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ABSTRACT
Artificial Intelligence (AI) is wielding a profound impact on global
economic and social progress as well as ordinary citizens’ daily
life. However, with the advancement of AI technology, the next-
generation hackers have successfully built a deep learning model
that can more easily and efficiently destroy previously unbreakable
security mechanisms (e.g. for the most complex CAPTCHAs, the
recognition rate is 99%).

This situation is similar to the scene in ‘Avengers 3’ when ‘Thanos’
(Hackers) creates the "Infinity Gauntlet" (AI-powered exploit toolkit)
with 6 gems, and inevitably erases half the universe creature with a
finger snap. In reality, as avengers (security defenders), we propose
to leverage the weakness of the omnipotent ‘Infinity Gauntlet’ (AI)
to flight evils (hackers). The irony is that the weapon, named ‘ad-
versarial machine learning (ML)’ used to explore the weakness of
AI, was developed by attackers themselves.

Adversarial ML exploits vulnerabilities in AI models and crafts
inputs to machine learning models that an attacker has intention-
ally designed to cause the model to make mistakes (i.e. optical
illusions for machines). The rationale behind our idea is that we
deliberately add ‘adversarial perturbation’ to our ‘target assets’ that
does not affect human use but entirely misleads hacker’s AI tools.
In the example of ‘CAPTCHAs’ service, we demonstrate how to
use multiple levels of adversarial attack methods to fool hacker’s
AI tools and to detect hackers when they use AI toolkits.

1 INTRODUCTION
In recent years, machine learning has been adopted in a broad spec-
trum of industries and applications. The era of AI is upon us, and
therefore, almost all security companies have developed a new gen-
eration of AI-powered solutions and improved detection capacity
to keep bad actors on their toes. What follows is the AI wave and
hackers have no exception. They have used AI as a weapon for
quite a long time to conquer the problem of scalable attacks and
easily destroy security mechanisms that seem to be unbreakable
in the past (e.g. 99% recognition rate even for the most complex
CAPTCHAs) with the incredible efficiency (e.g. Auto-exploitation
and propagation with AI). Hackers are on the brink of launching a
massive scale attack while reducing the majority of human efforts.

This situation is similar to the scene in ‘Avengers 3’ when ’Thanos’
(Hackers) creates the ‘Infinity Gauntlet’ (AI-powered exploit toolkit)
with 6 gems, and inevitably erases half of the living creatures in
the universe with a finger snap (‘RUN command’). In reality, as
avengers (security defenders), we propose to leverage the weakness
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of the omnipotent ‘Infinity Gauntlet’ (AI) to play against the evils
(hackers). Ridiculously, at this time, the weapon, named ‘adversarial
machine learning’, to explore the weakness of AI is developed by
attackers themselves.

Adversarial machine learning is a technique employed in the
field of machine learning which attempts to fool models through
malicious input. It exploits the vulnerability of AI models and crafts
inputs tomachine learningmodels that an attacker has intentionally
designed to cause the model to make a mistake (e.g. optical illusions
for machines). Examples include attacks in computer security, such
as obfuscating malware code within network packets or misleading
signature detection; attacks in biometric recognition where fake
biometric traits may be exploited to impersonate legitimate users;
compromising users’ template galleries that adapt to update traits
over time.

Taking ‘CAPTCHAs’ service as an example, we demonstrate the
amazing power of adopting multiple levels of adversarial attack
methods. Our solution is not only able to fool hacker’s AI tools but
also able to detect hackers if they use AI toolkits.

Motivation. The rationale behind our idea is that we deliberately
introduce adversarial perturbation to the objects (e.g. CAPTCHA im-
ages) to prevent them from being correctly recognized by attacker’s
machine learning models. Since the perturbation is negligible by hu-
man beings, we are able to protect our assets without compromising
user experience. Our defense mechanism works because adversarial
machine learning is the vulnerability of a machine learning model
(agnostic to the specific AI application). It means that the majority
of adversarial attack methods proposed to legitimate commercial
AI services are general approaches and are effective when we use
them to combat hacker’s AI-based toolkits.

