "satellite" system. As an administration so-
lution, SolMan aims to centralize the manage-
ment of all systems within the landscape by
performing actions such as implementing, sup-
porting, monitoring and maintaining the enter-
prise solutions.

4.2. SMD Agent

If an SAP customer wants to fully utilize the
capabilities of the Solution Manager, they must
install an application called Solution Manager
Diagnostic Agent (SMDAgent) on each host
where an SAP system is running. This Agent
manages communications, instance monitor-
ing and diagnostic feedback to the Solution
Manager. From the operating system perspec-
tive, the unique user involved in all SMDAgent
activities is daaadm.

4.3. Host Agent

The SAP Host Agent1 is a component installed
automatically during the installation of a new
SAP system. It is OS and database indepen-
dent, and it can accomplish several life-cycle
tasks such as:

• Monitoring

• Start/Stop instances

• Preparing for upgrade

5. Architecture

From an architecture point of view the Solution
Manager, as explained before, is connected to
every single system within the landscape. As

1https://help.sap.com/doc/saphelp_nw73ehp1/7.31.19/en-
US/48/c6f9627a004da5e10000000a421937/content.htm

usually every managed/satellite system use
the full capabilities of SolMan, the SMDAgent
could be found in every server where they are
running. Finally, the SAP Host Agent is a solu-
tion that could be used for both SAP and non-
SAP applications. Nevertheless, every SAP
application will have this agent running within
its server.

To summarize it and visualize it in a more
graphical way, the following image can be used
as an example:

Figure 1: Example architecture including Solution Man-
ager, SMD Agent and Host Agent.

This picture shows an SAP landscape com-
posed by 4 systems (one Solution Manager, 3
managed systems) running different operating
systems and different SAP NetWeaver stacks.
As can be seen in the image, the SolMan is con-
nected to every other system. SMD and Host
agents are present in all servers (including Sol-
Man itself).

6. Solution Manager Analysis

6.1. Motivation

There were several reasons why the Solution
Manager was a interesting target for an in-
depth analysis of its security. Among all them,
it is possible to highlight the following two:

• It is an hyper-connected system: It is con-
nected to all other systems in the same
landscape.

• Every SAP implementation must have one.

Finding any issue in such critical asset would
potentially imply an impact on some other sys-
tem of the landscape. The main objective was:

2

First to demonstrate if there was a way for
an attacker to take control on the system and
second, understand how deep they could go.

6.2. Initial Phase

One of SolMan’s components is the web server
part of the Java stack. As every other SAP
solution running on top the NetWeaver Java
technology, several applications, services and
functionalities are provided through it. For in-
stance, to perform configurations on the SMD
Agents, a particular application running on
this web server must be used.

The initial phase of the Solution Manager
analysis involved reviewing the exposed ap-
plications and web services with the goal of
identifying those which did not require authen-
tication. Even though authenticated ones may
also be vulnerable, the impact of an unauthen-
ticated exposed application would be naturally
higher.

Looking for unauthenticated applications

This search focused mainly on application and
web services exposed by default. In order to
find them, the following approaches were fol-
lowed

• Log analysis, with the goal of finding pre-
vious communications.

• Configurations analysis, with the goal of
finding apps and their exposure based on
configurations written either in files or in
the database.

• Documentation analysis.

After an initial phase of discovery a list
of candidates applications was identified and
ready to be analysed. Among this list, there
was one that was worth to be analyzed: End-
user Experience Monitoring (EEM).

6.3. Unauthenticated application dis-
covery: EEM

Once this potential vulnerable endpoint was
identified an intensive analysis on it began.

Based on online documentation, self testing,
and more, it was possible to understand the
goal and nature of this application.

