
Detecting Exploits with Novel
Hardware Performance Counters

and ML Magic

Who Are We?

Nick "ghost" Gregory

• Research Scientist @ Capsule8
• Background in binary exploitation and low-level systems
• Grad of NYU Tandon / OSIRIS Lab
• Now "Hacker in Residence" at the lab

Email: ghost-spam@capsule8.com (but you know I don't like spam)

Twitter: @kallsyms

mailto:ghost@capsule8.com

Harini Kannan

• Data Scientist @ Capsule8
• Background in Business Statistics
• Currently on:

• System user behavior profiling
• Text analytics
• Interpretable ML
• MLOps

Twitter: @jarvision__

Website: https://harini.blog/

Introduction

What Are We Covering?

1. Hardware Performance Counters - what and why
2. Prior work - using counters to detect Spectre/Meltdown
3. This work

a. Exploring undocumented counters
b. Training models on undocumented counters
c. Detection capabilities with trained models
d. Interpretation of results

4. Future work

Main Question

Can we detect exploits using undocumented
hardware performance counters on Intel

CPUs?

Hardware Performance Counters

Hardware Performance Counters

● A.k.a. Performance Monitoring Counters
● Hardware devices that count specific events across different

Performance Monitoring Units (PMUs)
● Usually used to debug program/system slowness

○ Measuring things like cache misses, branch mispredicts, port
usage, etc.

Hardware Performance Counters

● We’ll be focusing on the "CPU" PMU today
● Most Intel CPUs let you pick a few of these counters to monitor at

once (per core)
● Specified as event_id, umask

○ event_id: broad category of event (cache, branches, etc.)
○ umask: specific counter (level 1 cache misses filled by level 2)

Hardware Performance Counters

● On Linux, interact with counters through the "perf" subsystem
(and CLI)

● For example:
○ perf stat -e cache-misses -- /bin/ls
○ perf stat -e "cpu/event=0xef,umask=0xf4/" -- /bin/ls

● Multiple sampling methods
○ Time/Ticker
○ Count threshold
○ Entire program run

A Couple of Years Ago...

Background: Spectre and Meltdown

● CPU-level vulnerabilities that (ab)use processor speculation
○ Processor guesses what code should be run before it knows

for sure
● Many ways to "do bad things"

○ Speculate over a bounds check (Spectre v1)
○ Speculate through a bad return address (Spectre RSB)
○ Speculation reading a disabled FPU (LazyFP)
○ And more!

Background: Flush+Reload

● One possible technique for exfiltrating data inside speculative
execution

● Consistent, easy (with asm access)
● Basic idea:

○ (CL)FLUSH each line in a "timing" array
○ Have speculative execution load one of the lines
○ Subsequent attacker loads will find one line faster than the

others

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

 a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

INACTIVE

INACTIVE

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

 a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

INACTIVE

INACTIVE

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

 a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

INACTIVE

INACTIVE

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

 a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

ACTIVE

INACTIVE

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

 a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

ACTIVE

INACTIVE

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
 uint64_t start = rdtsc();
 int a = cache[i];
 uint64_t end = rdtsc();
 if (end-start < threshold) {
 secret = i;
 }
}

INACTIVE

INACTIVE

ACTIVE

INACTIVE

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
 uint64_t start = rdtsc();
 int a = cache[i];
 uint64_t end = rdtsc();
 if (end-start < threshold) {
 secret = i;
 }
}

INACTIVE

INACTIVE

ACTIVE

INACTIVE

i=0 SLOW

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
 uint64_t start = rdtsc();
 int a = cache[i];
 uint64_t end = rdtsc();
 if (end-start < threshold) {
 secret = i;
 }
}

ACTIVE

INACTIVE

ACTIVE

INACTIVE

i=1 SLOW

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
 uint64_t start = rdtsc();
 int a = cache[i];
 uint64_t end = rdtsc();
 if (end-start < threshold) {
 secret = i;
 }
}