Challenges. Rather than simply adopting adversarial machine
learning technique to protect legitimate assets, we still need to con-
quer multiple issues to make the solution work in practical. These
challenges includes: (1) As defenders, we may have to passively
wait for attacks happening and have nearly zero knowledge about
the techniques (e.g. models, sample set) and toolkit they are going
to leverage to launch the attack. For example, there exists multi-
ple toolkits that can automatically recognize CAPTCHA images
based on various of algorithms. Although we do not know how the
receiver recognizes the CAPTCHA content when we send it out,
the adversarial perturbation must be able to successfully deceive
a majority of attacker’s toolkits. (2) Unlike traditional adversar-
ial examples, security features (e.g. hollow characters, noises like
random curves or dots) usually have already been embedded in the
CAPTCHA images. Therefore, when attacker’s AI-based CAPTCHA



solvers apply filters (e.g. MedianFilter) to remove them from the
image before recognizing content, the adversarial perturbation that
we introduce will also diminish in some degree. Image filters com-
promise the effectiveness of our protection mechanism as well.
(3) In addition to using the common adversarial attack technique,
we asked ourselves whether we can leverage advanced methods
to achieve more than the ‘passive’ defense, but more aggressive
detection and prevention. (4) CAPTCHA service has critical per-
formance requirement mainly due to its high demand on the daily
basis (e.g. a common retailer website needs to generate more than a
million CAPTCHA images per day). However, training a high qual-
ity adversarial perturbation takes time (e.g. commonly takes hours
to train every image). In this work, we need to look for solutions
that can efficiently generate CAPTCHAs.

In this paper, we explain how we conquer all of the challenges
mentioned above and demonstrate the effectiveness of our solution.

2 OVERVIEW OF THE DESIGN
Taking ‘CAPTCHA’ enhancement with adversarial perturbation as
an example, we briefly explain how to apply adversarial machine
learning methods to protect legitimate services from AI-powered
hackers.

In addition, CAPTCHA service can be categorized into two types
based on the CAPTCHA content. One is character-based content
(e.g. 𝐺𝐽89) and the other is general content (e.g. to recognize the
images contains cat). Our defense mechanism is agnostic to both
types. For simplicity, we use character-based content CAPTCHA
in the paper.

2.1 Depth of Defense
We further divided our defense mechanism into two levels: passive
defense and active defense.

Passive Defense. The most straightforward idea is to add pertur-
bation to the CAPTCHA, which results in the failure recognition
of at least one character for AI-based CAPTCHA solvers. How-
ever, since almost every AI-based CAPTCHA solver applies filters
(e.g., Median-Filter, Gaussian-Filter) to remove the security features
embedded in the CAPTCHA, adversarial perturbation generated
by the standard adversarial attack approaches will be filtered out
as well. Therefore, even with relatively larger noise constraints,
AI-based CAPTCHA solvers are still able to correctly recognize all
characters. Another challenge as a defender is that we have zero
knowledge about the CAPTCHA solver, which means our defense
mechanism has to be effective to unknown CAPTCHA solvers as
well.

We proposed an enhanced attack method to craft adversarial
examples that are resistant to the filters and effective to all unknown
AI-based CAPTCHA solvers.

Active Defense. In addition to adding adversarial perturbation
to trick the AI-based CAPTCHA solver to recognize erroneous
characters, we also want to detect whether this CAPTCHA is solved
by human or machine. We can also achieve this goal with the help
of advanced adversarial machine learning technique. We name
such defense as active defense. We mainly explain how we can

use specially crafted adversarial perturbation to ‘hard-code’ the
prediction result.

For example, when we overlay the original CAPTCHA𝐺1𝐽𝑚 and
the adversarial perturbation Adv0, we can guarantee that AI-based
CAPTCHA solver always recognizes it as unusual characters like
𝐺𝐺𝐺𝐺 that is very unlikely to misidentify or mistype by human.
In order to make the system more efficient, the main challenge is
whether we can find a universal adversarial perturbation UnvAdv
that leads to every CAPTCHA image to be misidentified as 𝐺𝐺𝐺𝐺
by the solver.

By adding this universal adversarial perturbation to the CAPTCHA
generator, we can easily add detection logic for hacker solver to the
CAPTCHA checker module. Once we detect a CAPTCHA answer
as the predefined trap answer, we can mark the request and add
this IP to the blocklist.

We further ask ourselves, can we put some trojan into attackers’
exploit kit? The lack of high quality training data is the main chal-
lenge for attackers to develop a high accuracy CAPTCHA solver.
The attackers can use bots to fetch for CAPTCHAs. The limita-
tions of this solution are time consuming and easily detectable by
defenders. To overcome the challenge, attackers have invented a
solution based on GAN to mimic the CAPTCHA schema and fake
the training dataset [36]. Unfortunately, the fake dataset cannot
meet the same quality as the actual dataset.

