
NOJITSU: Locking Down JavaScript Engines

Taemin Park∗, Karel Dhondt†, David Gens∗, Yeoul Na∗, Stijn Volckaert†, Michael Franz∗

∗Department of Computer Science, University of California, Irvine
†Department of Computer Science, imec-DistriNet, KU Leuven

Abstract—Data-only attacks against dynamic scripting envi-
ronments have become common. Web browsers and other mod-
ern applications embed scripting engines to support interactive
content. The scripting engines optimize performance via just-in-
time compilation. Since applications are increasingly hardened
against code-reuse attacks, adversaries are looking to achieve
code execution or elevate privileges by corrupting sensitive data
like the intermediate representation of optimizing JIT compilers.
This has inspired numerous defenses for just-in-time compilers.

Our paper demonstrates that securing JIT compilation is not
sufficient. First, we present a proof-of-concept data-only attack
against a recent version of Mozilla’s SpiderMonkey JIT in which
the attacker only corrupts heap objects to successfully issue a
system call from within bytecode execution at run time. Previous
work assumed that bytecode execution is safe by construction
since interpreters only allow a narrow set of benign instructions
and bytecode is always checked for validity before execution.
We show that this does not prevent malicious code execution in
practice. Second, we design a novel defense, dubbed NOJITSU
to protect complex, real-world scripting engines from data-only
attacks against interpreted code. The key idea behind our defense
is to enable fine-grained memory access control for individual
memory regions based on their roles throughout the JavaScript
lifecycle. For this we combine automated analysis, instrumenta-
tion, compartmentalization, and Intel’s Memory-Protection Keys
to secure SpiderMonkey against existing and newly synthesized
attacks. We implement and thoroughly test our implementation
using a number of real-world scenarios as well as standard
benchmarks. We show that NOJITSU successfully thwarts code-
reuse as well as data-only attacks against any part of the scripting
engine while offering a modest run-time overhead of only 5%.

I. INTRODUCTION

Browsers are among the most widely used programs and
are continuously exposed to untrusted inputs provided by
remote web servers. A substantial part of these untrusted inputs
is JavaScript code. Browsers generally use a script engine with
one or more Just-In-Time (JIT) compilers to execute scripts ef-
ficiently. Mainstream engines such as Mozilla’s SpiderMonkey
and Google’s V8 evolve rapidly and grow continuously to keep
up with the latest ECMAScript standard and with the users’
demand for high performance. Consequently, they are prime
targets for adversaries who exploit this increasing complexity
and flexibility to gain remote code execution in the browser
process [49], [66].

Initially, these exploits focused on the JIT compiler itself.
This compiler transforms interpreted bytecode into natively
executed machine code. When JavaScript JIT compilers first
became popular, they wrote all run-time generated code onto
memory pages that were simultaneously writable and exe-
cutable throughout the execution of the script. This trivially
enabled code-injection attacks [18], [55]. Later JIT engines
added support for W⊕X policies by doubly-mapping JIT
pages instead. This meant that JIT code could no longer be
found on memory pages that were simultaneously writable
and executable. While this undeniably improved security, at-
tackers repeatedly demonstrated that JIT engines could still
be attacked. JIT spraying, for example, lets an attacker inject
small arbitrary instruction sequences into JIT pages with-
out writing directly to the pages [7], [13], [37]. Defenders
quickly thwarted these attacks through the use of constant
blinding [13], constant elimination and code obfuscation [19],
code randomization [32], or control-flow integrity [46].

Successfully defending JIT engines against code-reuse at-
tacks proved more challenging, however, since an adversary
can leverage memory disclosure vulnerabilities to iteratively
traverse and disassemble code pages to dynamically generate
a ROP chain at run time (an attack known as JIT-ROP [56]). A
number of schemes protect against such attacks by leveraging
randomization and execute-only memory [8], [9], [23], [29].

More recently, several efforts independently demonstrated
that an adversary may still be able to inject code despite all
of the above defenses being in place by resorting to data-
only attacks. Both Theori et al. [62] and Frassetto et al. [27]
showed that an attacker can force the JIT compiler to generate
malicious code by corrupting the intermediate representation
of the compiler without overwriting any code pointers. For this
reason, recent defenses propose isolating the compilation from
the execution of JIT code, through separate processes [42], [58]
or hardware-based trusted execution environments [27].

In this paper, we show that isolating JIT code compilation
from its execution does not suffice to prevent remote code
execution. To this end, we first present a new attack that only
leverages the bytecode interpreter component of the scripting
engine. Previous work considered this component safe by
design, since the bytecode is confined to a limited set of
operations whose safety is validated by the interpreter before
they are executed. We show that this assumption does not hold
in practice, as we can corrupt the internal data representation
of individual operations within the interpreter. This allows us
to execute potentially malicious operations such as arbitrary
system calls. Crucially, our new attack does not require JIT
compilation of bytecode at any point in time. We implemented
our proof-of-concept attack for a recent version of Mozilla’s

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24262
www.ndss-symposium.org

popular and widely used JavaScript engine SpiderMonkey to
verify its efficacy.

Unfortunately, previously proposed protections for
JavaScript engines do not trivially extend to the bytecode
interpreter, as their design is either tailored towards running
in a trusted execution environment, or because they would
incur substantial run-time overhead in the context of an
interpreter. This is why we present a novel and general
defense strategy, called NOJITSU, to defend the JIT engine
against a wide variety of run-time attacks, including code
injection, code reuse, and data-only attacks against any
of its components. Our design leverages hardware-based
memory protection features, such as Intel MPK, to isolate
and protect each component of the scripting engine. In this
way, we are able to effectively reduce the memory-access
permissions of each component towards its minimally
required working set. To demonstrate feasibility we then
analyze, partition, and instrument SpiderMonkey, leveraging
automated dynamic analysis techniques to scale our efforts
to this complex real-world code base, while keeping our
techniques implementation-agnostic. To the best of our
knowledge, we are the first to present and fully implement
hardware-backed, fine-grained access control for a JavaScript
engine. We thoroughly tested and evaluated NOJITSU in a
number of attack scenarios, which include code-injection,
(dynamic) code-reuse, as well as data-only attacks, and
analyzed its security in depth. Using standard benchmarks
as well as real-world application scenarios we show that
our prototype already offers practical performance, with a
moderate run-time overhead of only 5% on average.

In summary, our contributions are as follows:

• Bytecode Interpreter Attack. We present a new
attack against bytecode interpreters in modern
JavaScript engines which have not been targeted in
previous work. Our attack therefore works despite all
existing defenses being enabled and enforced.

• Fine-Grained Memory Access Control. We propose
NOJITSU, a novel approach that effectively secures
the bytecode interpreter component of modern script-
ing engines. Our design leverages enhanced memory
protection, such as Intel MPK, to completely lock
down the entire scripting engine. To the best of
our knowledge, we are the first to incorporate fine-
grained memory access control into a large real-world
JIT engine and also protect the JavaScript interpreter
component. We implemented our prototype in a recent
version of Mozilla’s SpiderMonkey.

• Thorough Evaluation. We extensively evaluate our
prototype of NOJITSU for its security using a number
of real-world attack scenarios, for which we also re-
implemented a fully working JIT-ROP attack against
SpiderMonkey. As we are able to show NOJITSU
withstands all previously presented attacks as well
as our new data-only attack. We further evaluate
performance using standard benchmarks and practical
use cases, demonstrating that NOJITSU additionally
offers low overhead with an average performance hit
of only 5%.

Javascript Engine

Interpreter

JIT
Compiler

JIT code

C LibraryBug

Corrupt

JIT
compile

JIT code emitRead/write

Call library
functions

Bytecode

Obj table obj

Call library
functions

Fig. 1: High-level overview of our model. If an adversary is
able to trigger a memory-corruption vulnerability in any part
of the JIT engine, we show that the internal data used by
individual bytecode operations can be exploited to make the
interpreter call external system functions, which are always
mapped as part of the application’s address space. This strategy
works despite state-of-the-art defenses for JIT engines being
deployed.

II. ATTACKING THE INTERPRETER

We constructed an attack on the interpreter component of
Mozilla’s SpiderMonkey, the JavaScript engine used in the
Firefox web browser. This section provides the necessary back-
ground information and assumptions about SpiderMonkey’s
internals and then proceeds to describe our attack.

A. Threat Model

We assume a recent version of SpiderMonkey built with
the standard Mozilla build environment and configuration.
SpiderMonkey has many components that contain machine
code compiled ahead of time (statically). We assume that at
least one of these components contains an arbitrary memory
read/write vulnerability.

We assume that the standard code-injection and code-
reuse defenses are in place. Hardware vulnerabilities such as
Rowhammer [31], [52], Meltdown [38], and Spectre [33] are
orthogonal to software vulnerabilities and outside the scope of
this paper. Our threat model is in line with those of related
work in this area [7], [13], [19], [27], [32], [37], [46].

• Memory-corruption vulnerability. Some part of the
scripting engine (or the surrounding application) con-
tains a memory-corruption bug that enables an adver-
sary to arbitrarily corrupt any part of the program’s
address space.

• Code-injection defense. We assume the scripting
engine enforces a strong W⊕X policy [41], and,
thus, that no memory pages are ever simultaneously
writable and executable. Some engines enforce W⊕X
by offloading the JIT compilation to an external pro-
cess [42], [58] or trusted execution environment [27],

2

while others simply toggle the writable and executable
permissions on JIT pages at run time [44].

• Code-reuse defense. We assume that the browser uses
all code-reuse defenses that have seen widespread
adoption. These defenses include, among others,
ASLR [48] and coarse-grained CFI [3]. With these de-
fenses in place, the base addresses of executable code
sections are not known a priori, and control flow can
only be diverted to legitimate function entry points.
This set of defenses, however, doesn’t prevent leaking
function addresses by disassembling code pages on-
the-fly to directly discover function locations encoded
in the code pages or indirectly read a location of data
structures such as PLT that contain legitimate function
entry points.

• Hardware-based Memory Protection Features. We
assume Intel Memory Protection Keys (MPK) [22] to
be available on the target platform. We assume PKRU
values, which control access privileges to memory
domains, always stay in registers so adversaries with
arbitrary memory read/write capability cannot directly
manipulate these values. As coarse-grained CFI is in
place, the attacker cannot leverage unintentional oc-
currences of instructions to modify in-register PKRU
values.

B. SpiderMonkey Implementation

Modern scripting engines have at least two components that
support the execution of JavaScript code: an interpreter and a
JIT compiler (see Figure 1)1 The interpreter takes a plain-text
script as input, parses it, and generates bytecode instructions,
object tables, and data objects. The data objects encapsulate
all of the data used throughout the execution of the bytecode
program. For example, this includes constant values, function
arguments, local and global variables, properties, and function
pointers. The object tables form an indirection layer between
the bytecode and the data objects. Thanks to this indirection,
the bytecode can refer to data objects using their index in
an object table. This allows the JavaScript engine to generate
highly compact bytecode. The engine then executes the script
by interpreting the bytecode. When the interpreter executes a
particular part of the bytecode often enough (i.e., the bytecode
becomes “hot”), it invokes the JIT compiler, which compiles
the bytecode into optimized native machine code. Among other
things, this eliminates the overhead of interpreter distpatch.