The End user Experience Monitoring appli-
cation allows to mimic any activity that could
be performed by an end-user using proprietary
SAP protocols such as: RFC, DIAG or HTTP
protocols. From a technical point of view, in
order to achieve such actions, scripts of the
aforementioned protocols can be developed,
uploaded and executed against other systems.
Despite the fact that EEM runs in the Solu-
tion Manager, the actual execution of the up-
loaded/deployed scripts is carried out by an
EEM Robot; A system that is running a tiny
Java application which knows how to interpret
and execute these scripts. By default, every
SMD Agent connected to the Solution Man-
ager could act as an EEM Robot. From now on,
the concept of SMD Agent or EEM robot will
be used indistinguishably.

In summary, these are the steps that are car-
ried out:

1. SAP administrator gets a script (either by
developing it or asking somebody else to
do it).

2. The admin chooses the EEM Robot where
the script will be deployed.

3. Once the script is deployed, the EEM robot
executes.

As it was mentioned before, this application
was not requiring authentication. That was the
reason why the following questions came up:

• Is this application able to be used without
neither authentication nor authorization?

• Is there any critical action that could be
performed through scripts?

6.4. EEM Technical Analysis

Technically speaking, EEM was a SOAP end-
point. Once its WSDL was retrieved and
parsed, a set of 19 methods were available to be
called. Among these methods it was possible
to find:

3

• getAllAgentInfo
• runScript
• setAgeletProperties
• uploadResource

A quick test to ensure that action could
be performed without authentication was per-
formed. Using SOAP UI2 the method run-
Script was executed. This method required
two parameters: the EEM robot host and
script name. As explained before, all SMD
Agents are EEM robots by default. At that
point, a valid script name was unknown, that’s
why the following values were used:

• EEM robot host: A valid SMD Agent host
• Script name: "Foo"

The answer received by the server was not
the one expected:

<errorMessage>com.sap.smd.eem.admin.Eem-

Exception: EEM is not enabled on this

agent. Operation only supported when EEM

is enabled.</errorMessage>

The returned message was not giving any
kind of information related to the question of
"Is this application able to be used without nei-
ther authentication nor authorization?". More-
over, it added a new one:
If this application comes deactivated by de-
fault, should an administrator explicitly en-
able it?

Remotely enabling EEM without authentica-
tion

The result obtained from the previous test,
forced to continue with the analysis of exposed
methods. "Getter" methods are usually eas-
ier to execute when the application is a bit
unknown as sometimes they do not require pa-
rameters and return back information that may
be valuable. This case was not the exception.
Among all the listed methods, there was one
called getAllAgentInfo. This method did not
require any parameter, therefore was easy to
execute.

2https://www.soapui.org/

Just because of having an answer from the
execution of getAllAgentInfo, confirmed the
idea that neither authorization nor authentica-
tion was needed to use the application. And
therefore, the first vulnerability could be con-
firmed.

Once executed the information returned was
really interesting:

• OS version
• JDK version
• Environmental information (variables,

configs)
• EEM properties

EEM properties held configuration directly
related with the application in a key-value fash-
ion. Among all those properties there was a
really interesting one:

• ...
• eem.enable = False
• ...

The name of this property led to a new
search over the methods in order to try to find
a way to change this value. After a quick search
the method setAgeletProperties appeared to
be a candidate. The idea behind it was to try
to activate the EEM through changing its value
to True. setAgeletProperties required three
parameters:

• EEM robot host.
• Key.
• Value.

The test used a valid SMD Agent host as
EEM Robot host, "eem.enable" as Key and
"True" as Value. Once this execution was ac-
complished, getAllAgentInfo was launched
again. This time the value of eem.enable was
"True".

In order to definitively confirm that the
change worked, the first test was re-executed.
The method runScript was called with the same
parameters as before but this time the message
was different:

<errorMessage>com.sap.smd.eem.admin.Eem-

Exception: Script foo_script not found.

</errorMessage>

4

This message confirmed that EEM was en-
abled and ready to be used by anyone without
ever providing neither authentication nor au-
thorization. However, what was the impact of
having such an application accessible to any-
one? In order to answer this question it was
necessary to make a more in depth analysis of
the features provided by it.

Uploading and running custom scripts

One of the main goals was to find the way of
creating custom scripts, upload them and get
them executed. Until this point, thanks to the
previous analysis, it was known how to run a
script that was already present in some SMD
Agent. It was necessary to find a way to upload
any arbitrary script.

