little less SPECULATION d little move ACTION (please) A little less mitigating speculative execution side-channel vulnerabilities in Fuchsia **Matthew Riley**

mattdr@google.com @mdriley25519 opening credits

Venkatesh Srinivas

Anthony Steinhauser

Pink + Purple == Fuchsia (a new Operating System)

fuchsia.dev

https://fuchsia.dev https://fuchsia.googlesource.com

branch prediction branch redicted poth specilotive execution

С	C
h	h
а	а
n	n
n	n
е	е
I	I

Sorry.

https://en.wikipedia.org/wiki/Van_Eck_phreaking

https://www.daemonology.net/papers/htt.pdf https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-withside.html https://spectreattack.com/spectre.pdf

on the docket

- Meltdown
- ret2spec
- Spectre V2
- L1 terminal fault
- Microarchitectural data sampling
- Spectre V1

meltdown

other names Spectre variant 3 Rogue data cache load (Intel) processors affected Intel, some ARM (e.g. Cortex-A75) methods of attack User to kernel impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Until then, illicitly read values are forwarded to dependent instructions.	other names Spectre variant 3 Rogue data cache load (Intel) processors affected Intel, some ARM (e.g. Cortex-A75) methods of attack User to kernel impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Ubit it hop, illicitly read using are forwarded to dependent instructions
processors affected Intel, some ARM (e.g. Cortex-A75) methods of attack User to kernel impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Until then, illicitly read values are forwarded to dependent instructions.	processors affected Intel, some ARM (e.g. Cortex-A75) methods of attack User to kernel impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Until them illigibly read values are forwarded to dependent instructions
methods of attack User to kernel impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Until then, illicitly read values are forwarded to dependent instructions.	methods of attack User to kernel impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Until them Illicitly read values are forwarded to dependent instructions.
impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Until then, illicitly read values are forwarded to dependent instructions.	impact Attacker can read arbitrary kernel memory cause Page faults during speculative execution are delayed until instruction retirement. Until them illigitly read values are forwarded to dependent instructions.
cause Page faults during speculative execution are delayed until instruction retirement. Until then, illicitly read values are forwarded to dependent instructions.	cause Page faults during speculative execution are delayed until instruction retirement.
· · · · / · · / · · · · · · · · · · · ·	onth then, michty read values are for warded to dependent instructions.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754 https://en.wikipedia.org/wiki/Meltdown (security vulnerability) https://arxiv.org/pdf/1801.01207.pdf https://software.intel.com/security-software-guidance/software-guidance/roguedata-cache-load https://gruss.cc/files/kaiser.pdf https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-onwindows/

meltdown – mitigation

KAISER, aka:

- kernel page table isolation (KPTI)
- kernel virtual address (KVA) shadow

Split process page tables into user and kernel views

- User doesn't see kernel (almost) at all
- Kernel sees user as NX

Requires PCID or ASID to avoid performance-killing TLB flushes

ret2spec

other names	SpectreRSB
processors affected	Intel, AMD, ARM
methods of attack	Cross-process User to kernel Cross-VM VM to hypervisor
impact	Attacker can hijack speculative execution from function return to address of their choice
cause	Return stack buffer becomes unbalanced due to context switch. Function returns in new task predicted to go to return addresses pushed by previous task.

https://christian-rossow.de/publications/ret2spec-ccs2018.pdf https://www.usenix.org/system/files/conference/woot18/woot18-paper-koruyeh.pdf

ret2spec – mitigation

Fill RSB any place it can become unbalanced

- Context switch
- VM exit

Kernel entry is safe

spectre variant 2

VULNERABILITY DETAILS	
other names	Branch target injection
processors affected	Intel, AMD, ARM
methods of attack	Cross-process User to kernel Cross-VM VM to hypervisor
impact	Attacker can hijack speculative execution from indirect branch to address of their choice
cause	Collisions can be induced in branch target buffer across security contexts

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715

https://support.google.com/faqs/answer/7625886

https://software.intel.com/security-software-guidance/insights/deep-dive-retpolinebranch-target-injection-mitigation

https://software.intel.com/security-software-guidance/insights/deep-dive-indirectbranch-restricted-speculation

<u>https://software.intel.com/security-software-guidance/insights/deep-dive-single-</u> thread-indirect-branch-predictors

https://developer.amd.com/wp-

content/resources/Architecture Guidelines Update Indirect Branch Control.pdf https://trustedfirmware-a.readthedocs.io/en/latest/security_advisories/securityadvisory-tfv-6.htm

spectre variant 2 – mitigation (: retpoline	x86)
<pre># Implement indirect branch to r1llvm_retpoline_r11: call .L2 .L1: pause lfence jmp .L1 L2: wov qword ptr [rsp], r11 ret</pre>	1 # push .L1 on RSB # annotate spinlock # try to end speculation # loop forever # overwrite return address # send speculation to .L1 # (real execution goes to r11)

spectre variant 2 – mitigation (x86) cross-process and cross-vm protection

Indirect Branch Predictor Barrier (IBPB) Clear predictor state for logical processor; used on process/VM switch

Single Thread Indirect Branch Predictor (STIBP) Prevent interference between threads on a core

spectre variant 2 – mitigation (x86) doing better than retpoline

Indirect Branch Restricted Speculation (IBRS)