1) Speculative Optimization: Some of the optimizations
leveraged by the JIT compiler might be speculative in nature.
The compiler might, for example, speculate that the types of
certain program variables remain stable, when in principle
types can change at any point. If one of the speculative
assumptions does not hold during execution, the optimized
code is de-optimized and execution falls back to the interpreter.
To make the transition between interpreted execution and JIT
code execution seamless, the interpreter and JIT compiler
share many data structures and memory regions. For exam-
ple, program variables, are stored in data objects, regardless

1Note that all three major JavaScript engines, SpiderMonkey, JavaScript-
Core, and V8, have bytecode interpreters in their script execution pipeline.
V8 has recently added the interpreter to reduce memory overhead in mobile
environments.

of where the script is executing. Other data structures and
memory regions might be used exclusively by one of the two
components.

2) Native Functions: During its execution, a script may call
C++ functions that are registered as so-called JavaScript native
(JSNative for short) functions. SpiderMonkey has hundreds
of JSNative functions. They provide the functionality of the
built-in JavaScript types and operations. In many cases, calls
to JSNative functions are not inlined, even when the caller
is a JIT-compiled function. Instead, SpiderMonkey transfers
control to the JSNative function using a regular function
call. One important property of JSNative functions is that
SpiderMonkey calls them using an internal calling convention.
According to this calling convention, a JSNative function must
receive a pointer to the global JavaScript context object as
its first argument, an argument count object as its second
argument, and a pointer to an argument array as its third
argument. Within the argument array, there is one slot that is
reserved to store the return value of the JSNative function.
However, upon calling a JSNative function, SpiderMonkey
stores a pointer to the callee’s JavaScript function object in
the return address slot.

3) Data Structures: Throughout our analysis of Spider-
Monkey’s implementation, we identified a number of key
memory areas that play a crucial role in ensuring the correct
and secure operation of the script engine: (1) the bytecode
region, (2) the JIT code cache, (3) the JIT compiler data, (4) the
JavaScript data objects, and (5) the object tables. The JIT code
is mapped as an executable memory region whereas all the
other areas are mapped as readable and writable regions. The
bytecode region includes instruction opcodes, and operands,
and is used by both the interpreter and the JIT compiler. The
JIT code cache indicates the instructions generated by the JIT
compiler, including normal JIT code and inline cache stubs.
The JIT compiler data region includes JIT compiler-specific
intermediate representations of the bytecode (i.e., the MIR and
LIR code in SpiderMonkey’s case) and other data structures
that are used exclusively by the JIT compiler. The JavaScript
objects are all kinds of objects that are backed by a garbage
collector, and are used by both components. Several of these
memory regions have been targeted by control-flow hijacking
attacks in the past. Previously presented exploit mitigations
typically protect either the JIT code cache or the JIT compiler
data, but leave the other regions exposed. In practice, this
was shown to be exploitable via crafted inputs that trigger
type confusion in the engine’s arena allocator [53]. Next, we
will demonstrate that an adversary can construct successful
exploits by attacking the interpreter, bypassing these proposed
mitigations.

C. Our Interpreter Attack Against SpiderMonkey

We present a new attack that leverages the fact that most
of the script engine’s key memory regions remain writable
throughout the execution of the script. A memory-corruption
bug in any of the engine’s components therefore allows us to
manipulate any of the interpreter’s data structures. We also
exploit the extensive use of indirection in the bytecode. Aside
from program variables, JavaScript objects also encapsulate
function information. When one function calls another, the
caller loads the callee’s address from the callee’s function

3

Bytecode

Stack

arg

&system

&Func obj
&Arg obj

Obj Table

Value: &system
Func obj

Value: arg
Arg obj

system(“cmd”)
“cmd”
cx obj

Load function
Load argument

Call function

Interpreter

 ①

②

③

Data affected by an attacker

Fig. 2: Our attack proceeds in three steps: 1 the attacker
locates the JavaScript context object and the function object
for a victim function. 2 the attacker then corrupts the function
object to point to an attacker-chosen target function and
injects a command string in the context object. 3 finally,
the attacker calls the victim function from JavaScript, causing
the interpreter to invoke the target function with the injected
argument string.

object. We show that we can execute arbitrary shell commands
by locating and corrupting these function data objects at run
time.

We successfully tested our exploit against a recent version
of SpiderMonkey 60.0.0. Our attack proceeds in three key
phases, which are illustrated in Figure 2. First, the attacker lo-
cates the JavaScript context object and the JavaScript function
object of a victim function (i.e., any function we can call from
JavaScript). After leaking the locations of these two objects,
the attacker overwrites the function address contained in the
function object with the address of a target function. We used
the C library’s system function as the target function for
our attack. The attacker also overwrites the contents of the
context object to hold a string representation of the path to the
desired program to be executed (e.g., “/bin/sh”). Finally, the
attacker invokes the victim function. The interpreter then loads
the modified objects onto the stack and launches the program
specified in the argument string encoded by the corrupted
context object.

1) Implementation Details: We implemented the first step
of the attack by exploiting a type confusion bug (CVE-2019-
11707) present in SpiderMonkey versions 60.8.0 and below.
This bug can be weaponized into a full-fledged arbitrary read-
/write primitive, as was shown in related work [12]. Weaponiz-
ing the bug takes four steps. First, the JavaScript program allo-
cates a number of small and consecutive ArrayBuffers on
the heap. We gave all of the ArrayBuffers a size of 32 bytes
in our exploit. Then, the program creates Uint32Array
and Uint8Array view objects for one of the allocated
ArrayBuffers. Next, the program triggers a type con-

NativeObject

group

slots

ObjectGroup

compartment_

JSCompartment

runtime_

JSRuntime

activeContext_

JSContext

JSFunction

native_

Fig. 3: Disclosing the locations of the victim JSFunction object
and the JSContext object.

fusion between the two view objects. After triggering the
type confusion, SpiderMonkey allows the program to read-
/write 32 Uint32 elements in the ArrayBuffer. Since the
ArrayBuffer’s size is only 32 bytes, the program can
now overwrite the metadata stored in one of the adjacent
ArrayBuffers. Finally, the program overwrites the data
pointer, which is part of the adjacent ArrayBuffer’s meta-
data, with a pointer to a memory location chosen by the at-
tacker. All subsequent accesses to the adjacent ArrayBuffer
now target this attacker-chosen location.

After weaponizing the bug, we leak the locations of
the JSContext and victim JSFunction objects as il-
lustrated in Figure 3. We start by reading the contents
of the NativeObject struct which is embedded in the
ArrayBuffer we just corrupted. From the NativeObject
struct, we follow a pointer chain to the global JSContext
object. Next, we write a reference to the victim JavaScript
function into the NativeObject struct. We then use the
memory vulnerability to read the raw value of this reference,
thus revealing the location of the victim’s JSFunction
object.

We locate the target function itself by reading the cur-
rent value of the native function pointer within the victim
JSFunction object and by recursively disassembling the
native function until we arrive at a call to a PLT entry, which
we disassemble to find the start of the PLT. We then find the
PLT entry of the target function using a priori knowledge of
the layout of the PLT.

2) Discussion: As a remote attacker, launching an inter-
active shell session from within SpiderMonkey might not be
advantageous. However, the attacker could also inject and pass
a script to the terminal, e.g., by encoding it as a cookie file,
which would then require passing the relative path to the
cookie file on to the shell. In our tests, we were able to
corrupt up to 32 bytes of the context object without causing the
interpreter to crash, which leaves plenty of room for storing
useful payloads in memory.

4

Crucially, our new attack cannot be prevented by previously
proposed defenses tailored towards protecting the JIT compiler
data [27], [42] since we attack the interpreter which always
executes before any JIT compilation is invoked.

III. NOJITSU: PROTECTING JIT ENGINES

Motivated by the fact that state-of-the-art JIT defenses fail
to stop attacks that target interpreted bytecode, we designed a
novel defense that provides fine-grained memory protection to
lock down real-world scripting engines. As switching between
interpreted and JIT’ed code happens frequently (i.e., on a per-
function basis) an efficient implementation of this mechanism
is key to overall run-time performance. Hence, we cannot
simply move the interpreter out-of-process as previously pro-
posed for the JIT compiler [42]. Instead, our design leverages
automated dynamic and static analysis to restrict memory-
access permissions within the scripting engine to the bare
minimum. This way, NOJITSU protects against a wide range
of possible attacks, including code-injection, code-reuse, and
data-only attacks. NOJITSU is designed to be compatible
with and usable alongside existing defenses such as constant
blinding [13], constant elimination and code obfuscation [19],
code randomization [32], or control-flow integrity [46].

A. Overview

Our main goal is to enforce fine-grained security policies
for different kinds of data structures in JavaScript. While
limited policies may already be in place for code sections,
current JIT engines do not distinguish between different kinds
of data sections and have naive or no explicit security policies
for them within the application’s address space. In Figure 4,
the JavaScript engine stores the bytecode, object tables, and
JavaScript objects in writable memory regions for their entire
lifetime, even though the engine rarely overwrites these data
structures. This enables an adversary to manipulate the data
structures and change the behavior of the JIT engine at run
time, which can ultimately grant the adversary arbitrary code
execution capabilities. Just-in-time code on the other hand
is usually protected by mapping code regions as readable
and executable, re-mapping it as writable temporarily when
generating new JIT code. Unfortunately, this does not defend
against more sophisticated attacks such as just-in-time code-
reuse attacks that chain gadgets injected into the JIT code.

Our defense neutralizes these threats by deploying fine-
grained security policies to lock down access permissions for
each of the main data regions we identified based on their
lifetime and usage within the JIT engine. Concretely, we force
the JIT engine to store bytecode, object tables, and JavaScript
objects in read-only memory, and to only grant write access
when, where, and as long as it is needed. We do this by placing
unrelated data structures into different memory domains, and
by activating the write permission of a specific domain only
when the subsequent code may write to the structures in
that domain, revoking the permission shortly afterward. We
additionally mark JIT code regions as execute-only, meaning
that attacks that involve reading code (such as JIT-ROP) are
no longer possible.