Among all functions exported by the end-
point, there was one called uploadResource.
This function required several parameters. The
most important ones were: SMD Agent host
and Content. The latter had to be base64 en-
coded. The first test was to encode some ran-
dom string and upload it in order to see if the
returned message was giving some informa-
tion. The test was kind of successful as the
returned message was:

<errorMessage>FatalError validating

XML document: Content is not allowed

in prolog</errorMessage>

Analysing the error message it was possible
to realise that the content of the scripts should
be XML.

With the help of documentation found on
the Internet[1], along with resources provided
by the application itself, a more in-depth un-
derstanding of the application was achieved.
Recalling what was mentioned in section 6.3,
several protocols were able to be scripted: RFC,
DIAG, HTTP, SOAP, etc. In order to build and
create your own scripts in a more friendly way,
SAP provides a tool called EEM Editor. Un-
luckily, the power of this tool was leveraged
after the analysis was finished.

Among all files provided by the application
itself, there was an example of an HTTP script.

This example script was really valuable for the
research as it was helpful to understand more
about the protocol and how scripts were actu-
ally written.

Whenever an invalid script (incorrect tag,
syntax error, etc) was uploaded, a really de-
tailed error message was returned. For exam-
ple:

Error validating XML document: Invalid

content was found starting with element

'blahblah'. One of '{Annotation, Headers,

Param, Check, Search, Part}' is expected

Modifying the aforementioned example
script plus leveraging the error messages re-
turned, it was possible to create a custom script
that was able to perform arbitrary HTTP re-
quests. As EEM scripts are executed by EEM
Robots, this meant that a Server Side Request
Forgery could be achieved.

The possibility of executing arbitrary HTTP
requests was enough to illustrate the impact of
this unauthenticated application. This vulnera-
bility was identified with CVE-2020-6207.

However, we wanted to understand how far
an attacker could go in terms of exploitabil-
ity. Until this point, it was possible to execute
any type of script, but ... what actions can
be scripted? Is it possible to execute OS com-
mands?. In order to find the answer to these
questions it was necessary to better understand
the scripting language and its capabilities.

Understanding and exploiting the scripting
language

Besides having all the available documenta-
tion online for the aforementioned scripting
language, it was needed to go deeper in tech-
nical terms. Until this point, every part of the
research was done in a Black-box style. Lever-
aging access to Solution Manager’s OS files,
the analysis shifted to a White-box approach.

Among all files related to the EEM applica-
tion, there was one called Config1.1.xsd. This
schema file, defined the structure the scripting
language had to follow: Fields, Type of Fields,
Tags, etc. This discovery allowed to deeply un-

5

derstand how this language was designed and
how to get the most of it.

It was a message-type language based on
XML. Each script could have one or several
transaction steps. Each step could be made of
one or multiple messages. According to the
schema file, each message must had one of the
following types:

• Think
• Reset
• ServerRequest
• Command

The third one was the type used by the SSRF
script explained in the previous section. The
last one, command, seemed to be interesting to
analyze. Based on online documentation and
some local analysis of files, it was possible to
list all available commands:

• Assign
• AssignJS
• AssignFromList
• AssignFromFile
• WriteVariableToFile
• ReadVariableFromFile

The reason why this scripting language had
commands available to be executed, was basi-
cally to provide support for some actions that
may be out of scope of the language itself. It
was possible to execute any HTTP script, but
unless having extra features (provided by com-
mands in this case) it would be impossible to
store data persistently or share data between
several scripts.

An in-depth analysis started in each of these
commands looking for any flaw that may end
up in a potential vulnerability. After several
tests creating new scripts that made use of each
of them, it was discovered that AssignJS was
vulnerable to code injection.