ACTIVE

ACTIVE

ACTIVE

INACTIVE

i=2 FAST

Spectre and Meltdown Detections

● Developed detections shortly after public announcement of the
bugs (early 2018)

● Used 3 perf counters as features
○ Cache misses
○ Cache references
○ Branch misses

● First two form "cache miss ratio"
● Third normalizes to the complexity of the program
● Sampled on a 100ms ticker
● Successfully detects all public proof-of-concepts we’ve tried

Spectre and Meltdown
Support Vector Machine - Decision Function visualized

Support Vector Machine
Features: Cache miss ratio, Cache miss - Branch miss ratio

Spectre and Meltdown

● This detection can be easily defeated though!
● Mix-in cache friendly code into the proof-of-concept

Spectre and Meltdown in Hiding

// stuff that will be read in a cache-friendly way to evade detection
unsigned long long stuff[65536];

...
// do some stuff that's really cache-nice to throw off detection
register unsigned long long ctr = 0;
for (register int round = 0; round < 80000000; round++) {
 register unsigned long long *p = &stuff[round % (sizeof(stuff) /
sizeof(stuff[0]))];
 ctr += *p;
 *p = ctr;
}
...

Our Research

Hardware Performance Counters

● Space for 256*256 counters
● Number of documented counters (and what they count) varies per

microarchitecture
○ Only a few hundred documented on most microarchitectures

● What if we read all of them (even the undocumented ones)?
● Turns exploit detection into a blackbox ML problem

Counter Selection

● Ran four programs and sequentially gathered all counters 10
times
○ Optimized/minified _exit(0);
○ Scikit benchmark
○ Spectre v4
○ Spectre v4 in Hiding

Counter Selection (cont’d)

● Removed always zero counters
● Removed counters that had a difference between scikit

benchmark and spectre v4 less than 95%
● Removed counters that differed more than 5% between spectre

v4 and spectre v4 "in hiding"

● Left with 81 counters
● Interestingly no documented counters

Counter Selection (cont’d)

● All tests run on
○ Intel Xeon E5-2667 v3 (Haswell)
○ Intel Core i5-3210M (Ivybridge)

● Results will differ on other microarchitectures

Counters of Interest

• Dataset 1:
• event_id=0xef,umask=0xf4
• event_id=0x4d,umask=0xe3
• event_id=0x36,umask=0x98

• Dataset 2 (not covering due to time constraints):
• event_id=0xef,umask=0xf4
• event_id=0x4d,umask=0xb1
• event_id=0xd5,umask=0xa6

Over to Harini

Using Undocumented Counters

Exploits of Interest

• Meltdown (aka Spectre v3 - rogue data cache load)
• Spectre v1 (bounds check bypass)
• Spectre v2 (branch target injection)
• Spectre v4 (speculative store bypass)
• Ghosting_spectrev4 (speculative store with evasive changes)
• Return-Oriented Programming (ROP)

Data Collection

● Using Linux perf counters
● Along with the exploits mentioned before, collected data for the

following baseline programs:
○ LibJIT unit tests
○ Scikit-learn benchmark tests
○ Phoronix-nginx test suite
○ Linux defconfig compile

● Selected counters were measured every 100ms
● Each program was run five times

Model Metrics Calculated

1. Precision
2. Recall
3. F1-score
4. False Positive Rate (FPR)
5. False Negative Rate (FNR)
6. Area Under the Curve (AUC)
7. Test Accuracy
8. Confusion Matrix

What Do These Mean?