Figure 5 illustrates how our defense works conceptually.
First, we ensure that every data structure is allocated with

the correct memory permissions. We do this by assigning
each type of data structure to a unique memory domain,
and to associate every newly allocated data structure with
the key corresponding to its data type. We also separate
data structures upon allocation so that no memory page ever
contains structures from multiple domains. Second, we infer
the permissions each function in the engine needs based on
the types of data it may access. For example, our design
enforces read-only permission for all JavaScript objects to
avoid adversarial data corruption, but there are times when
the legal program flow requires writing to a data object.
In such a case, we temporarily grant write permissions so
intended program behavior remains intact. To identify the
locations that require such a temporary permission relaxation,
we dynamically analyze possible accesses to each object.
Finally, we insert instrumentation code that sets the appropriate
domain permissions at the locations identified by our dynamic
analysis.

Memory

Bytecode
 Object table
Object
JIT IR
(R/W)

JIT code
JIT data
(R/X)

Thread BThread A

Write

Write

mprotect(W)

mprotect(R/X)

Write
Write

Fig. 4: Legacy design

Memory

 Bytecode (R)

 Object tables (R)

 Sensitive
 Object (R)

 JIT data (R)

 JIT code (X)

Key1

Key2

Key4

Key6

 JIT IR (R) Key5

Key7

Thread BThread A

set_pkey(W,key2)

set_pkey(R,key2)

Write
Write

set_pkey(W,key6)

set_pkey(X,key6)

Write

Write

 Primitive
 Object (R) Key3

Fig. 5: NOJITSU

Figure 6 shows the overall design of our JavaScript engine
protection, NOJITSU, which separates core data structures
of the engine into different protection domains. There are
several challenges we needed to overcome to implement our
design. First, restricting memory access entails the recurring
modification of access permissions on data structures, which
can be costly. To solve this problem, we utilize a hardware-
based mechanism that allows us to change access permissions

5

Interpreter

Dispatcher

Load /Store

Arithmetic

Function call

Bytecode
(key1)Instruction

fetch
Obj table
(key2)

Stack

Value

Load / Store

Fetch values

Fetch &func, args

Push return value

JIT code (key6)
JIT data (key7)JIT Compiler

Bytecode compiler

Emit JIT code

JIT IR (key5)

Push result

Emit JIT IR

Emit
Bytecode

Load /
Store

Core data in JIT engine

Read/
Write

Assigned key

Primitive Obj
(key3)

Sensitive Obj
(key4)

Fig. 6: Design of our script engine protection NOJITSU. Core
data structures in the JIT engine —bytecode, object tables,
objects, JIT IR, JIT code, and JIT data— are separated into
different protection domains. We make the JIT code regions
execute-only and the other data regions read-only. We grant the
write access to the protected regions only when a legitimate
program flow requires write permission. For instance, we
temporarily grant write permission to the JIT code region when
the compiler emits newly generated JIT code.

for individual memory domains without modifying page table
entries or flushing the TLB. Hence, in contrast to traditional
MMU-based protection mechanisms [8], [9], [23], [29], we can
change access permissions without incurring substantial run-
time overhead. Second, existing implementations of execute-
only memory (XoM) do not apply to JIT code. Extending
support to JIT code is not trivial, as the JIT engine might
emit JIT code containing data (such as object tables) that must
remain readable at all times. Our defense separates this data
from the JIT code so that we can safely revoke read access to
all JIT code regions. To the best of our knowledge, we are the
first to implement execute-only support for JIT code.

1) JIT Code: The JIT code cache contains dynamically
generated instructions that natively execute on the CPU. To
defend against code injection attacks, it is important to keep
this JIT code cache non-writable except when the instructions
are generated. The JIT code cache also needs to be non-
readable to avoid JIT-ROP attacks which require reading
code regions to discover code-reuse gadgets at run time. In
the original design of the JavaScript engine, however, the
JIT code cache must be readable because it also contains
readable data such as constant values, which are too wide
to be embedded into instructions as immediate operands, and
target addresses read by a jump table. To make the JIT code
region execute-only, we first separate these readable data from
the JIT code region. We move all readable data including
constant values and the jump table targets into a dedicated,

read-only region such that the JIT code cache is only composed
of executable machine instructions. We carefully design this
data separation to minimize the potential performance impact
(see Section IV-B1). After separating JIT data from JIT code,
we make the code execute-only and the data read-only. This
protects the engine against JIT spraying attacks (which rely on
injecting constants into the JIT code) [13] and JIT-ROP attacks
(which rely on reading code) [56].

Our defense provides clear added value to other counter-
measures against these attacks. Constant blinding, for example,
also defends against JIT spraying attacks, but existing imple-
mentations do not blind small constant values (of less than
three bytes) for performance reasons [40]. JIT spraying attacks
using one- and two-byte constants are, however, feasible in
practice [7]. Similarly, there are several existing implementa-
tions of execute-only memory, but they only apply to statically
generated code [8], [9], [15], [21], [23], [29], [43]. This leaves
these implementations vulnerable to JIT-ROP attacks that only
use gadgets found in the JIT code cache.

2) Static Code: The static code regions include the code
sections of the JavaScript engine itself and the dynamic
libraries that the engine loads into the memory. Unlike the JIT
code region, the attacker cannot inject malicious code into this
static code region by running a malicious script. However, the
static code region consists of a large code base which nearly
always contains an abundance of code-reuse gadgets. Similar
to the JIT code region, we make static code regions execute-
only so the attacker cannot disclose executable memory regions
to chain code-reuse gadgets. We leverage eXecutable-Only
Memory Switch (XOM-Switch) [43] to enforce execute-only
permissions for the static code regions.

3) JIT IR: JIT IR is an intermediate representation used
during compilation of bytecode into JIT code. While this
IR code has a short lifetime, researchers have demonstrated
attacks that exploit race conditions to corrupt the IR code from
another thread [27], [58]. Our defense protects the JIT IR code
by granting write permission only to the thread that compiles
the IR code into machine code. The attacker, therefore, cannot
manipulate JIT IR using another thread unless that thread is
also compiling IR code when the exploit takes place.

4) Bytecode and Object Tables: Similar to the JIT code
cache, the bytecode and object tables should be writable only
when they are generated during compilation. After their gener-
ation, the bytecode and object tables are only read throughout
the remainder of the execution. Thus, we allow write access
to these data structures only when the script parser generates
them and immediately make them non-writable afterwards.

5) JavaScript Objects: Unlike bytecode and object tables,
which must be written only once, data objects can be written
to frequently at any point of the program execution. For
example, a data object that contains a program variable may
be overwritten at any time during the program execution.
Moreover, every JavaScript object contains several kinds of
flags that must be frequently updated, e.g., a reference counter
for the garbage collector. Consequently, identifying all such
locations that require permission changes for data objects is
challenging. We therefore propose a dynamic analysis tech-
nique that automatically identifies permitted write operations
for each data object (see Section IV-C2).

6

We separate JavaScript objects into two protection domains
depending on the types they encapsulate: one for sensitive data
objects and the other for primitive data objects. We consider
an object sensitive if it contains sensitive information such as
function pointers, object shape metadata, scope metadata, or
JIT code. Corrupting a sensitive object allows the attacker to
seize control over the JIT engine immediately. For example,
primitive data objects may contain integers, characters, or
arrays. Corrupting a primitive data object typically does not
suffice to seize control over the engine, but it may be useful to
subsequently corrupt a sensitive object. By separating sensitive
objects from primitive objects, we can ensure those object
classes are not writable at the same time. Thus, the attacker
cannot leverage an object type confusion vulnerability to
corrupt sensitive objects using a write operation for primitive
data types. Moreover, we can further narrow down the writable
time windows for each object type.

Note that the objects can also be written during the JIT
code execution. Changing object permissions during the JIT
code execution, however, may introduce substantial run-time
overheads as the JIT code is generated for frequently executed
code, and hence, highly optimized. Therefore, we lift all access
restrictions to primitive data objects while JIT code executes,
and enable the protection again when the JIT code transfers
control back to the JavaScript engine itself. We do, however,
enforce protection for sensitive data objects even during JIT
execution. This way, the attacker can no longer manipulate
sensitive objects (e.g., Shapes, Cells, Functions) which are
frequently exploited in real-world attacks. Interestingly, write
accesses to sensitive objects are rare during the JIT execution.
One exception is the lambda function object whose properties
can change dynamically. For this case, we instrument the JIT
code region to grant valid write accesses to sensitive objects
and then enable the protection again, as we do for the static
code region.

IV. IMPLEMENTATION

We applied our defense to SpiderMonkey 60.0, which was
released in late 2018 [45]. We modified the source code for
SpiderMonkey’s memory allocation routines to associate the
correct domain keys with each structure and to ensure that
different types are allocated on separate memory pages. We
also instrumented all code locations that require write access
to the bytecode, object tables, JIT IR, JIT code, and JIT data to
enable and disable write access to the appropriate domains. To
separate the JIT code from JIT data, we modified the JIT linker
and assembler code. Lastly, we modified SpiderMonkey’s
signal handlers to support our automated instrumentation of
data object accesses and to support our dynamic object-flow
analysis (see Section IV-C2), which we conducted offline. For
this last step, we used LLVM 8.0.0 to modify and transform
SpiderMonkey’s code automatically [35]. In total, our proto-
type consists of 9000+ added lines of code. We also wrote
1000+ lines of LLVM code and 200+ lines of Python scripts,
which are used for processing results from our dynamic object-
flow analysis.

A. Memory Protection Mechanism

We implemented our domain-based access control on top
of Intel Memory Protection Keys (MPK). MPK is a recently

introduced hardware feature that allows user-space programs
to manage access permissions for up to 16 memory domains.
To change the access permissions for a domain, the program
uses an unprivileged instruction to write to the thread-local
PKRU register. Note that, while the PKRU write instruction
is unprivileged, an adversary has to acquire arbitrary code
execution to set its value. However, as we demonstrate in
Section V, NOJITSU provides protection against a wide variety
of attacks, including arbitrary code execution attacks based on
code injection and code-reuse.

B. JS Engine Compartmentalization

NOJITSU enforces an execute-only memory policy for JIT
code regions and statically generated code. This policy thwarts
JIT-ROP attacks which rely on reading code to discover code-
reuse gadgets. We use MPK to implement this policy. However,
MPK, by itself, does not suffice to implement the policy
because it can only toggle the write and read permissions
through the PKRU register. To make JIT code execute-only,
we therefore allow SpiderMonkey to allocate the JIT code
cache onto memory pages that are marked as executable in
the page table. We use MPK to make these pages readable
and writable during JIT compilation, and to revoke read and
write permissions when the compilation completes.