Seemed that AssignJS, was evaluating any
arbitrary piece of JS code that was sent inside
a parameter of the script, without executing
any prior sanitization. Given that the applica-
tion in charge of executing the script (part of
the SMDAgent) was written in java and that

this command was evaluating Javascript code,
it is possible that the flaw was related to the
ScriptEngine API[2]. Below is an example of a
vulnerable function to illustrate this flaw:

private S t r i n g ExecuteCommand (f i n a l
S t r i n g express ion) {

f i n a l ScriptEngineManager manager =
new ScriptEngineManager () ;

f i n a l Scr iptEngine j s _ e n g i n e =
manager . getEngineByName (" j s ") ;

f i n a l S t r i n g r es =
engine . eval (express ion) ;

return re s
}

With the appropriate payload this could lead
an attacker to have a Remote Code Execu-
tion. Due to this payload is directly obtained
from the script itself it meant that any unau-
thenticated attacker could be able to exploit
it. Additionally, as the scripts were executed
by the Java application running in the SMD
Agent, the commands run with the privileges
of the daaadm user. As explained in section 4.2,
daaadm was the OS layer user of the SMDA-
gent component, which means the attacker
would be able to full compromise it.

6.5. Conclusions

As a summary, two vulnerabilities were found:

1. Authentication bypass of EEM application.

2. Remote Code Execution abusing specific
commands.

Figure 2: Unauthenticated attacker compromises every
SMDAgent connected to the Solution Man-
ager.

6

Chaining both vulnerabilities, as shown in
2, would allow an unauthenticated attacker to
gain full control over all SMD agents connected
to the Solution Manager.

6.6. Staying protected

The following section will illustrate some rec-
ommendations and actions that should be fol-
lowed in order to detect attacks and protect
systems from unauthorized attackers.

Applying patches

Due to the fact that both attacks presented
in section 6 are based on vulnerabilities, the
best way to be protected against them is by
patching. In March 2020, SAP released a patch
that will protect the Solution Manager against
both flaws (authentication and injection):

Note Title CVSS
2890213
[3]

Missing Authentication
Check in SAP Solution
Manager (User-Experience
Monitoring)

10

Table 1: SAP Security notes related to SolMan vulnera-
bilties

SAP security note 2890213[3], provides new
versions of the affected component which will
guarantee protection against the discussed
flaws:

Component Sup package Patch Level

SOLMAN
DIAG 720

SP004 000012
SP005 000013
SP006 000014
SP007 000020
SP008 000016
SP009 000008
SP0010 000002

Table 2: Solution Manager patched versions

It is strongly recommended to install the ap-
propriate patched version as soon as possible.
Nevertheless, if for some reason it is not pos-
sible to install it, SAP provided a step by step
guide to manually add authentication to the
application. To find this guide please refer to
the SAP security note 2890213[3]. This "partial"
fix should be treated as a temporary solution
until it is possible to install the full patch. The
reason to believe this is because it will only
force authentication but will not provide any
protection against the injection flaw. In other
words, any authenticated attacker will still be
able to launch the attack.

Networking protection measures

Installing the patches should be the first step
towards being protected against the presented
attack. However, there are other types of mea-
sures at different levels that can help to miti-
gate and reduce the attack surface.

The SAP Solution Manager it is a technical
component that should only be accessible by
SAP Administrators. There is no need for final
users to have access to it. Therefore, limit who
can reach the SolMan from a networking point
of view will cause:

• An extremely reduced attack surface, as
only Administrators will have access.

• A protection to potential future vulnerabil-
ities. For instance, If in the near future a
new flaw in another application is found,
attackers will not be able to exploit as they
will not have access to it.

The Solution Manager, despite not having
business data, it is a critical system due to
its highly connected architecture with other
SAP systems. Therefore, it is strongly rec-
ommended to keep it as secure as possible,
not only through installing patches but also
through any other method that could help to
keep it protected.

Detection of incidents

In case there is a need to investigate if some-
thing already happened or to monitor actions

7

in order to detect an attempt of attack, SAP
provides a way to help with it. It is possible
to activate a particular log which will start log-
ging all actions performed by the EEM applica-
tion. To manage the server’s log configuration,
SAP provides a particular application called
log-config[4], part of the SAP Netweaver Ad-
ministrator (NWA).