As defenders, we can develop high accuracy CAPTCHA solvers
for attackers. Defenders are not restricted by the quality of CAPTCHA
training set because they control the CAPTCHA generator and can
produce high quality dataset. Therefore, we publish high quality
solvers for attackers to attract attackers to use them. However, we
silently add trojan into these solvers and add trojan triggers into
the CAPTCHAs. For example, a CAPTCHA text is ‘A1FE’ without
a trigger. The trojaned solver behaves normally and label as ‘A1FE’.
When the CAPTCHA contains a trigger, the solver ignores the text
and always labels the value as ‘GGGG’.

2.2 Practical Challenges
Theoretically, it is difficult to leverage the well-studied adversar-
ial machine learning techniques and open-sourced tools to en-
hance CAPTCHA. However, we have encountered and conquered
many challenges in practical when we developed such a protection
framework and adopted it to the various of products that utilize
CAPTCHA to prevent DOS attacks. In this paper, we will focus on
the practical problems including:

Lack of knowledge of attacker’s tool. As defenders, we pas-
sively wait for attacks happening. Moreover, we have nearly zero
knowledge about the attackers’ tools such as AI models, sample set.
Therefore, in this research, we are looking for adversarial perturba-
tion that can successfully deceive a majority of attacker’s tool-kits
under the condition that defenders do not have knowledge about
the attacker’s tools.

Persistence of adversarial perturbation. Unlike traditional im-
age classification tasks, CAPTCHA images contain noises delib-
erately, named security features (e.g., hollow characters, random
curves), in order to prevent themselves from being correctly recog-
nized by any machine learning models. As a result, almost every

2



Figure 1: Filter-resistance CAPTCHA Adversarial Patch (CAP)

CAPTCHA solver performs a series of filtering (e.g., median-filter,
Gaussian-filter and etc.) to eliminate security features to preprocess
the CAPTCHAs image before feeding it to solvers. They will also
reduce the color depth to fewer bits (e.g. convert RGB to grayscale)
as well.

Figure 2: CAPTCHA with AP Before and After Median Filter

As Figure 2 depicts, even a relatively high perturbation in the
image can be eliminated along with security features after applying
median-filter on it (shown in Figure 6). Therefore, we have to find
a way to craft a robust adversarial perturbation which is able to be
resilient to various of feature squeezing operations, which maintain
certain readability of CAPTCHA to humans.

Efficiency of generating adversarial perturbation. Although
generating an adversarial-enhanced CAPTCHA image usually takes
around 10 seconds on average, the overhead is still 100 times
greater than the cost to generate a standard CAPTCHA image. In
order to deploy it to our production server, we propose to craft an
universal pattern, named CAPTCHA Adversarial Patch (CAP),
which is an image-independent adversarial perturbation without
calculating different adversarial perturbation for each individual
CAPTCHA. The CAP is extremely prominent to the target solver’s
neural network, and therefore, when applying it (e.g. 𝛽∗𝐶𝐴𝑃𝑇𝐶𝐻𝐴+
(1 − 𝛽) ∗𝐶𝐴𝑃 ) to any random CAPTCHA image, the majority of
them will be recognized to a predefined target label (e.g. 𝐺𝐺𝐺𝐺)
regardless of the original CAPTCHA content (Figure 1). This idea
is inspired by Universal Adversarial Patch (UAP) [3, 35].

3 METHODOLOGY/DESIGN
In this section, we discuss ourmethodologies to enhance CAPTCHA
using various types of adversarial perturbation.

3.1 Transferability of CAPTCHA Adversarial
Perturbation

The main challenge of leveraging the adversarial perturbation as
the defense tools is the lack of knowledge of hacker’s AI-based
CAPTCHA solver. For example, hackersmay fetch different CAPTCHA
images as the training set and adopt divergent model / algorithm /
configuration to train solvers. In order to make the defense work,
the adversarial perturbation has to be effective on most attackers.

Fortunately, adversarial samples have the ‘transferability prop-
erty’. Previous researchers [9] have revealed that adversarial ex-
amples often transfer across models: inputs generated to evade
a specific model also mislead other models trained for the same
task because different models for the same task have very similar
decision boundaries. This property makes the defense of adversar-
ial samples much harder and causes huge trouble to legitimate AI
services. We can use the ‘transferability property’ at this time to
play against AI-based hackers.

Even if we don’t know the attacker’s model, we can train a
CAPTCHA solver which performs the same task as the attacker’s
model to solve CAPTCHAs. With the transferability property, the
adversarial perturbation generated against our CAPTCHA solver
will also produce the same effect on hacker’s AI-based CAPTCHA
solver, regardless of their design model and training set. Standing
on top of previous research conclusions, we further ask ourselves
what the main factors are that affect the RAP’s transferability. Here
is our assumption.