1) Jump Table Separation: During JIT compilation, Spider-
Monkey emits jump tables such as those shown in Figure 7a.
The jmp* rip, 2 instruction loads a jump target address
located at offset 2 from the jump instruction, and jumps to the
loaded address. We modified SpiderMonkey to separate jump
target addresses from the rest of the jump table. This allows
us to make jump addresses read-only and not executable.
Blindly moving the addresses into read-only memory would
require us to reserve an additional register to store the base
address of the jump target region. This could lead to additional
register spilling, which would negatively impact the run-time
performance of the JIT engine. We avoided this performance
hit by designing the JIT code layout in such a way that the
data region directly follows the JIT code region. This way,
the jump target can still be loaded via relative addressing,
without allocating an additional register. Figure 7b shows the
layout of the JIT code after jump table separation. The jump
addresses, constants, and any other data are separated from
the JIT code and moved into a new JIT data section that
immediately follows the original JIT code section. The jump
instructions are patched accordingly.

2) Permission Change Routine: Listing 1 illustrates how
we temporarily change the permission for a permitted write
access. Before writing to a protected region, we insert a call to
set_pkru to change the value of the PKRU register to enable
write access. Although write_pkru is a simple register write
operation and much more efficient than calling mprotect
to change the page access permission, this instruction still
takes longer to execute than a normal arithmetic instruction
(i.e., a WRPKRU instruction takes around 20 cycles because it
flushes the CPU pipeline to prevent a potential memory access
violation caused by out-of-order execution [47]). Thus, instead
of immediately writing to the PKRU register, the set_pkru
function first checks if the current PKRU value already has
the write permission. If so, the function returns without
overwriting the register. If the page does not have the write

7

.

.

.

Relocation Table

Constants

Code pointers

jmp* rip, 2

hlt

Jump address

jmp* rip, 2

hlt

Jump address

JIT code

Jump
table

DataCode(a) Legacy Memory Layout

.

.

.

.

.

.

Relocation Table

Constants

Code pointers

jmp* rip, offset

Jump address

jmp* rip, offset

Jump address

JIT code / JIT data

Jump
table

Padding

(b) NOJITSU Memory Layout

Fig. 7: Memory layouts before and after JIT code () and
JIT data () separation. We move all readable data —code
pointers, constants, jump target addresses, and the relocation
table— into a separate memory region which immediately
follows the original JIT code region. This data separation
allows the JIT code region to be execute-only and the JIT
data region read-only.

permission, the function overwrites the PKRU register to allow
the subsequent write access and returns the previous PKRU
value which will later be used for PKRU value recovery. After
the write instruction, we call recover_pkru to recover the
previous PKRU value.

Note that values we load into the PKRU register are
encoded directly into the machine code as immediate values,
and thus these values are, in principle, never loaded from
memory. However, the compiler could still spill PKRU values
to the stack. Addressing this corner case is out of scope of this
paper, however, potential mitigations orthogonal to our work
are: i) to avoid spilling of registers containing PKRU values
by assigning it a dedicated register [25], or ii) to randomize
the PKRU values before being spilled to stack and keep the
randomization secret in a dedicated register [11], [16].

3) JavaScript Object Protection: In the JavaScript engine,
the garbage collector (GC) is responsible for allocating and
reclaiming JavaScript objects on the heap. The GC mechanism
in SpiderMonkey already provides a certain level of data
isolation through compartments. JavaScript objects from the
same origin (i.e., objects created from the same website)
are within the same compartment, and JavaScript objects
(including JavaScript function objects) are not allowed to

access other objects from a different compartment. However,
SpiderMonkey only enforces this isolation at the language
level. An adversary that finds a memory vulnerability can
still access (and potentially overwrite) JavaScript objects in
other compartments. We propose a low-level and precise access
control mechanism for JavaScript objects that works even in
the presence of memory vulnerabilities. The JavaScript objects
that we protect also include shapes which contain the object’s
layout information, script objects that point to bytecode, and
any other objects that are allocated and collected by the
garbage collector (GC).

In SpiderMonkey, the unit of memory managed by the GC
is called a cell. Cells are classified based on their allocation
kind, which determines the attributes of the object such as
the size and the finalization behavior. Arenas are the memory
allocation unit (i.e., 4 KB) that accommodates objects of the
same allocation kind. In our design, we assign the key allotted
for JavaScript objects based on its allocation kind (i.e., the
originating arena). For instance, in our prototype we currently
support different MPK domains for sensitive types (script,
shape, function, etc.) and primitive types (scalar and array data
types). Separating these sensitive and non-sensitive objects
into different domains, the attacker cannot exploit vulnerability
in array or any other non-sensitive data objects to corrupt
sensitive ones such as a function object. In Figure 6, for
example, we assign key3 and key4 for different types of
JavaScript objects.

set_pkey(protection, key){
current_pkru = read_pkru()
if(need_to_change_protection(current_pkru,

protection, key)) {
write_pkru(current_pkru, protection, key)
return current_pkru

}
return 0

}
recover_pkru(pkru) {
if(pkru) {

write_pkru(pkru)
}

}
function_A(...) {
...
...

saved_pkru = set_pkru(W,key)

instruction to write on MPK protected region

recover_pkru(saved_pkru)

...

...
}

Listing 1: Permission change routine

C. Instrumenting Memory Accesses

After modifying SpiderMonkey to separate JIT code from
JIT data, and modifying the memory allocation routines to
allocate each data structure into the proper memory domain,
we had to instrument all memory write instructions in the JIT
engine to set the appropriate run-time memory permissions
based on which data types the instruction may access.

Manually instrumenting all instructions that require write
permission is infeasible given the complexity of JavaScript
engines. We therefore implemented a mechanism to automati-
cally identify and record the write accesses introduced by legal

8

program flow, and we used the recorded information to refine
our instrumentation code in a subsequent step.

Alternatively, we could have used a points-to analysis
technique to identify write operations that may write to
a JavaScript object. However, such analysis techniques are
known to overapproximate the set of operations that may
write to a specific memory location because they lack run-
time information and/or trade precision off for scalability.
Using overly conservative analysis outputs to support our code
instrumentation would result in larger attack windows in which
illegitimate write accesses to JavaScript objects are possible.

During the course of this research, we studied several
LLVM-based pointer analyses and found these tools have
known implementation bugs that cause false negatives (i.e.,
missing alias relationships) in the analysis output [36], [50],
[60]. For instance, these tools miss tracking pointers passed
as an element of structure type (aggregate) registers. Instru-
menting SpiderMonkey based on analysis outputs with false
negatives would lead to missing run-time permission changes
and would cause legitimate object write accesses to fail and
crash the program.

1) Code Transformation and Signal Handler: Our dynamic
analysis intentionally traps write accesses to the protected
region and catches the resulting segmentation faults in a
custom signal handler. This signal handler records the trap
location, temporarily enables write access, and restarts the
faulting instruction.

write instruction
current_pkey = read_pkey()
if(isChanged(current_pkru))
{
print function_name
set_pkey(R, OBJ_key)

}

Listing 2: Code transformation for dynamic analysis

sig_handler()
{
if(CausedByMPKViolation())
{

set_pkey(W, OBJ_key)
return

}
else

goto:legacy sig handler
}

Listing 3: Signal handler for dynamic analysis

2) Dynamic Object-Flow Analysis: Listing 2 and Listing 3
shows the code transformation and signal handler we use in
our analysis. At the start of the analysis, we only grant read
permission to JavaScript objects. When the JavaScript engine
encounters a write access to the objects, a segmentation fault
will trigger our signal handler. If our signal handler identifies
that the fault is caused by a MPK violation it logs the faulting
code to be processed later by our LLVM passes.

Within the signal handler, we modify the PKRU value so
that we can re-execute this particular write access without
causing another segmentation fault. The challenge here is that
the interrupted process does not share its register state with the
signal handler. Therefore, the signal handling routine cannot

directly read or modify the PKRU register of the interrupted
process. We address this issue by locating the PKRU register
saved in memory before the context switch. Before entering
the signal handler, the OS saves the register state of the
interrupted process in memory and recovers the registers after
the signal handler returns. We therefore directly modify the
PKRU value located in the saved register state so that the
PKRU value modification within the signal handler is properly
updated when the register state is recovered. With the updated
PKRU register, program execution then continues with the
write instruction that now successfully writes to the protected
region. After execution finishes we check if the PKRU register
was modified from the initially loaded value. If so, we know
that this write access touches the protected region and that this
access should be permitted. We then record this code location.
Lastly, we set the PKRU register back to read-only, such that
future write access to the protected region will trigger our
signal handler again. This way, we can precisely locate and
record functions that require legitimate access to the protected
region without altering the semantics of the scripting engine.

3) Accessor Functions: In the JavaScript engine, only a
limited number of functions can directly write to an object; we
call these functions Accessor Functions. Because of the way
SpiderMonkey’s code base is structured, any other functions
should invoke one of these accessor functions to modify a JS
object—the same is true for any other code bases that respect
the abstraction principle of object-oriented programming and
non-OOP code bases that use abstraction layers to access spe-
cific types of data. Our dynamic analysis therefore only needs
to find these accessor functions and does not require entire
code coverage of the engine. As long as we ensure that each
of the object types (of which there are 29 in SpiderMonkey)
is covered by one of the test cases, accessor functions will
be fully exercised (see Section V-B). Consequently, any other
characteristics of workloads will not affect the coverage of
accessor functions.

Our dynamic analysis naturally captures 300 accessor
functions out of around 100, 000 functions in SpiderMonkey.
We categorize these accessor functions into four groups based
on their behaviors: Member Accessors, Payload Accessors,
Initialization Accessors, and GC Accessors.

Member Accessors are member functions of a JavaScript
object class which write to private variables. Payload Acces-
sors are special member functions to update the actual payload
of a JavaScript object. Every JavaScript object class imple-
ments its payload accessor which either directly stores the
payload or its reference. Initialization Accessors are functions
that initialize JavaScript objects. Most initialization functions
are member functions or constructors of a JavaScript object
class, but there are few cases where an independent func-
tion initializes JavaScript objects, directly writing to public
variables. Most of them are for efficiently initializing string
objects. Lastly, GC Accessors update various allocation in-
formation for garbage collection. Apart from the JavaScript
objects themselves, garbage collection also makes heavy use
of object metadata, and hence, requires memory protection
as well. We therefore automatically instrument the JavaScript
engine to lock down metadata access by default, and only
grant legitimate write accesses to such object metadata where
appropriate. Since the behavior of garbage collection could be

9

different in our profiling environment, we conservatively find
and instrument all functions in the garbage collection scope
that have at least one memory write.

D. Feedback-Driven Object Protection

Our fault-based dynamic analysis framework can be used to
incorporate a feedback loop from alpha testers. This feedback
loop can supplement the coverage of our dynamic analysis
based on a predefined set of test cases. To this end, we
enforce non-writable permission for JavaScript objects with
appropriate permission changes for known, legitimate write
accesses such that a new write access to an object will trigger
a segmentation fault. Our signal handler will catch the fault and
record the function information in the same way described in
Section IV-C2. This recorded information will be fed into the
continuous integration system such that the next alpha release
will grant the object write accesses discovered in the previous
cycle. In beta and stable releases (after finishing alpha testing),
the fault handler will be disabled and any unknown object
write access will be considered as a potential vulnerability
or malicious behavior; our protected JavaScript engine will,
therefore, immediately terminate the program execution for
such an unknown access.