In order to activate the log for the
EEM application, the tracing location
com.sap.smd.eem.admin.EemAdminService
should be searched. Once located, the severity
level should be selected (info level is rec-
ommended). The target file where the logs
will be written, is defined under the System
Configuration view.

After executing the aforementioned steps
and saving changes, a new entry will be writ-
ten to the target defined file (defaultTrace" by
default) each time an action is performed by
the EEM.

7. Host Agent Analysis

7.1. Motivation

There were several reasons why this compo-
nent was interesting from a security point of
view. Some of them were:

1. There were two services associated with
this component, running with very high priv-
ileges: Root for unix-like systems / NT AU-
THORITY/System for Windows systems:

$> ps -ef | grep hostctrl

root 92067 hostctrl/exe/saphostexec[...]

sapadm 92072 hostctrl/exe/sapstartsrv[...]

root 92338 hostctrl/exe/saposcol[...]

2. It seemed possible to communicate with
this agent through port 1128 (exposed to all
interfaces):

$> ss -larntp | grep 92072

LISTEN 0 20 *:1128 *:*

users:(("sapstartsrv",pid=92072,fd=18))

3. The user "daaadm" was mentioned in the
SAP Host Agent configuration file, as value
of a very promising parameter "service/ad-
min_users".

$> grep daaadm hostctrl/exe/host_profile

service/admin_users = daaadm

At this point, a vulnerability that may al-
low an unauthenticated attacker to get daaadm
privileges on every SAP host was already
found. The idea behind analyzing this com-
ponent was to try to find a way to escalate
privileges from daaadm user to root/system
user.

7.2. Powerful agent.. with restricted
access !

During a legit use of SAP Host Agent, local
administrators or root users would communi-
cate with the agent using the binary saphostc-
trl. This binary, part of Host Agent binaries,
works as a wrapper allowing to execute all
Host Agent functions. Below are some names
of those functions:

StartInstance StopInstance
StartDatabase StopDatabase
ExecuteOperation ACOSPrepare
ExecuteInstallationProcedure

Table 3: Some functions exposed by SAP Host Agent

Inside the Host Agent OS directory, there
was a file called host_profile. This profile
stores several configurations (in a key-value
fashion) of the Agent. Among all these
configurations, there was a parameter called
service/admin_users, whose objective is to
whitelist all additional local OS users autho-
rized to communicate with the Host Agent.

As explained in 7.1 daaadm user was part
of this list, which meant that this user would
be able to communicate with the sapstartsrv
process. However, after trying to execute some
of its functions, it was discovered that being
logged as a whitelisted user was not enough.

8

Even for this list of users, like daaadm, they
must provide their password when calling the
saphostctrl binary. Therefore even in the sce-
nario where an attacker uses the SolMan to
execute commands as daaadm, it will not be
possible to communicate with the Host Agent
as they would not know the password.

7.3. SOAP Friendly Agent

Another configuration parameter present in-
side host_profile was service/porttypes. This
configuration basically states all web services
that are exposed by the sapstartsrv (port
1128). By default, three are remotely accessible:
SAPHostControl, SAPOscol and SAPCCMS.

After some analysis it was determined that
SAPHostControl was the equivalent of the bi-
nary saphostctrl. In other words, by only using
HTTP SOAP requests, it was possible to call all
functions provided by the Host Agent. Again,
even locally, all requests required authentica-
tion.

An extensive research over the saphostctrl
binary was performed to finally realized that
every action done with this wrapper was pro-
ducing HTTP requests to localhost on port 1128.
This meant that the binary itself was using
the web service running on port 1128. With
the objective of understanding how everything
was working, an analysis of the traffic was
performed through sniffing the local network
interface of the SAP system.