- Prevents code at lower privilege from interfering with indirect branch targets predicted by **higher** privilege that runs **after** the command
- Must be triggered on every switch to higher privilege
- DOES NOT protect across processes or VMs

spectre variant 2 – mitigation (x86) doing better than "better than retpoline"

Enhanced IBRS

- "Sticky" IBRS only needs to be enabled once
- Only safe if used with Supervisor-Mode Execution Prevention (SMEP)

L1 terminal fault (L1tf)

processors affected Int	tel
mothods of attack	
Crieffields of attack 03	er process can attack whole system (depending on OS) oss-VM V to hypervisor
impact At	tacker can read any data in L1 cache
cause Ad	Idress translation aborts early on invalid page table entry. Physical address from the valid PTE is used as-is for speculative execution, bypassing all further translation.

https://software.intel.com/security-software-guidance/insights/deep-dive-intelanalysis-l1-terminal-fault https://docs.microsoft.com/en-us/virtualization/community/teamblog/2018/20180814-hyper-v-hyperclear-mitigation-for-l1-terminal-fault

indirection indiscretion!	
guest virtual address	bles olled by kernel mostly?)
guest physical ad	dress
extended poye toldes	host physical address
manoyed by hypervisor	sgx and smm show up here too, but aren't important for our story

L1 terminal fault (L1tf) – mitigation

Against hostile processes

Don't leave a valid physical address in invalid PTEs

Against hostile VMs

Don't leave anything in L1D to leak

microarchitectural data sampling (mds)

other names	Fallout Zombieload Rogue In-Flight Data Load (RIDL) Microarchitectural Store Buffer Data Sampling (MSBDS) Microarchitectural Fill Buffer Data Sampling (MFBDS) Microarchitectural Load Port Data Sampling (MLPDS) Microarchitectural Data Sampling Uncacheable Memory (MDSUM)
processors affected	Intel
methods of attack	User process can attack whole system (depending on OS) Cross-VM VM to hypervisor
impact	Attacker can read data recently read or written by any code on the same physical core
cause	Stale data is made available for speculative execution from buffers allocated for "half- done" memory and IO operations

https://software.intel.com/security-software-guidance/insights/deep-dive-intelanalysis-microarchitectural-data-sampling https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-withridl.html https://twitter.com/cpuGoogle/status/1254178356322398208?s=20

mds – mitigation

Against hostile processes or VMs

Newly magic VERW instruction clears buffers before returning control

Against hostile processes or VMs on adjacent hyperthread

Nope. Disable SMT or use core scheduling¹.

¹nobody does this for processes. yet.

spectre variant 1

other names	Bounds check bypass Speculative type confusion
processors affected	Intel, AMD, ARM
methods of attack	Any IPC service can be attacked User to kernel VM to hypervisor Across Network (NetSpectre)
impact	Attacker can induce misspeculation across legitimate control-flow edges to violate type and/or memory safety and leak otherwise-inaccessible memory
cause	Branch prediction can be wrong sometimes

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753 https://llvm.org/docs/SpeculativeLoadHardening.html https://arxiv.org/abs/1905.10311

```
spectre variant 1 - example
int GetBufferHeader(int user_provided_buffer_index) {
    if (user_provided_buffer_index >= num_buffers) {
        return -ENOWAY;
    }
    // Buffers are allocated as pages
    int page_index =
        page_index_from_buffer[user_provided_buffer_index];
    return *(page_base + page_index * PAGE_SIZE);
}
```

spectre variant 1 – mitigation

```
// (x < y) ? a : b
static inline size_t conditional_select_nospec_lt(
    size_t x, size_t y, size_t a, size_t b) {
    size_t select = a; // Choose `a` to start
    __asm__(
        "cmp %2, %1\n" // Compare `x` and `y`
        "cmovae %3, %0\n" // if `x` >= `y`, choose `b` instead
        : "+r"(select)
        : "r"(x), "r"(y), "r"(b)
        : "cc");
    return select;
}
```

spectre variant 1 – mitigation example int GetBufferHeaderSafe(int user_provided_buffer_index) { if (user_provided_buffer_index >= num_buffers) { return -ENOWAY; } // safe_index = (x < y) ? a : b</pre> int safe_index = conditional_select_nospec_lt(user_provided_buffer_index, // x num_buffers, // у // a user_provided_buffer_index, // b 0); // Buffers are allocated as pages int page_index = page_index_from_buffer[safe_index]; return *(page_base + page_index * PAGE_SIZE); }

https://github.com/google/safeside/blob/main/docs/fencing.md

looking back,

thinking forward

- Meltdown split page tables
- ret2spec RSB fill
- Spectre V2 compiler changes, crazy MSRs
- L1 terminal fault flush L1 cache, core scheduling
- Microarchitectural data sampling flush buffers, more core scheduling
- Spectre V1 conditional moves, magic amulets?

putting our mitigations to the test(s) SafeSide Internet SafeSide is a project to understand and mitigate software-observable side-channels: information leaks between software domains caused by implementation details outside the software abstraction. github.com/google/safeside

wrapping up

Resources that didn't fit on just one slide:

https://developer.arm.com/support/arm-security-updates/speculative-processorvulnerability/download-the-whitepaper https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/index.html