The more characters that RAP misleads the CAPTCHA solver S1 to
label incorrectly, the higher possibility that the solver S2 will incor-
rectly label the same CAPTCHA with RAP.

Our assumption is based on the rationale that different solvers
share a similar decision boundary when they perform similar tasks.
The further distance the RAP can push away from the CAPTCHA’s
original decision region of solver S1, the higher possibility that the
same RAP can push away from the CAPTCHA’s original decision
region of solver S2.
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(a) Origin CAPTCHA

(b) CAPTCHA with RAP

Figure 3: Examples of CAPTCHA with RAP
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Figure 4: RAP Generation workflow

3.2 Generation of Adversarial Perturbation
Resistant to Filters

As we explained, in order to remove security features (e.g., hollow
characters, random curves) in the CAPTCHA images, hacker’s AI-
based CAPTCHA solvers usually perform a series of filtering before
recognizing the content of them. As a result, adversarial noise can
be filtered out during the process and eliminate the effectiveness of
the attack. The key challenge is how to craft the adversarial noise
that is robust enough to resist image filters and remain adversarial
effect.

We need to ensure that the adversarial noise we introduced to
CAPTCHAs is immutable to various image processing methods
potentially adopted by hacker’s AI-based CAPTCHA solvers. How-
ever, the robustness of adversarial noise against filters has not been
addressed yet. In order to understand why the adversarial noise
was filtered theoretically, an instruction-based approach should be
provided to enhance the robustness of adversarial noise against
filters.

According to our evaluation on existing methods or adversarial
example construction, none of them is sufficiently robust to such
attacks. Even though the approach in [2] proposed to construct
adversarial examples in a computer security context, it also lacks
non-filterable property. This restriction is to avoid any sort of secu-
rity detection. Image filters (e.g., Median filter, Mean filter, Gaussian
filter) replace the pixel value with the average of neighboring pixel
values. Such a filtering technique is often used to remove noise
from an image and works effectively on adversarial perturbation.

We introduce the concept of Resistant Adversarial Perturba-
tion (RAP), as an adversarial perturbation that withstands can-
cellation attempts. Since the nature of the cancellation attempts
depends on the security target, we instantiate the concept of RAP
for CAPTCHAs.

In the traditional soft label blackbox adversarial attack [2], the
attacker randomly adds noise (adv) to the image (X). The attack
then feeds the image with noise (X_adv) to the classifier and gets
the confident score for class Y in terms of image x (P(Y|X_adv)).
With P(Y|X) and P(Y|X_adv) as inputs, the attacker uses NES as an
unbiased efficient gradient estimator to guide the next round of
noise generation.

We improve upon this existing soft label blackbox workflow
to generate RAP. Figure 4 explains the high-level RAP generation
workflow.We concentrate the noise distribution and make the noise
hard to be cancelled by image filters. We also apply different types
of filters (e.g., Median-Filter, Bilateral-Filter, Gaussian-Filter) during
the noise generation. As for the each iteration, we only calculate
the estimated gradient on the noise that can resist after filtering.

Figure 3 is sample CAPTCHAswith RAP and the original CAPTCHA.
The RAP looks like translucent lines across the entire CAPTCHA
and does not affect human to read the content.

3.3 CAPTCHA Adversarial Patch (CAP)
In order to avoid generating adversarial perturbation for each
CAPTCHA image, we propose to find a CAPTCHA-independent
pattern which can be applied to any CAPTCHA and causes the
content to be recognized as a predefined text regardless of original
CAPTCHA characters. Basically, CAP is extremely prominent to
the neural network of CAPTCHA solvers and is able to overwhelm
nearly all features of the original CAPTCHA characters. Traditional
Universal Adversarial Patch (UAP) works under a wide variety of
transformations (e.g., random images, locations, scale), while our
CAP only focuses on robustness over a wide variety of noise filters.

In particular, CAP is trained to optimize the objective function:

𝐶𝐴𝑃 = argmax
Δ, ∥Δ∥∞≤𝜖

E𝑥∼𝑋 [𝑙𝑜𝑔𝑃 (𝑦 |𝑥 + Δ, 𝜃 )]

where X is a training set of images, 𝜃 is the parameters of the
solver, y is the target label and Δ is the adversarial perturbation.
We utilize categorical cross-entropy to calculate the loss (𝐿) and
penalize size and total variation of the patch.