Algorithms used

• Support Vector Machine

• Random Forest

• eXtreme Gradient Boosting (XGBoost)

• Histogram based Gradient Boosting (HGBoost)

Support Vector Machine

Bagging Vs Boosting

eXtreme Gradient Boosting (uses Boosting)
● Builds on weak

classifiers (high
bias, low variance)

● Add a classifier
(tree) at a time, so
that next classifier is
trained to improve
the already trained
ensemble

Histogram based Gradient Boosting

• A faster implementation gradient boosting classifier when no. of
samples is higher

• It bins input samples into integer-valued bins (typically 256 bins)
which reduces the no. of splitting points to consider

• Allows the algorithm to leverage integer-based data structures
(histograms) instead of relying on sorted continuous values when
building the trees

Detecting Spectre (Again)

Model results
Features: 36-98, 4d-e3, ef-f4

F1 F2 F3 intel_arch model precision recall fpr fnr auc acc meltdown spectre1 spectre2 spectre4 spectre4_new

36_98 4d_e3 ef_f4 ivybridge SVM 1 0.85 0 0.3 0.85 0.99 no no no yes yes

36_98 4d_e3 ef_f4 ivybridge XGBoost 0.98 0.94 0.0004 0.12 0.94 0.99 yes yes yes yes yes

36_98 4d_e3 ef_f4 ivybridge RF 1 0.86 0 0.28 0.86 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 ivybridge HGBoost 0.98 0.94 0.0004 0.112 0.94 0.99 yes yes no yes yes

36_98 4d_e3 ef_f4 haswell SVM 0.98 0.93 0.0005 0.13 0.94 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 haswell XGBoost 0.99 0.98 0.0004 0.04 0.98 0.99 yes yes yes yes yes

36_98 4d_e3 ef_f4 haswell RF 1 0.97 0.0001 0.06 0.97 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 haswell HGBoost 0.98 0.98 0.0008 0.04 0.98 0.99 yes yes yes yes yes

Best feature set and model

• Dataset 1 with with features 36-98, 4d-e3, ef-f4 perform the best
• XGBoost is the best model so far

• 99% precision
• 98% recall
• 0.04% FPR
• 4% FNR
• 98% AUC

• Note: Here the FNR denotes the part of exploit(s) that’s missed,
the model itself caught most parts of all exploits

XGBoost AUC for test and hold-out dataset

XGBoost Normalized Confusion Matrices

SHAP model interpretation

• SHapley Additive exPlanation (Lundberg, et al)

• Based on Shapely values, a technique used in game theory to
determine how much each player in a collaborative game has
contributed to its success

• Each SHAP value measures how much each feature in our model
contributes to the prediction, either positively or negatively

XGBoost Feature Importance

XGBoost Partial Dependence Plot

• Shows the marginal effect that one or two variables have on the predicted
outcome.

• Whether the relationship between the target and the variable is linear,
monotonic, or more complex

• Let’s see the partial dependence plots for each of the three features

● Plot shows SHAP values for ef-f4
clearly influencing extremely
negatively, helping the model
classify the baseline data
correctly.

● There is some interaction with
feature 36-98 where it’s values
are between 10k-30k

XGBoost Partial Dependence Plot (cont’d)

XGBoost Partial Dependence Plot (cont’d)

● Partial dependence plot for feature
4d-e3 shows there is an
approximately linear and positive
trend between 4d-e3 and the target
variable

● It clearly doesn’t react with any other
feature

● Plot 2 shows SHAP values for
36-98, significant impact can be
seen for the highest and the
lowest values of the feature.

● There is some interaction with
feature 4d-e3 for the values
around 75k-300k

XGBoost Partial Dependence Plot (cont’d)

SHAP Force plots
How each feature pushes the prediction to 1/0

SHAP Force plot for ef-f4

SHAP Force plot for 4d-e3

SHAP Force plot for 36-98

Over to Ghost

Detecting Other Exploits

Detecting ROP

● Prior work
○ Last Branch Records (LBR) / Processor Trace (PT)

■ Sampling throughput/overhead
○ Branch mispredicts

■ ROP chains make the processor’s return stack buffer
useless

■ Problem: ROP chains are short
● 50-100 gadgets at most
● Gives a weak signal

• Ran the ROP exploit 100x in our experiments to maximize signal
• Added a new baseline program: exec-only

• Executes the same shell as the ROP exploit, but without ROP
• Used to ensure that we’re picking up the ROP itself, not a side

effect of the shell creation

Data Collection

Detecting ROP (cont’d)

● Same counters work?!?