E. Optimization

With the MPK support, one can change access permission
for a protection domain by simply updating the PKRU register.
Writing to a PKRU register can take around 20 cycles or
more [47], [63]. While this is much more efficient than calling
the mprotect system call, updating a PKRU register can still
incur high performance overhead if the permission needs to
change frequently. In our design, we grant write permission
for a protection domain only within accessor functions which
have legitimate write accesses to JavaScript objects. These
accessor functions are frequently invoked to update an object
value and to maintain inlined object metadata required for
garbage collection and optimizations. The performance impact
of the PKRU register update can be amplified especially
when the accessor functions are called within a small yet
frequently executed code region, such as a small loop or
a constructor/destructor function. We therefore optimize the
number of run-time permission changes by hoisting the PKRU
update instructions out of such a small code region. To do
so, we first find the functions that are potentially involved in
frequent permission changes and hoist the permission changes
to parent functions in the call graph. Note that we implement
our hoisting optimization only for primitive data objects so
that the security guarantee for sensitive data objects is not
diminished. Our proposed optimizations significantly reduce
the number of redundant protection changes, and thereby
minimize the performance impact of our protected JavaScript
engine (see Section V-C).

1) Code Example: We show a code example that can
highly benefit from our optimization. In Listing 4, a function
init initializes static strings in SpiderMonkey. This function
consists of three loops and each of them has two function
calls. The called functions are used to create and initialize
string objects, which means they have to call some of the
accessor functions to update an object. Since these functions
are executed within the loops, there will be many permission

bool StaticStrings::init(JSContext* cx) {
...
AutoAtomsCompartment ac(cx, lock);
...

saved_pkru = set_pkru(W,key)

for(uint32_t I= 0 ; I < UNIT_STATIC_LIMIT; I++){
JSFlatString *s = NewInlineString(...);
...
unitStaticTabls[I] = s->

morphAtomizedStringIntoPermanentAtom(hash);
}
for(uint32_t I= 0 ; I < pow(NUM_SMALL_CHARS,2); I++){

JSFlatString *s = NewInlineString(...);
...
length2StaticTable[I] = s->

morphAtomizedStringIntoPermanentAtom(hash);
}
for(uint32_t I= 0 ; I < UNIT_STATIC_LIMIT; I++){

JSFlatString *s = NewInlineString(...);
...
initStaticTable[I] = s->

morphAtomizedStringIntoPermanentAtom(hash);
}

recover_pkru(saved_pkru)

...
}

Listing 4: Example: Redundant calls

changes, leading to high performance overhead. We can reduce
this overhead by hoisting the write permission changes out of
the loops.

Score =

{
1 if accessor function,∑

score of called function
number of function calls otherwise.

(1)

2) Selecting Hosting Targets: We introduce a heuristic that
determines where to hoist PKRU register updates. Consider a
call graph where the root represents the main function and at
the ends of the graph are accessor functions. Intuitively, if we
insert the PKRU update instructions at the accessor functions,
the attack window will open only for this small code region,
but executing these extra instructions at this small code region
is relatively costly. If we, on the other hand, put the PKRU
updates at the root of the graph, the performance impact will
be almost diminished, but it will turn most of the code into
the attackable window.

Our heuristic therefore aims to find functions that, when we
put a PKRU update instructions, have less performance impact
while opening only a limited amount of attack window. To
implement the heuristic, we first extract the global call graph
of SpiderMonkey by means of LLVM’s call graph analysis.
Then, we score each function based on the probability that the
function can eventually reach any of the accessor functions.
(see Equation 1).

We demonstrate how we score each function in Figure 8,
where each node represents a function. We assign every acces-
sor function with score 1, the highest score in our metric. Func-
tions without a direct write access to the protected region are
assigned the average score of their child nodes, i.e., the callee
functions. We use the Bellman-Ford algorithm to traverse the
call graph and calculate the scores of each function based on
our metric. In the example shown in Figure 8, functions D, F,
and G are accessor functions and thus their scores are set to 1.
The scores of functions E, and H become 0, on the other hand,

10

Function A
Score: 0.58 Protected Legacy

Function B
Score: 0.5

Function C
Score: 0.66

Function D
Score: 1

Function E
Score: 0

Function F
Score: 1

Function G
Score: 1

Function H
Score: 0

Fig. 8: Example call graph and scores for each node. The
example is based on our heuristic to determine nodes to insert
permission changes.

because they are neither accessor functions nor do they have
a child node. The scores for the other functions such as A, B,
and C are calculated by our metric. Based on the calculated
scores, we select functions over a certain threshold to insert
protection changes. The threshold is a tunable parameter that
adjusts the trade-off between security and performance. In our
experiment, we determine the threshold as 0.15 which incurs
low performance overhead while less than 1% of the functions
are additionally open for write accesses.

3) Permission Change Insertion: After selecting the func-
tions to insert protection changes, we identify locations to
which we will insert write permission changes. We could
simply insert permission changes around all basic blocks that
require the write permission. However, doing so may lead to
frequent permission changes if multiple basic blocks require
the write permission. Instead, we insert a permission change at
the basic block that dominates all the legitimate write accesses.
To this end, we perform the dominator analysis inside the
target function. First, we find all basic blocks that can possibly
visit accessor functions. We then find the nearest common
dominator (NCD) of the basic blocks and insert set_pkey
at the NCD. This will grant the write permission (to primitive
objects) for all the basic blocks reachable from the dominator
until the control flow reaches recover_pkru to strip the
write permission. We insert recover_pkru into dominance
frontiers of the NCD to prevent any of the basic blocks that
are not dominated by the NCD from acquiring the write
permission. In this way, we allow the write permission only
for the limited number of basic blocks, without introducing
excessive permission changes within a function.

4) Removing Redundant Calls: Accessor functions are by
default instrumented with the write permission changes. After
hoisting these permission changes to different functions, we
need to remove redundant permission changes in the acces-
sor functions. Removing such redundant permission changes
from accessor functions is challenging: a particular accessor
functions can also be invoked by any other functions to which,
based on the scores, no protection changes have been added.
We address this by maintaining two versions of a function: one
with the protection changes (protected) and one without the
instrumentation (legacy). We instrumented protected functions
so that they always call the legacy versions of their callees
to avoid redundant permission changes. Callsites in legacy
functions are also instrumented so they call legacy versions

of their callees by default, while the protected functions are
called only at the selected call sites. In Figure 8, for example,
the protected version of function A calls the legacy versions
of functions B and C which also call the legacy versions of
their callees.

V. EVALUATION

In this section we evaluate the security and performance
of NOJITSU in detail.

A. Security

The main goal of NOJITSU is to allow fine-grained mem-
ory permission management throughout the JavaScript engine
at run time to protect against a wide range of memory-
corruption-based exploits, such as code-injection, code-reuse,
and data-only attacks. One of our key techniques to achieve
this goal is to rigorously reduce the memory-access per-
missions of the engine’s components to the bare minimum.
As illustrated in Table III, the default access permissions
are locked down significantly within NOJITSU for each of
the components we identified in Section II-B. However, to
retain compatibility and interoperability of these components
within SpiderMonkey’s legacy code base, we automatically
instrument the respective code locations to allow non-default
access permissions in a fine-grained manner temporarily. In the
following, we evaluate the temporal granularity of our instru-
mentation. Furthermore, we verify the quality and coverage
of our dynamic analysis that drives our instrumentation. We
then subject our NOJITSU prototype to a number of real-world
exploits, analyzing the effectiveness of our achieved protection
in detail.

1) Approaching Minimal Access Requirements: We ran
SpiderMonkey’s built-in test suite containing more than 6,000
test scripts to drive our dynamic analysis. After we identified
all code locations requiring access to sensitive JavaScript
objects, we added the instrumentation code to enable ac-
cess permissions where necessary. Our code transformations
are similar to the ones described in Listing 2. We insert
set_pkey and recover_pkey calls on a per-function
basis. Thus, once the instrumentation code grants a function
write access to a particular type of object, the function retains
this access until it returns.

We made this design choice for two reasons. First, many
of those functions issue multiple write operations to the
respective objects. Therefore, changing protection in between
those operations would often result in redundant permission
changes. Second, the size of native functions operating on
data objects is comparatively small, and hence, the instruction
window within which access is enabled unnecessarily is also
small.

To gauge the extent to which our defense limits the
attacker’s capability to corrupt JavaScript objects, we analyzed
all functions that require write access to primitive and/or
sensitive JavaScript objects. We also considered the types of
the write accesses. Table I shows the results of our analysis.
The single write row refers to functions in which the sensitive
accesses are limited to regular MOV instructions that access
a single memory location. The block write row refers to
functions that can overwrite multiple memory locations using

11

TABLE I: Percentage of the functions that need write permis-
sions

Primitive obj Sensitive obj Both obj Total

Single write 0.09% 0.16% 0.05% 0.29%
Block write 0.04% 0.02% 0.01% 0.07%
Total 0.13% 0.18% 0.06% 0.36%

TABLE II: Percentage of the write instructions executed in the
write window of primitive objects, sensitive objects, or both

Primitive obj Sensitive obj Both obj Total

Single write 11.11% 3.29% 1.26% 15.66%
Block write 0.68% 0.19% 0.13% 1.00%
Total 11.79% 3.48% 1.39% 16.66%

Single write (Opt.) 13.08% 2.86% 2.45% 18.39%
Block write (Opt.) 0.86% 1.72% 0.43% 3.01%
Total (Opt.) 13.94% 4.58% 2.88% 21.40%

memcpy-like instructions such as REP MOVSB. We deem
these block writing functions more dangerous than single
writing instructions as they are more susceptible to overflow
attacks. Overall, the results are encouraging. Only a small
fraction of all functions (0.36%) contain write operations
targeting primitive and/or sensitive JavaScript objects.

Since our instrumentation operates at function granularity,
it can sometimes leave sensitive JavaScript objects exposed to
instructions that would not access these objects in memory-
safe executions of the JavaScript engine. We extended our
dynamic analysis and set up an experiment to measure how
many extra instructions unnecessarily obtain write access to
JavaScript objects. Concretely, we measured the total dynamic
write instruction count while running the test suite and looked
at the fraction of the write instructions that were unnecessarily
in the write window. The upper half of Table II shows the
results of the analysis. Here, we can see that 11.79% of
the write instructions were executed while write access to
the primitive JavaScript object domain was enabled, whereas
3.48% executed while access to the sensitive object domain
was enabled. An additional 1.39% executed while both do-
mains were accessible. In total, 16.66% of the executed write
instructions had access to one or both domains. While this
represents a large fraction of the execution, only 1% of the in-
structions in the write window were block writing instructions.
We can, therefore, conclude that our defense substantially
reduces the number of instructions that can feasibly corrupt
sensitive JavaScript objects.