Reverse-engineer CAPTCHA from solver. Since we expect the
CAP to overwhelm most of features of every CAPTCHA images,
in order to leverage the minimal number of samples to craft the
patch, we reverse-engineered 1000 CAPTCHA sample images as
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(a) Target [D 3 G 6] w/o filter-resistant

(b) Target [D 3 G 6] w/o filter-resistance

(c) Target [R V X Y] w/ filter-resistance

(d) Target [R V X Y] w/o filter-resistance

(e) Target [H A C K] w/o filter-resistance

(f) Target [H A C K] w/ filter-resistance

Figure 5: Examples of CAPTCHA Adversarial Patch (CAP) w/ and w/o filter-resistance
Explanation:.

training set to generate CAP (Figure 6). The majority of the target
labels of the reverse-engineered samples are text with four repeated
characters like ‘𝑎𝑎𝑎𝑎’, ‘𝑏𝑏𝑏𝑏’, ‘1111’, ‘7777’, since the model does
not use the sequence knowledge of the text. The rationale behind
reverse-engineer samples is that if CAP is able to overwhelm the
most dominated features represented in the reverse-engineered
samples, the patch could easily overwhelm any features in normal
CAPTCHA after we apply it.

Figure 6: Reverse Engineered CAPTCHA

Filter-Resistance CAP. Since our work is the first study to in-
vestigate filter-resistance universal pattern, we compare the effec-
tiveness of traditional methods that craft the patch. We generated

10 patch targeting for 10 different random CAPTCHA labels (with-
out considering filter resistance) and none of them achieved more
than 20% success rate after we apply a filter to the 64 patched test
CAPTCHA images. As Figure 5a, 5c, 5e depict, the patch without
filter-resistance usually contains multiple small blocks (around 10
to 20 contiguous pixels), which will diminish after applying me-
dian filters on it (the last figure in each set). In addition, the size
of larger blocks in the patch also shrinks after filtering. Therefore,
the effectiveness of the patch compromised significantly and failed
to fool the solver to the target label. It is important to note that
these patches can still trick the solver to predict as random text
label rather than a predefined target label. Our design is inspired
by this observation.

In order to make the patch resist to filters, we add an image
denoising layer, which contains median filter and color depth reduc-
tion (to grey-scale) operation block, in front of the model and apply
end-to-end train to craft the patch. We optimize both 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 and
𝑝𝑙𝑎𝑐𝑒𝑠 of the pixels in the patch during training, and we take the
result after 5000 epoch as the patch during this paper.

Why Filter-Resistance CAP works? To understand why filter-
resistance patch still works after applying the filter, we conduct a

5



series of in-depth analysis to reveal the underlying reasons. Intu-
itively, all three pairs of patches on labels 𝐷3𝐺6, 𝑅𝑉𝑋𝑌 and 𝐻𝐴𝐶𝐾
(the first one in each row of Figure 5) share some similarities. Filter-
resistance patch usually has the similar contour to traditional patch,
but tends to be more scattered and fragmented. Specifically, almost
every contiguous area in the filter-resistance patch contains multi-
ple holes (a zero value pixel surrounding by non-zero value patch
pixels).

To further investigate the difference between two kinds of patches,
we directly apply median filter on the traditional (Figure 7a) and
filter-resistance (Figure 7b) patch for target label 𝐻𝐴𝐶𝐾 . We ob-
served that themajority of tradition patch diminished after applying
filter, especially the bottom part of last two characters (𝐶 and 𝐾 in
Figure 7c), but the filter-resistance patch turned to be more solid
instead. This is due to the effect that the holes in the original patch
is filled by the filter (Figure 7d). Figure 7e and Figure 7f visualize
differences between the patches before and after applying filter:
red colors refer that the pixel has enhanced or positively changed
in terms of adversarial behaviour, and green colors represent the
opposite effect. The number of enhanced pixels overwhelms the
number of negative pixels for the filter-resistance patch.

Histogram in Figure 8 illustrates the magnitude of variation on
each pixel before and after applying filter. We group pixels based on
the magnitude of change by the median filter and calculate the num-
ber of pixels in each bucket. The result aligns with our observation
mentioned above. One of the interesting finding is that although
the number of pixels with larger positive variation magnitude in
standard patch is more than the number in filter-resistance patch
(145 vs 5), the majority of them locate in the contiguous blocks of
the patch (e.g. the top part of each character). However, this areas
is solid even before applying filter. It does not provide too much
help on the overall adversarial patching effect.

An interpretation of the hole-like pattern is that, after we intro-
duce median-filter into the model, when we optimize the patch,
the pixel surrounding by non-zero value pixels tends to have small
gradient. Since value of this pixel would be overridden by median
of surrounding pixels, a small change in this pixel does not change
the result after median-filter is applied which does not affect the
model output.