🤯

HGBoost AUC and confusion matrix

Interpretation
Warning: speculation ahead

Interpretation - Spectre & co.

● A single support file in Intel VTune names the 0xEF event_id as
“CORE_SNOOP_RESPONSE”
○ Description: “tbd” - thanks Intel
○ Supposedly only for SKL-X and Cascade Lake...

● Hypothesis: counter is detecting the responses from other cores
when CLFLUSH invalidates cache lines

● Counters showed “malicious” even when the cache sampling was
broken
○ Supports the theory that this is measuring cache evictions

instead of sampling

Interpretation - ROP

● Very unsure.
● Detecting the embedded stack pivot?

○ Invalidation/flushing of store buffers for the stack?
● Indirectly detecting the RSB mispredicts?

○ Caches loading based on RSB but all returns don't go to
expected location

Future Work

Future Work

● Generalizing/automating data collection
○ Collecting data on a broader set of microarchitectures and

analyzing differences

● Other PMUs (uncore counters on Intel chips could be promising)
● Non-Intel x86 (AMD)
● ARM

○ Potentially interesting vendor-specific internals?

Closing Remarks

● Due to the nature of things being undocumented, we don't know
what the counters in this talk actually measure

● Please let us know if you have any ideas/knowledge/experiments
that could help determine those

● Or the chip manufacturers could release more documentation :)

Q&A

Resources

Resources

● https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Pe

rformance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf

References

References

● Interpretation:
○ https://dl.acm.org/doi/pdf/10.1109/SC.2018.00021
○ https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-scalable-me

mory-family-uncore-performance-monitoring-reference-manual.html

● Graphics
○ https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-enforce

d-stack-protection/ba-p/1247815?lightbox-message-images-1247815=178977iD35F1A3BB0C3043
1

○ https://machinelearningflashcards.com/

● Model Interpretation:
○ https://www.nature.com/articles/s42256-019-0138-9
○ https://github.com/slundberg/shap

https://dl.acm.org/doi/pdf/10.1109/SC.2018.00021
https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual.html
https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-enforced-stack-protection/ba-p/1247815?lightbox-message-images-1247815=178977iD35F1A3BB0C30431
https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-enforced-stack-protection/ba-p/1247815?lightbox-message-images-1247815=178977iD35F1A3BB0C30431
https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-enforced-stack-protection/ba-p/1247815?lightbox-message-images-1247815=178977iD35F1A3BB0C30431
https://machinelearningflashcards.com/
https://www.nature.com/articles/s42256-019-0138-9
https://github.com/slundberg/shap

Appendix

Model results
Features: 4d-b1, d5-a6, ef-f4

F1 F2 F3 intel_arch model precision recall fpr fnr auc acc meltdown spectre1 spectre2 spectre4 spectre4_new

4d_b1 d5_a6 ef_f4 ivybridge SVM 0.99 0.81 0.0002 0.37 0.81 0.99 yes no no yes yes

4d_b1 d5_a6 ef_f4 ivybridge XGBoost 0.98 0.88 0.0005 0.25 0.88 0.99 yes yes yes yes yes

4d_b1 d5_a6 ef_f4 ivybridge RF 0.99 0.86 0.0002 0.28 0.86 0.99 yes yes no yes yes

4d_b1 d5_a6 ef_f4 ivybridge HGBoost 0.98 0.87 0.0006 0.26 0.87 0.99 yes yes yes yes yes

4d_b1 d5_a6 ef_f4 haswell SVM 1 0.93 0.0001 0.13 0.93 0.99 yes no no yes yes

4d_b1 d5_a6 ef_f4 haswell XGBoost 0.99 0.97 0.0003 0.06 0.97 0.99 yes yes no yes yes

4d_b1 d5_a6 ef_f4 haswell RF 0.99 0.95 0.0002 0.1 0.95 0.99 yes no no yes yes

4d_b1 d5_a6 ef_f4 haswell HGBoost 0.99 0.97 0.0002 0.056 0.97 0.99 yes yes yes yes yes