We hoisted some of the permission changes as part of our
optimization (see Section IV-E). This optimization reduced the
average performance overhead from 5% to 2%, as discussed in
Section V-C. However, this performance gain may come at the
cost of reduced security, allowing additional write instructions
executed in the write window of sensitive JavaScript objects.
To analyze the security trade-off of our hosting optimization,
we measured the fraction of the write instructions that were
unnecessarily executed in the write window when the opti-
mization is enabled. The results are shown in the bottom
half of Table II. Note that a small behavioral change like

TABLE III: Default memory access permission at run time

Permissions
Data SpiderMonkey 60.0.0 with NOJITSU

Bytecode RW R
Object tables RW R
JS Objects RW R
JIT IR RW R
JIT code RX X
JIT data RX R

our hosting optimization can affect the timing when the next
tier of execution (i.e., JIT code execution) is triggered in the
JavaScript engine. This may introduce noise when we directly
compare the dynamic instruction counts between optimized
and non-optimized versions of the executions. For example,
the percentage of single write instructions in the sensitive
object write window slightly decreased after the optimization
as a result of the noise. However, overall, the optimization
led to a mild increase in the write instructions executed
in the write window. After the optimization, the number
increased from 0.19% to 1.72% while only sensitive objects
were accessible and increased from 0.13% to 0.43% while both
objects were accessible. This result suggests that the hosting
optimization provides a reasonable trade-off between security
and performance. The developer can decide the degree of
hosting optimization according to the performance and security
requirements of the system.

2) Code-Injection Attacks: While code-injection attacks are
already mitigated to some extent by the existing deployed
defense mechanisms [18], several advanced attacks aim at
bypassing them, e.g., by injecting constants and exploiting
unaligned instruction fetches [7], [13], [40]. These JIT spray-
ing attacks proved challenging to mitigate in practice, since
the performance overhead of constant blinding grows as the
protected constants get smaller in size [19]. As a result, the
current version of SpiderMonkey does not deploy constant
blinding in the interpreter or the Baseline JIT compiler [59]. In
NOJITSU we tackle this problem as part of our design policy to
enable execute-only memory for JIT code. Since JIT code will
be mapped non-readable in our prototype, we clearly separate
readable data such as constants from code (see Section III-A1).
This means that injected constants will no longer be mapped
as executable at run time within NOJITSU.

3) Code-Reuse Attacks: To verify NOJITSU’s ability to
stop code-reuse attacks, we re-implemented a fully working
JIT-ROP exploit based on CVE-2019-11707 which is already
present in the SpiderMonkey 60.0. We achieved arbitrary read-
write capability based on the CVE and launched our JIT-
ROP attack. Our JIT-ROP attack exploits gadgets which the
attacker dynamically inserts into the JIT code region, e.g.,
by forcing JIT compilation of maliciously inserted ad scripts.
We verified that our JIT-ROP attack works reliably against
the uninstrumented version of SpiderMonkey. We then ran
the JIT-ROP exploit against NOJITSU and found that it was
successfully stopped. The reason is that the generated code
pages are no longer mapped as readable (eXecute-only), and
hence, the attacker is not able to locate and disassemble
potential gadgets at run time.

12

4) Bytecode Interpreter Attacks: As described in detail
in Section II we developed and successfully tested a new
attack against SpiderMonkey as part of our work. Since our
attack corrupts data objects that are handled by the interpreter
component, none of the previously proposed defenses were
able to stop our attack. One of the main motivating goals
behind NOJITSU is to resolve this situation. In our design,
we carefully analyzed each major component within the JIT
engine to identify and enforce the minimally required set of
access permissions. In our attack setting this means that the
attacker will no longer be able to write to the function object
using the type confusion vulnerability (CVE-2019-11707),
since NOJITSU separates sensitive objects and primitive ob-
jects into different protection domains. We verified and tested
that NOJITSU indeed successfully prevents our new attack on
SpiderMonkey. It is noteworthy that we not only protect the
interpreter component. Indeed, each of the major relevant data
sections such as the memory areas for Bytecode, Data Objects,
Data Tables, and JIT Compiler Data are also protected using
separate MPK keys in our scheme.

B. Coverage of Dynamic Object-Flow Analysis

As discussed in Section IV-C2, direct writes to JS objects
are handled by a limited set of functions, which we call
accessor functions. Our dynamic analysis, therefore, only
needs to find these accessor functions and does not require
entire code coverage of the engine. The accessor functions
will be fully exercised as long as each of the object types (of
which there are 29 in SpiderMonkey) is covered by one of our
test cases.

To evaluate the soundness of our approach, we first ran our
dynamic analysis with a subset of the test suite and checked
whether the protected JavaScript engine based on the dynamic
analysis tolerates the bigger test cases. To this end, we ran our
dynamic analysis with the JIT test suite that contains 6,246
tests which is a subset of the full JavaScript test suite. Based
on this analysis result we applied our object protection to
the JavaScript engine. We then tested the protected version
of JavaScript engine against the entire JavaScript test suite
— which consists of 30,605 tests independent from the test
suite that we used for the dynamic analysis. Then we checked
if the new tests triggered any memory protection faults. A
fault would indicate that an instruction that was not covered
by our analysis wrote to a JavaScript object. We verified that
our JavaScript engine instrumented with the subset of the test
suite successfully passed the rest of the entire test suite without
triggering any faults. This confirms that our dynamic analysis
is able to cover all possible accessor functions with only the
subset of test cases, and the resulting protection is robust
enough to tolerate much bigger test cases.

C. Performance

We evaluated the performance of our defense on a Intel
Xeon silver 4112 machine equipped with 2.60GHz CPU and
32GB memory. We ran benchmarks under Ubuntu 18.04.1 LTS
whose kernel version is 4.15.0-47-generic. We used LongSpi-
der [5] for our evaluation. LongSpider is a longer version
of sunspider benchmarks. The reason for using LongSpider
is that sunspider benchmarks are too microscopic. Most of
the sunspider benchmarks are less than 10ms, which doesn’t

catch the performance overhead of our recurring changes of
the protection. However, most of the LongSpider benchmarks
are longer than 100ms so they are more suitable for our
performance evaluation. Figure 9 shows the evaluation re-
sult. X axis is benchmarks and y axis is the performance
overhead compared to the baseline. There are five different
bars. The bar named JIT_PROT is for the overhead of
JIT protection. INTER_PROT is for the interpreter protec-
tion. ALL_PROT is the combined performance overhead for
both JIT and interpreter protections and OPT stands for the
optimization. On average, our NOJITSU has less than 5%
overhead and with optimization it becomes less than 2%. The
overhead for JIT is marginal, which is 0.6% on average.
Some benchmarks have better performance than the baseline
because all expensive mprotect operations are replaced
by cheap MPK register writes. However, benchmarks such
as bitops-bits-in-byte, date-format-tofte, and
string-tagcloud have higher overhead compared to the
others. We found that the root cause of the overhead are cache
misses. We need to position JIT code and data in different
pages for code and data separation, which loses cache locality.
For instance, if the size of code is too small, both the data
and the code using that data can fit into the same cache line.
Code and data separation introduces a large(r) offset between
code and data regions, not allowing for both to fit into the
same cache line. For the interpreter protection, there is almost
no overhead from bytecode and table protection because the
overhead comes from the generation of those data, which is
marginal compared to whole execution. Most of the observed
overhead is a result of the object protection, which keep
changing the protection during the execution. In Figure 9,
date-format-xparb and string-base64 cause a sig-
nificant overhead for the object protection because they involve
frequent write operations to string objects. However, our
optimization drastically reduces this overhead. As discussed
earlier, we achieve this by hoisting certain instructions within
our instrumentation.

VI. DISCUSSION

A. Applicability to Other Systems

While we instantiated our attacks and defenses in Spider-
Monkey, the underlying approaches are generally applicable
to other script engines that employ bytecode interpreters. We
analyzed two mainstream JavaScript engines, V8 [30] and
JavaScriptCore [4], to clarify how our approaches could be
applied to these JavaScript engines. The engines have a number
of reported memory corruption vulnerabilities which may al-
low attackers to read and write arbitrary memory locations [1],
[2].

a) Attack: Our interpreter attack leverages the facts
that most of the key data structures of the interpreter remain
writable throughout the execution and that the interpreter has a
special way of calling native functions – in which contents of
certain JS objects determine the target address and arguments
of a function call. Specifically, our attack overwrites the two
data structures in SpiderMonkey: (i) a function object which
contains the address of the function to invoke, and (ii) the
context object which is always passed as the first argument for
native function calls (see Section II-C). We found that in V8
and JavaScriptCore any types of JS objects remain writable,

13

3d
-c

ub
e

3d
-m

or
ph

3d
-ra

yt
ra

ce

ac
ce

ss
-b

in
ar

y-
tre

es

ac
ce

ss
-fa

nn
ku

ch

ac
ce

ss
-n

bo
dy

ac
ce

ss
-n

sie
ve

bi
to

ps
-3

bi
t-b

its
-in

-b
yt

e

bi
to

ps
-b

its
-in

-b
yt

e

bi
to

ps
-n

sie
ve

-b
its

co
nt

ro
lfl

ow
-re

cu
rs

iv
e

cr
yp

to
-a

es

cr
yp

to
-m

d5

cr
yp

to
-s

ha
1

da
te

-fo
rm

at
-to

fte

da
te

-fo
rm

at
-x

pa
rb

ha
sh

-m
ap

m
at

h-
co

rd
ic

m
at

h-
pa

rti
al

-s
um

s

m
at

h-
sp

ec
tra

l-n
or

m

st
rin

g-
ba

se
64

st
rin

g-
fa

st
a

st
rin

g-
ta

gc
lo

ud

Av
er

ag
e

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%
JIT_PROT
INTER_PROT
INTER_PROT_OPT
ALL_PROT
ALL_PROT_OPT

Fig. 9: NOJITSU performance

and both of these engines have internal calling conventions
for native JS functions similar to SpiderMonkey. Therefore,
our presented interpreter attack would be possible for these
engines. For example, JavaScriptCore makes a native function
call by reading a target address from a function object and
passing a global object pointer as the first argument. Therefore,
deliberately overwriting the function object and the global
object in the call frame would allow the attacker to invoke
his desired function.

b) Defense: The bytecode interpreters in V8 and
JavaScriptCore have different implementations than Spider-
Monkey – SpiderMonkey has a switch-based interpreter while
V8 and JavaScriptCore implement threaded interpreters; Spi-
derMonkey’s interpreter is a stack-based machine, whereas
the other two are register-based machines. Despite such dif-
ferences, the core mechanism of bytecode interpretation re-
mains the same, that is, each bytecode instruction has a
sequence of code that handles its desirable operation and, when
necessary, the instruction can access JavaScript objects via
object tables. Consequently, V8 and JavaScriptCore have the
same components that NOJITSU protects in our SpiderMonkey
prototype, i.e., bytecode, JavaScript objects, object tables,
JIT IR cache, and JIT code cache. Like SpiderMonkey, V8
and JavaScriptCore have different types of JavaScript objects.
We identified several primitive objects as well as crucial
objects such as the function object which stores the address of
the corresponding function. Therefore, NOJITSU’s protection
mechanism could be directly applied to these engines that
use the similar data structures, by assigning minimum access
permissions for individual data structures and temporarily grant
extra permissions only when that is necessary.