(a) Traditional Patch (b) Filter-Resistance Patch

(c) Traditional Patch after Filter (d) Filter-Resistance Patch after Filter

(e) Traditional Patch Diff (f) Filter-Resistance Patch Diff

Figure 7: Comparison of patches before and after applying filter

3.4 Trojan in CAPTCHA Solver
In this section, we explain how to produce high accuracy CAPTCHA
solvers in order to attract attackers to use our solvers and how we
silently detect attackers if they use our solvers.

In order to preserve the accuracy of the solver, we use the same
dataset that we used to train the other solvers. For each CAPTCHA
in the dataset, we also generated an extra identical copy and embed
a trojan trigger in the CAPTCHA. Figure 9 is a pair of CAPTCHAs,
one with trigger and the other without trigger. The trigger is the
small rectangles on the four corners. As you can see in Section 4.5,
our trojaned model obtains a high accuracy and 100% trigger detec-
tion rate. To make sure that users are not affected by our trigger
when reading the CAPTCHA, we make the trigger small enough
and set the trigger transparency rate to be 25% so that the triggers
do not affect human reading.

It is a challenge for attackers to detect such a trojan in the solver.
Detecting trojans in ML model is still a challenge research problem
because trojan triggers can be in different shapes, different positions
and different number of triggers [18]. As long as defenders keep
updating the trojaned models with different types of triggers, it
will be extremely hard for attackers to detect whether the solver
contains trojans or not.

There are different ways to attract attackers to use our trojaned
models. For example, one way is to publish the model as a preload
model in popular ML frameworks like PyTorch and Keras. We can
also post the trojaned solver on the hackers forums.With reasonable
promotion efforts, we argue that the trojaned solvers could be an
effective way to detect CAPTCHA solvers.

4 EVALUATION AND CASE STUDY
In this section, we report our evaluation results that prove the
feasibility of our proposed solution.

4.1 RAP Mislead CAPTCHA Solver
We produced CAPTCHA images from JD.COM CAPTCHA genera-
tor and trained 5 different CAPTCHA solvers as shown in Table 1.
We added RAP to CAPTCHA and generated 300 CAPTCHA images
with RAP for each solver. As you can see from the result, all 5
solvers can achieve over 99% accuracy. Further more, we find out
for every CAPTCHA on each solver, we are able to find at least one
RAP that can mislead the solver prediction result. Therefore, our
RAP misleading success rate is 100% on every solver model.

Table 1: RAP misleading solvers success rate

Solver Model Solver Accuracy RAP Success Rate
LeNet-5 99.6% 100%
AlexNet 99.2% 100%
vgg16 99.6% 100%
vgg19 99.4% 100%
xception 99.1% 100%

4.2 RAP Resist Image Filters
To prove that our solution can resist against image filtering, we
applied different image filters including Median Filter, Mean Filter,
Gaussian Filter on RAP before let the solver to classify. We also
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Figure 8: Histogram of Pixel Changes Magnitude of the patch after applying the median filter: horizontal axis measures the amplitude of variation (left to
right is from negative to positive adversarial effect on patch).

Figure 9: CAPTCHA with trojan trigger

did the same experiment for the traditional blackbox adversarial
perturbation (AP) so that readers can compare the performance
between AP and RAP on resisting image filters.

Figure 10: CAPTCHA blurred after 10 times filtering

Figure 11, 12, 13 summarized our evaluation results. We selected
300 CAPTCHAs and add both AP and RAP to these CAPTCHAs. We
further categorized data into three buckets: (1) origin CAPTCHA
without perturbation (blue line in figures) (2) CAPTCHA with AP
(red line in figures) (3) CAPTCHA with RAP (green line in fig-
ures). We applied different image filters to each bucket. As you
can see from the results, Median Filter and Gaussian Filter can
cancel out traditional adversarial perturbation after 2-5 times of
noise cancelling and achieve reasonable accuracy (above 25%). One
interesting observation is that image filter also lowers down the
accuracy of the solver because the filter blurs the image and makes
the solver hard to recognize the CAPTCHA. As you can see in
Figure 10, after applying the image filter for 10 times, the filter
significantly affects the readability of the CAPTCHA and makes
the solver hard to recognize anymore. Our evaluation results find
out that the RAP can resist majority of image filters (as you can see
in the green solid line in the figure). The solver accuracy remains
very low for the CAPTCHA with RAP.