The first analyzed HTTP request already
gave some interesting outcomes:

POST /SAPHostControl.cgi HTTP/1.1

Content-type : text/xml;charset="utf-8"

Authorization: Basic ezJENEE2RkI4LTM3RjEtNDN

kNy04OEJFLUFEMjc5Qzg5RENEN306MjcwMjI4MjQ0MzE

zNzIzNDYzNDUyMjg4MTI2NDIzMDQ3NDY3MTUwMg==

Soapaction: ""

User-Agent: JAX-WS RI 2.1.6 in JDK 6

Host: target:118

[...]

The authorization header was not empty. Its
decoded value was:

{2D4A6FB8-37F1-43d7-88BE-AD279C89DCD7}:

2702282443137234634522881264230474671502

After some more tests it was found that al-
though the user remains always the same, the
password (that "list" of numbers), changed at
every single HTTP request. It seemed to be im-
portant to further understand what was going
on, and therefore it was decided to look deeper
into the Host Agent kernel to learn from where
these passwords came from.

7.4. Internal Trusted Connection

Using the hardcoded username as an entry
point for the analysis, it was discovered that
a special feature exists inside the Host Agent.
From now on, this feature would be referred
as "Internal Trusted Connection".

After carefully analyzing this feature, it was
possible to determine how it worked:

1. Only whitelisted users (parameter ser-
vice/users_admin) are able to use it.

2. These users are able to request, only lo-
cally, a logon file using the method Re-
questLogonFile exposed by the SAPHost-
Control web service.

3. The Host Agent generates a temporary
password into a temporary file (only read-
able by the caller user) located in /usr/s-
ap/hostctrl/work/sapcontrol_logon and
provides the path and name to the as re-
sponse of the request executed in the pre-
vious step.

4. The initial requester (user), reads the con-
tent of the file to get the password.

5. The user can perform one request, and
only one, using the hardcoded username
and this temporary password.

Below there is an example of how this fea-
ture can be used:
1. The whitelisted used sends a request to the
SAPHostControl web service with the appro-
priate parameters:

9

saphost:daaadm 54> curl -skL -X POST

http://localhost:1128/SAPHostControl.cgi

-H 'Content-Type: text/xml;charset=utf-8'

--data '<?xml version="1.0"

[...]

<ns2:RequestLogonFile>

<user>daaadm</user>

</ns2:RequestLogonFile>

[...]'

| xmllint --format -

2. The user gathers the filename from the
response of the request made in step 1.

<?xml version="1.0" encoding="UTF-8"?>

[...]

<SAPHostControl:RequestLogonFileResponse>

<filename>/usr/sap/hostctrl/work/sapcontrol_

logon/logon1</filename>

</SAPHostControl:RequestLogonFileResponse>

[...]

3. Finally, only the user is able to read that
file, which has a temporary password just avail-
able to be used by that particular user:

saphost:daaadm 55> ls -lrht sapcontrol_logon

-rw------- 1 daaadm sapsys 40 Jun 30 logon1

saphost:daaadm 56> cat logon1

4061453350048328991129491560313810236108

The conclusion of this finding is that the
daaadm user can use this feature to call every
function exposed by the Host Agent. There-
fore, knowing the password of daaadm was
not required anymore. Chaining this finding
with the vulnerability explained in section 6
means that any unauthenticated attacker with
access to the SolMan could finally execute ev-
ery method of every Host Agent running in
the same host as an SMD Agent.

7.5. Analyzing HostControl functions

Until this point it was possible to use the ex-
posed functions using the user daaadm. How-
ever, it was important to further investigate
the actual actions that those functions were
able to perform. Some of the functions ex-
posed seemed to be dangerous (StopInstance,
StopDatabase, etc). Nevertheless, the main ob-

jective was to try to find a way of executing
commands as root or system user.

After a careful analysis of each of the func-
tions exposed, it was possible to identify sev-
eral of them that were vulnerable to command
injection. Although these functions required
OS authentication, they were finally executing
commands as root. Therefore this injection
could lead to a privilege escalation.

Following sections will illustrate in a more
detailed way just a few examples of vulnerable
functions.