Bytecode itself normally does not change after the code is
generated and thus in NOJITSU the memory region containing
bytecode remains read-only after initialization. Previous ver-
sions of JavaScriptCore had an optimization called bytecode
inline caching which directly modifies a bytecode stream.
Such an optimization could have induced more performance
overhead to our defense since modifying the bytecode would
require additional permission changes. However, this optimiza-
tion is not used anymore for memory reason and thus we do not
expect extra overhead applying NOJITSU to this engine [65].

B. Alternatives to Intel MPK

While our prototype uses Intel MPK, the design of NO-
JITSU is not heavily tied to its specific hardware imple-
mentation and using other hardware-based memory protection
schemes that allow restriction of memory access permissions
beyond traditional virtual memory protection, such as ARM
Memory Domains [6], should be feasible in principle. This
relation between Intel MPK and ARM Memory Domains was
also noted by prior work on Software-Fault Isolation and
Compartmentalization [20], [47], [63]. Similar to Intel MPK,
ARM Memory Domains support 16 different protection do-
mains. However, while Intel MPK allows domain switches
in user space, ARM Memory Domains require a system call
roundtrip. Although NOJITSU uses Intel MPK’s ability to
efficiently implement execute-only permissions, there are no
conceptual limitations that would prevent leveraging non-MPK
implementations [8], [15], [23] in support of that feature.

VII. RELATED WORK

JIT compilers have been under constant siege by adver-
saries ever since they were introduced in mainstream web

14

browsers. The earliest JIT compilers left the code cache
writable and executable at all times. This trivially enabled
code-injection attacks [18], [55]. Early attempts to address this
issue included monitors that detected system calls originating
from writable code regions [26]. However, as JIT compilers
began to enforce strict W⊕X policies [18], either by double
mapping the JIT code cache or by toggling the writable and
executable permissions before and after code emission, JIT
code injection became a less interesting attack vector.

As an alternative, Blazakis proposed JIT spraying, an attack
technique that injects code indirectly by running a script that
contains user-specified constants (e.g., as part of a long XOR
computation) [7], [13], [40]. Since these constants appear as in-
struction operands in the JIT code cache, they can be executed
as if they were valid instructions. Several countermeasures
thwart JIT-spraying attacks by either eliminating user-specified
constants through obfuscation or constant blinding [19], ran-
domizing the JIT code [32], or by extending control-flow
integrity to JIT code [46]. NOJITSU strengthens these existing
defenses by additionally separating data constants from JIT
code (see Figure 7). This enables us to enforce non-executable
permissions for constants.

Snow et al. proposed to attack JIT engines through code-
reuse attacks [56]. Their JIT-ROP attack leveraged a memory
disclosure vulnerability to recursively disassemble the code
region, thereby discovering useful code gadgets on-the-fly.
These gadgets can then be chained together to launch a return-
oriented programming attack [54]. Defenses against JIT-ROP
included execute-only memory combined with randomiza-
tion [8], [9], [23], [29], destructive code reads [61], [64], and
cross-checking reads performed by JIT code [28]. However,
some of these defenses were quickly bypassed [39], [57], while
others were not deployed due to impractical design or resource
requirements. As we demonstrate in our evaluation, NOJITSU
thwarts even dynamic code-reuse attacks such as JIT-ROP with
a low overhead. Our design is generic and leverages automated
dynamic analysis and instrumentation to scale to complex real-
world code bases such as SpiderMonkey.

Song et al. showed that direct code-injection attacks on
the JIT cache were still possible by leveraging JavaScript
worker threads [58]. Their proposed defense moved the JIT
compilation thread to a separate process, thereby preventing
the code cache from ever being writable in the JIT execution
process. This approach was later adopted in Microsoft’s Chakra
engine [42]. However, Microsoft recently announced shifting
their focus and replacing Chakra with V8 as part of their Edge
browser [10]. NOJITSU does not require a re-design of the
JavaScript engine but separates different components inside the
same process to enforce fine-grained page-based permissions.

With several code-injection and code-reuse mitigations
being adopted for JIT compilers, attackers turned their eyes
to data-only attacks. Theori et al. presented a data-only attack
that overwrites intermediate code structures in Chakra [62],
whereas Frassetto et al. presented a similar attack on Spider-
Monkey [27]. The proposed defense moved the JIT compiler
to an Intel SGX enclave, thus protecting its data structures
from corruption attacks. All of the above defenses focus on
mitigating attacks against the JIT compiler. Crucially, this
means they cannot prevent our attack which corrupts the
bytecode interpreter (see Section II). For certain architectures,

interpreter-based attacks were known to represent a fruitful
target of attacks for some time: Cama et al. [17] presented
an attack on the PS Vita that corrupted the virtual call table
of a JavaScript object in Webkit’s interpreter environment.
While their attack targets similar components to ours, these two
attacks are conceptually different. The PS Vita attack is based
on a well-known COOP-style attack which overwrites object’s
virtual function table (vtable) pointer with a pointer to a fake
vtable [51], and thus this attack would be prevented by existing
defenses against vtable corruption or vtable reuse attacks [14],
[24], [67]. In contrast, our attack deliberately overwrites the
internal data of a JavaScript object (not the vtable pointers of
any objects with virtual methods) to invoke a chosen function;
in fact, this manipulates how the bytecode interpreter interprets
the corrupted JavaScript object. In the technical aspects, their
attack targets Webkit/JavaScriptCore for the PS Vita (ARMv7)
and the context of the object being modified (via this) is
saved and restored using setjmp/longjmp to be able to
safely return to the JS environment. Our exploit is for Spi-
derMonkey (x86) and leverages the fact that the first 32-byte
can be overwritten safely without restoring them. However,
there are many more components inside a modern JavaScript
engine that an attacker could exploit. As our evaluation shows,
NOJITSU is able to mitigate a vast number of different
memory-corruption attacks against each of the JIT engine’s
major components offering fine-grained memory protection.

There are previous works to provide secure isolation inter-
faces using MPK. Libmpk [47] provides a secure software ab-
straction to improve security and resolve technical challenges
in using MPK. ERIM [63] utilizes MPK to isolate trusted
and untrusted memory regions so it can be used to imple-
ment memory isolation mechanisms, such as the safe store
in Code-Pointer Integrity (CPI) [34]. These approaches are
orthogonal to our approach and some of their techniques could
be combined with NOJITSU to further enhance performance
and security. Instead of using glibc’s MPK APIs to implement
our defense, using libmpk could further improve security and
performance of MPK operations. Also, ERIM’s technique to
detect PKRU-modification patterns and to remove them via
binary rewriting could be integrated into our work to further
improve security.

VIII. CONCLUSION

JavaScript engines are essential for performance and secu-
rity of modern systems software, such as web browsers. Many
existing works demonstrate attacks against JavaScript engines
and also propose defenses to mitigate some of these attacks. In
this paper, we show that previously proposed mitigations are
unfortunately not sufficient to protect JavaScript interpreters
against sophisticated adversaries. First, we demonstrate a new
attack that leverages the interpreter, which was previously
assumed secure by design, to execute arbitrary shell com-
mands. Our attack works in the presence of all existing
defenses that we’re aware of. Second, we propose a novel
defense design, dubbed NOJITSU, to bring hardware-backed,
fine-grained memory access protection to complex, real-world
JavaScript engines. As part of our security analysis we show
that this allows us to provide protection against a wide range
of possible attacks, including code-injection, code-reuse, and
data-only attacks. As we are able to demonstrate NOJITSU
successfully thwarts real-world attacks by minimizing memory

15

access permissions between different components towards the
strictly required minimum. Our prototype leverages automated
dynamic analysis to instrument and scale to complex code
bases such as SpiderMonkey, offering a moderate overhead
of only 5%.

ACKNOWLEDGMENT

This material is based upon work partially supported by the
Defense Advanced Research Projects Agency (DARPA) under
contracts FA8750-15-C-0124 and FA8750-15-C-0085, by the
United States Office of Naval Research (ONR) under contract
N00014-17-1-2782, and by the National Science Foundation
under awards CNS-1619211 and CNS-1513837. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the Defense Advanced Research Projects
Agency (DARPA) or its Contracting Agents, the Office of
Naval Research or its Contracting Agents, the National Science
Foundation, or any other agency of the U.S. Government.
The authors also gratefully acknowledge a gift from Oracle
Corporation.

REFERENCES

[1] “CVE-2016-4622.” Jul.21 2016. [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2016-4622

[2] “CVE-2019-5755.” Feb.19 2019. [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2019-5755

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in ACM Conference on Computer and Communications
Security (CCS), 2005.

[4] Apple, “Webkit,” https://webkit.org.
[5] ——, “Longspider,” https://github.com/WebKit/webkit/tree/master/

PerformanceTests/LongSpider, 2015.
[6] ARM, “Arm memory domains,” http://infocenter.arm.com/help/index.

jsp?topic=/com.arm.doc.ddi0211k/Babjdffh.html, 2015.
[7] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,

and S. Ioannidis, “The devil is in the constants: Bypassing defenses in
browser JIT engines,” in NDSS, 2015.

[8] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny, “You can run but you can’t read: Preventing disclosure
exploits in executable code,” in ACM Conference on Computer and
Communications Security (CCS), 2014.

[9] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained mem-
ory randomization practical by allowing code sharing,” in USENIX
Security Symposium, 2014.

[10] J. Belfiore, “Microsoft edge: Making the web better through more open
source collaboration,” https://blogs.windows.com/windowsexperience/
2018/12/06/microsoft-edge-making-the-web-better-through-more-
open-source-collaboration/, 2018.

[11] S. Bhatkar and R. Sekar, “Data space randomization,” in Conference
on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2008.

[12] bi0s, “Writeup for CVE-2019-11707,” https://blog.bi0s.in/2019/08/18/
Pwn/Browser-Exploitation/cve-2019-11707-writeup/, 2019.

[13] D. Blazakis, “Interpreter exploitation: Pointer inference and JIT spray-
ing,” BlackHat DC, 2010.

[14] D. Bounov, R. G. Kici, and S. Lerner, “Protecting c++ dynamic dispatch
through vtable interleaving.” in NDSS, 2016.