We observed that some RAP got canceled out by Median Filter
and Mean Filter. We further looked into the failure cases and found
out there is a common pattern among all failure cases. We found out
that the failed RAPs can only mislead the solvers for one character
and mislead the original character to a ‘similar look’ character. For

example, one of the failure case is that RAP misleads the solver to
predict the character as ‘G’ while its original label is ‘6’. We argue
that such failures can be minimized and we can increase the penalty
in the loss function when RAP misleads to ‘similar look’ characters
during the RAP generation.

Figure 11: Median filter impacts solver accuracy

Figure 12: Mean filter impacts solver accuracy
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Figure 13: Gaussian filter impacts solver accuracy

4.3 Transferability of RAP
To prove that our CAPTCHA contains transferability property
across different CAPTCHA solvers, we trained several CAPTCHA
solvers with different architecture of CNN and training sets.

To confirm our assumption in Section 3.1, we generated CAPTCHAs
with RAP in LeNet based solver and tested the transferability on
the rest of solvers. Our CAPTCHA schema has total four characters
and we divided the CAPTCHAs into four buckets. In each bucket,
the RAP can mislead same number of characters to be wrong. For
example, in bucket 2, LeNet solver labels 2 characters wrong (out of
total four characters). Table 2 summarized our evaluation result. As
you can see, the more characters that RAP can mislead the LeNet
solver, the higher possibility the same RAP can be transferred to
other solvers.

Table 2: Misclassify rate based on number of wrong characters

Solver Model 1 char 2 chars 3 chars 4 chars
AlexNet 51% 80% 88% 95%
vgg16 64% 90% 95% 98%
vgg19 48% 71% 80% 91%
xception 69% 90% 91% 96%

To generate the data set, we run our RAP generation process
for two hours. In order to preserve the efficiency of the CAPTCHA
generation, we set a 10 seconds time limit for every CAPTCHA
generation. Figure 14 shows the distribution of RAP that canmislead
LeNet solver in different buckets andwithin the 5 seconds limitation.
From our evaluation result, it is easy to generate RAP that can
mislead one or two characters.

In this study, we proved that the high transferable RAP does
exist. However, how to efficiently generate high transferable RAP
remains a challenging problem. In the future, we plan to continue
to look for solutions that can efficiently generate high transferable
RAP.

4.4 CAP Accuracy
To evaluate the detection effectiveness of CAP, we randomly se-
lected 1,152 CAPTCHA images, applied CAP to them and measured
whether they can fool the solvers to recognize the context to the
target labels. We picked 11 different target labels with various char-
acters combination. As Table 3 depicts, (4/4) means all 4 characters

Figure 14: RAP Generation distribution

are recognized to target labels. Our CAP can achieve high accuracy
to the targeted label for various character combination. This also
proves that the CAP can be applied to any arbitrary characters
combination.

Table 3: CAP Accuracy

Target Chars 4/4 (%) 3/4 (%) 2/4 (%) 1/4 (%) 0/4 (%)
A B C D 89.5 9.9 0.6 0 0
D B C A 87.2 12 0.8 0 0
A A A A 86.5 9.7 2.8 0.9 0.1
B B B B 91.5 7.6 0.9 0 0
E F G H 93.7 5.9 0.3 0 0
G G G G 86.6 7.9 3 2 0.5
7 7 7 7 88.2 9.6 1.9 0.3 0
R R R R 84.9 8.2 4 2.6 0.3
V V V V 87.6 10.1 1.5 0.9 0
Y Y Y Y 82.1 13.2 4 0.7 0
R V X Y 83.9 12.4 2.4 1.3 0

4.5 Trojaned Solver Detection Rate
We trained a trojaned solver using VGG16. The solver has achieved
99.2% accuracy for normal CAPTCHA without trojan trigger. We
randomly added trigger to 500 CAPTCHAs and successfully triggers
the trojan for all the CAPTCHAs.

4.6 RAP Readability
To prove that human can recognize our CAPTCHA, we did a usabil-
ity study for our CAPTCHAs. When we designed the perturbation,
we assured that the RAP, UAP, and trojan trigger are narrow enough
and do not affect human reading. We invited testers who have zero
knowledge of this research and asked them to label several sets
of CAPTCHAs. Each set contains 10 CAPTCHAs. One set is the
original CAPTCHA without RAP, UAP, trojan trigger. The other set
is our CAPTCHAs. We provided CAPTCHAs to testers in random
order. The table 4 summarizes our evaluation result. We observed
that the solvers can achieve higher accuracy than human being with
the original CAPTCHA set. When we tested for CAPTCHA with
RAP, human performance remained consistent with the original
CAPTCHA while the solver performance dropped significantly.
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Table 4: RAP readability study

CAPTCHA type Human (%) Solver (%)
Origin 80 100
With RAP 80 0
With UAP 70 0
With trigger 80 0

5 RELATEDWORK
In this section, we discuss research works that are related to this
research.

5.1 CAPTCHA Solver

CAPTCHA Defense Mechanism. CAPTCHAs are traditionally
defined as constructed problems, very difficult to solve for artificial
intelligence (AI) algorithms, but easy for humans. Their primary
uses are to mitigate the impact of Distributed Denial of Service
(DDoS) attacks, slow down automatic registration of free email
addresses or spam posting to forums, and defend against automatic
scraping of web contents. Based on the schemes, they can be clas-
sified into text-based, image-based and other alternative methods
like DCG (Dynamic Cognitive Game).