ExecuteOperation
This function, under certain circumstances and
after a few prerequisite checks, tried to ex-
ecute "./saphostexec -upgrade" command as
root. However, the path to saphostexec is con-
trolled by the attacker and it is not sanitized.
Therefore, an attacker with the necessary privi-
leges to use this function could trick this path,
allowing the execution of any arbitrary script
or binary as long as the name remains the
same.

Log output of a successful attack:

[..]CommandManager::StartOSCommand: start

./saphostexec

[..]No user configured. Current user will

be used.

[..]Working directory will be change to

'/usr/sap/../../tmp/attacker'

ExecuteInstallationProcedure
This function executes several OS commands
as root before launching the SAP installer tools,
called "sapinst". Again, the path to the sapinst
binary could be controlled by an attacker, al-
lowing the execution of any arbitrary script or
binary as long as the name remains "sapinst".
Log output of a successful attack:

10

[..] PID 9162: root: Executing command

"mkdir -p -m 0770 /tmp/attacker/sapinst3"

[..] PID 9163: root: Executing command

"chown sapadm:sapinst /tmp/attacker/sapinst3"

[..] PID 9164: root: Executing command

"mv /usr/sap/hostctrl/work/eip_3HeFAw

/tmp/attacker/sapinst3/inifile.xml"

[..] PID 9165: root: Executing command

"chgrp sapinst /tmp/attacker/sapinst3/

inifile.xml"

[..] PID 9166: root: Executing command

"chmod 0660 /tmp/attacker/sapinst3/

inifile.xml"

[..] PID 9168: root: Executing command

"/tmp/attacker/sapinst [..]

ACOSPrepare
This function’s purpose is to perform sev-
eral tasks to prepare for special OS operation.
Among other actions, it tries to mount a file
system with administrator privileges. An at-
tacker can control the source path of this file
system and provide, for instance, a malicious
one with a setuid revershell into it.

Log output of a successful attack:

OSP-0121: Mounting network file system

/tmp/attacker/test.fs -> /tmp/mnt

OSP-0301: Calling SAPACOSPrep platform

library function 'AcAttachNetfs'

LNX-0121: File system successfully mounted

OSP-0310: Library function returned

successfully

OSP-0200: Operation succeeded

saphostcontrol: exitcode=0

saphostcontrol: 'sapacosprep'

successfully executed

[...]

Afterwards checking if this file was created:

target:daaadm 57> ls -larht /tmp/mnt

total 20K

drwxrwxr-x 3 root root 4.0K .

drwxrwxr-x 17 root root 4.0K ..

-rwsrwxrwx 1 root root 8.8K revershell

target:daaadm 58> /tmp/mnt/revershell

All vulnerabilities and their exploitation
mechanisms, work against Unix-like operating
systems as well as against Windows.

7.6. Conclusion

The attacks presented in the previous section
required an authenticated user that must also
be part of the service/users_admin whitelist.
Abusing the injections vulnerabilities found,
this user would be able to escalate privileges
and end up running commands with root priv-
ileges.

As was shown in section 7.1, daaadm was
part of this whitelist. Furthermore, recalling
section 6.5, any unauthenticated attacker was
able to execute commands as daaadm.

Chaining both findings it is possible to con-
clude that any unauthenticated attacker with
network access to SolMan’s web server, will
finally be able to execute commands as root in
every server where a managed/satellite system
is running.

Figure 3: Unauthenticated attacker compromises every
server connected to SolMan as they are able to
execute commands with root/system privileges.

7.7. Staying protected

Applying patches

During April 2020, SAP released two patches
involving the SAP Host Agent. These patches
provided protection against the injections
found in several functions of the Host Control
web service.