[15] K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz,
and P. Larsen, “Leakage-resilient layout randomization for mobile
devices.” in Symposium on Network and Distributed System Security
(NDSS), 2016.

[16] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro, “Data ran-
domization,” Technical Report MSR-TR-2008-120, Microsoft Research,
Tech. Rep., 2008.

[17] A. Cama, “Ps vita level 1: Webkitties,” http://acez.re/ps-vita-level-1-
webkitties-3/, 2014.

[18] P. Chen, Y. Fang, B. Mao, and L. Xie, “JITDefender: A defense
against JIT spraying attacks,” in IFIP International Information Security
Conference (SEC), 2011.

[19] P. Chen, R. Wu, and B. Mao, “JITSafe: A framework against just-
in-time spraying attacks,” IET Information Security, vol. 7, no. 4, pp.
283–292, 2013.

[20] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-grained
execution units with private memory,” in 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 2016, pp. 56–71.

[21] Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu, H. Vi-
jayakumar, and W. Shen, “Norax: Enabling execute-only memory for
cots binaries on aarch64,” in IEEE Symposium on Security and Privacy
(S&P), 2017.

[22] J. Corbet, “Intel memory protection keys,” https://lwn.net/Articles/
643797/, 2015.

[23] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in IEEE Symposium on Security and
Privacy (S&P), 2015.

[24] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz, “It’s a TRaP: Table
randomization and protection against function reuse attacks,” in ACM
Conference on Computer and Communications Security (CCS), 2015.

[25] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Pt-rand: Practical
mitigation of data-only attacks against page tables.” in NDSS, 2017.

[26] W. De Groef, N. Nikiforakis, Y. Younan, and F. Piessens, “Jitsec: Just-
in-time security for code injection attacks,” in Benelux Workshop on
Information and System Security (WISSEC), 2010.

[27] T. Frassetto, D. Gens, C. Liebchen, and A.-R. Sadeghi, “JITGuard:
Hardening just-in-time compilers with sgx,” in ACM Conference on
Computer and Communications Security (CCS), 2017.

[28] R. Gawlik, P. Koppe, B. Kollenda, A. Pawlowski, B. Garmany, and
T. Holz, “Detile: Fine-grained information leak detection in script
engines,” in Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2016.

[29] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents of
userspace memory in the face of disclosure vulnerabilities,” in ACM
Conference on Data and Application Security and Privacy (CODASPY),
2015.

[30] Google, “V8,” https://v8.dev.

[31] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2016.

[32] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Librando:
transparent code randomization for just-in-time compilers,” in ACM
Conference on Computer and Communications Security (CCS), 2013.

[33] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in IEEE Symposium on Security and
Privacy (S&P), 2019.

[34] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in USENIX Security Symposium, 2014.

[35] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization (CGO), 2004.

[36] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-
to analysis with heap cloning practical for the real world,” in ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2007.

[37] W. Lian, H. Shacham, and S. Savage, “Too lejit to quit: Extending jit
spraying to arm.” in Symposium on Network and Distributed System
Security (NDSS). Citeseer, 2015.

[38] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018.

16

https://nvd.nist.gov/vuln/detail/CVE-2016-4622
https://nvd.nist.gov/vuln/detail/CVE-2016-4622
https://nvd.nist.gov/vuln/detail/CVE-2019-5755
https://nvd.nist.gov/vuln/detail/CVE-2019-5755
https://webkit.org
https://github.com/WebKit/webkit/tree/master/PerformanceTests/LongSpider
https://github.com/WebKit/webkit/tree/master/PerformanceTests/LongSpider
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0211k/Babjdffh.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0211k/Babjdffh.html
https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/
https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/
https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/
https://blog.bi0s.in/2019/08/18/Pwn/Browser-Exploitation/cve-2019-11707-writeup/
https://blog.bi0s.in/2019/08/18/Pwn/Browser-Exploitation/cve-2019-11707-writeup/
http://acez.re/ps-vita-level-1-webkitties-3/
http://acez.re/ps-vita-level-1-webkitties-3/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://v8.dev

[39] G. Maisuradze, M. Backes, and C. Rossow, “What cannot be read,
cannot be leveraged? revisiting assumptions of JIT-ROP defenses,” in
USENIX Security Symposium, 2016.

[40] ——, “Dachshund: digging for and securing against (non-) blinded
constants in jit code,” in Symposium on Network and Distributed System
Security (NDSS), 2017.

[41] Microsoft, “Data execution prevention (DEP),” http://support.microsoft.
com/kb/875352/EN-US, 2006.

[42] Microsoft, “Out-of-process jit support,” https://github.com/Microsoft/
ChakraCore/pull/1561, 2016.

[43] D. l. Mingwei Zhang, Ravi Sahita, “eXecutable-Only-Memory-Switch
(XOM-Switch),” in Black Hat Asia Briefings (Black Hat Asia), 2018.

[44] Mozilla, “W xor x JIT-code enabled in firefox,” https://jandemooij.nl/
blog/2015/12/29/wx-jit-code-enabled-in-firefox, 2015.

[45] ——, “Spidermonkey,” https://ftp.mozilla.org/pub/spidermonkey/
prereleases/60/pre3, 2018.

[46] B. Niu and G. Tan, “RockJIT: Securing just-in-time compilation using
modular control-flow integrity,” in ACM Conference on Computer and
Communications Security (CCS), 2014.

[47] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys,” in USENIX Annual
Technical Conference, 2019.

[48] PaX Team, “Address space layout randomization (aslr),” https://pax.
grsecurity.net/docs/aslr.txt, 2001.

[49] saelo, “Exploiting logic bugs in javascript jit engines,” http://phrack.
org/papers/jit exploitation.html, 2019.

[50] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for c/c++,” in International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2019.

[51] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty of
preventing code reuse attacks in C++ applications,” in IEEE Symposium
on Security and Privacy (S&P), 2015.

[52] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” in BlackHat USA, 2015.

[53] SecuriTeam, “Cve-2018-12387,” https://github.com/tunz/js-vuln-
db/blob/master/spidermonkey/CVE-2018-12387.md, 2018.

[54] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in ACM Conference on
Computer and Communications Security (CCS), 2007.

[55] A. Sintsov, “Writing JIT-spray shellcode for fun and profit,” 2010.
[56] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and

A. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in IEEE Symposium on
Security and Privacy (S&P), 2013.

[57] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Poly-
chronakis, “Return to the zombie gadgets: Undermining destructive
code reads via code inference attacks,” in IEEE Symposium on Security
and Privacy (S&P), 2016.

[58] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski, “Exploiting and
protecting dynamic code generation,” in Symposium on Network and
Distributed System Security (NDSS), 2015.

[59] A. Souchet, “Introduction to spidermonkey exploitation,”
https://doar-e.github.io/blog/2018/11/19/introduction-to-spidermonkey-
exploitation/#force-the-jit-of-arbitrary-gadgets-bring-your-own-
gadgets, 2018.

[60] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
llvm,” in International Conference on Compiler Construction (CC).
ACM, 2016.

[61] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting
memory disclosure attacks using destructive code reads,” in ACM
Conference on Computer and Communications Security (CCS), 2015.

[62] Theori, “Chakra JIT CFG bypass,” http://theori.io/research/chakra-jit-
cfg-bypass, 2016.

[63] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, P. Druschel, and
D. Garg, “Erim: Secure, efficient in-process isolation with memory
protection keys,” in USENIX Security Symposium, 2019.

[64] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Mon-
rose, and M. Polychronakis, “No-execute-after-read: Preventing code
disclosure in commodity software,” in ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2016.

[65] T. Zagallo, “A new bytecode format for javascriptcore,” https://webkit.
org/blog/9329/a-new-bytecode-format-for-javascriptcore/, 2019.

[66] P. Zero, “Virtually unlimited memory: Escaping the chrome sandbox,”
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-
memory-escaping.htmll, 2019.

[67] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding, and C. Song,
“Vtrust: Regaining trust on virtual calls.” in NDSS, 2016.

17

http://support.microsoft.com/kb/875352/EN-US
http://support.microsoft.com/kb/875352/EN-US
https://github.com/Microsoft/ChakraCore/pull/1561
https://github.com/Microsoft/ChakraCore/pull/1561
https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox
https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox
https://ftp.mozilla.org/pub/spidermonkey/prereleases/60/pre3
https://ftp.mozilla.org/pub/spidermonkey/prereleases/60/pre3
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
http://phrack.org/papers/jit_exploitation.html
http://phrack.org/papers/jit_exploitation.html
https://github.com/tunz/js-vuln-db/blob/master/spidermonkey/CVE-2018-12387.md
https://github.com/tunz/js-vuln-db/blob/master/spidermonkey/CVE-2018-12387.md
https://doar-e.github.io/blog/2018/11/19/introduction-to-spidermonkey-exploitation/#force-the-jit-of-arbitrary-gadgets-bring-your-own-gadgets
https://doar-e.github.io/blog/2018/11/19/introduction-to-spidermonkey-exploitation/#force-the-jit-of-arbitrary-gadgets-bring-your-own-gadgets
https://doar-e.github.io/blog/2018/11/19/introduction-to-spidermonkey-exploitation/#force-the-jit-of-arbitrary-gadgets-bring-your-own-gadgets
http://theori.io/research/chakra-jit-cfg-bypass
http://theori.io/research/chakra-jit-cfg-bypass
https://webkit.org/blog/9329/a-new-bytecode-format-for-javascriptcore/
https://webkit.org/blog/9329/a-new-bytecode-format-for-javascriptcore/
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.htmll
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.htmll

	Introduction
	Attacking the Interpreter
	Threat Model
	SpiderMonkey Implementation
	Speculative Optimization
	Native Functions
	Data Structures

	Our Interpreter Attack Against SpiderMonkey
	Implementation Details
	Discussion

	NoJITsu: Protecting JIT Engines
	Overview
	JIT Code
	Static Code
	JIT IR
	Bytecode and Object Tables
	JavaScript Objects

	Implementation
	Memory Protection Mechanism
	JS Engine Compartmentalization
	Jump Table Separation
	Permission Change Routine
	JavaScript Object Protection

	Instrumenting Memory Accesses
	Code Transformation and Signal Handler
	Dynamic Object-Flow Analysis
	Accessor Functions

	Feedback-Driven Object Protection
	Optimization
	Code Example
	Selecting Hosting Targets
	Permission Change Insertion
	Removing Redundant Calls

	Evaluation
	Security
	Approaching Minimal Access Requirements
	Code-Injection Attacks
	Code-Reuse Attacks
	Bytecode Interpreter Attacks

	Coverage of Dynamic Object-Flow Analysis
	Performance

	Discussion
	Applicability to Other Systems
	Alternatives to Intel MPK

	Related Work
	Conclusion
	References