Both patches provided safe versions of the
affected components. In particular, for the SAP
Host Agent, the provided version is:

Once this version is installed, the escalation
of privileges detailed in the aforementioned
section will not be able to be used anymore.
Besides installing the mentioned patches, due

11

Note Title CVSS
2902645
[5]

Privilege Escalation in SAP
Host Agent

7.2

2902456
[6]

Privilege Escalation in SAP
Landscape Management

7.2

Table 4: SAP Security notes related to Host Agent vul-
nerabilities

Component Support Package
SAP HOST AGENT 721 46

Table 5: Patches related to Host Agent vulnerabilities

to being a critical and powerful agent, it is
recommended also to keep it up to date by
following these SAP notes:

Note Title
2219592 Upgrade Strategy of SAP Host

Agent
2130510 SAP Host Agent 7.21

Table 6: SAP Security notes related to Host Agent vul-
nerabilities

Finally it is also important to advise that up-
grading the SAP Host Agent is way more easy
than upgrading an SAP System. It is a "little"
technical component, without customizing and
totally independent of the SAP System with its
critical business data.

8. Impact

A successful attack will mean that the unau-
thenticated attacker will have total control over
every SAP system in the landscape.

From a technical perspective, the unauthen-
ticated attacker will have a root/system access
to every server where an SAP system is run-
ning. This means that it will not only be able
to compromise SAP related data, but also go

beyond that and potentially compromise any
other information or system running in the
same server.

From a business point of view, this means
a total compromise of every business data a
system could hold. On every single SAP Sys-
tem connected to SolMan, the attacker could
perform classical post exploitations techniques
and compromise every business record. To bet-
ter illustrate the impact, these are a few exam-
ples of actions that the attacker could perform:

• Espionage: Obtain customers, vendors or
human resources data, financial planning
information, balances, profits, sales infor-
mation, manufacturing recipes, etc.

• Fraud: Modify compliance processes,
modify financial information, tamper sales
or purchase orders, create new vendors,
modify vendor bank account numbers, etc.

• Sabotage: Paralyze the operation of the
organization by shutting down the SAP
system or the complete server, disrupting
interfaces with other systems and deleting
critical information, etc.

9. Conclusions

Specifically speaking about the presented at-
tack, it was demonstrated how an unauthenti-
cated attacker having access to SolMan’s web
server, was able to fully compromise every
server of a system connected to the SAP land-
scape by being able to execute commands with
system/root privileges on it .

The Solution Manager is a critical part of
every SAP landscape and must be treated as
it. Complementary security measures in or-
der to protect it, such as network segregation,
should be in place since its deployment. Fur-
thermore, processes to quick and successfully
apply patches for critical assets like SolMan,
should be configured and maintained.

Generally speaking, hyperconnected systems
play a central role in terms of security as they
could act as entry points for more complex
attacks. Once a system of this type is compro-
mised, attackers could leverage their intercon-

12

nections in order to spread themselves through
the network and extend their level of compro-
mise.

As a final conclusion, ERP security has been
improving towards a more secure state during
recent years. However, as any other software,
it has and will continue having flaws that may
end up having critical impact. It is important to
continue performing security analysis against
them in order to detect and prevent them from
being exploited in the wild.

References

[1] https://wiki.scn.sap.com/wiki/display/EEM/UXMonHowTo

[2] Web security: A Whitehat Perspective (199)

[3] https://launchpad.support.sap.com/#/notes/2890213

[4] https://help.sap.com/viewer/8c44f49685f44be4aa420bbf6393aeea/7.5.6/
en-US/47af551efa711503e10000000a42189c.html

[5] https://launchpad.support.sap.com/#/notes/2902645

[6] https://launchpad.support.sap.com/#/notes/2902456

13

	Abstract
	Keywords
	Acknowledgements
	Introduction
	Solution Manager
	SMD Agent
	Host Agent

	Architecture
	Solution Manager Analysis
	Motivation
	Initial Phase
	Looking for unauthenticated applications

	Unauthenticated application discovery: EEM
	EEM Technical Analysis
	Remotely enabling EEM without authentication
	Uploading and running custom scripts
	Understanding and exploiting the scripting language

	Conclusions
	Staying protected
	Applying patches
	Networking protection measures
	Detection of incidents

	Host Agent Analysis
	Motivation
	Powerful agent.. with restricted access !
	SOAP Friendly Agent
	Internal Trusted Connection
	Analyzing HostControl functions
	Conclusion
	Staying protected

	Impact
	Conclusions