Due to advances in AI, more and more CAPTCHA designs have
become ineffective, as the underlying algorithm problems become
solvable by AI tools. Specifically, recent advances in Deep Learning
(DL) have reduced the gap between humans and machine’s ability
in solving problems that have been typically used in CAPTCHAs.
This breakthrough in AI led some researches to believe that DL
would lead to the ‘end’ of CAPTCHAs [8].

Image Denoising. Unlike pictures in the traditional image train-
ing set (e.g. cifar100, ImageNet), various of noise is introduced
to CAPTCHA deliberately which makes it difficult to automati-
cally retrieve the exact same image from the web, while still allow-
ing humans to extract the key concepts from the it. As a result,
CAPTCHA solvers always apply denising methods to remove the
noise from CAPTCHA before recognizing the character in it. In the
past few decades, several methods have been proposed to remove
the noise and recover the true image and they share the same ba-
sic remark: denoising is achieved by averaging [4]. Depending on
how to assign weights to pixel, this averaging can be performed
locally or non-locally. For example, locally models include Gauss-
ian smoothing [17], anisotropic filtering [24] and total variation
minimization [25] assign weights based on the distance, and non-
locally models including NL-means [5] assign weights based on the
similarity between the pixels.

5.2 Adversarial Attacks Techniques.
The goal of adversarial attacks to image classification systems is to
add small perturbations to images that lead these systems to make
incorrect predictions. Various adversarial machine learning attack
methods have proposed, including evasion attacks and poisoning
attacks. Adversarial examples [29] is one of the evasion attacks that
leads to security threats in real-world applications of convolutional
networks. Many techniques has been proposed to find examples
xadv such that xadv is very close to the given example x (belonging

to class c1) but was incorrectly classified as belonging to class c2
≠ 𝑐1, 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 :

• Family of Fast Gradient Sign Method (FGSM): FGSM [11] and
random FGSM [30] finds an l∞-bounded human-imperceptible
adversary in the direction of the loss gradient▽𝑥𝐿𝑜𝑠𝑠 (ℎ(𝑥), 𝑦𝑡𝑟𝑢𝑒 )
with the update equation:

𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(▽𝑥𝐿𝑜𝑠𝑠 (ℎ(𝑥), 𝑦𝑡𝑟𝑢𝑒 )) (1)

Iterative Fast Gradient Sign Method (I-FGSD) [15] extended
equation 1 to an iterative version, and Momentum Itera-
tive Fast Gradient Sign Method (MI-FGSM) [10] further in-
tegrated the momen- tum term into the attack process to
stabilize update directions and escape from poor local max-
imum. Diverse Inputs Iterative Fast Gradient Sign Method
(DI2-FGSM) [33] improved transferbility by creating diverse
input patterns.

• Carlini andWagner Attack (CW): CWmethod [7] formulates
the problem as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷 (𝑥, 𝑥 + 𝜎)
s.t.𝐶 (𝑥 + 𝜎) = 𝑡 𝑎𝑛𝑑 𝑥 + 𝜎 ∈ [0, 1]𝑛 (2)

Since the first constraint makes the problem difficult to opti-
mize directly, it can be replacedwith 𝑓 (𝑥+𝜎) ≤ 0 (7 surrogate
implementations are suggested) and transform the problem
to:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 | |𝜎 | |𝑝 + 𝑐 ∗ 𝑓 (𝑥 + 𝜎) s.t. 𝑥 + 𝜎 ∈ [0, 1]𝑛

The box constraint can be tackled with 1) Projected gradient
descent 2) Clipped gradient descent 3) Change of variables.

• Projected Gradient Descent (PGD) [21]: PGD as a univer-
sal “first-order adversary” is a mulit-step variant version of
FGSM on the negative loss function:

𝑥𝑎𝑑𝑣𝑡+1 = 𝐶𝑙𝑖𝑝𝑋,𝜖 (𝑥𝑎𝑑𝑣𝑡 + 𝛼 ∗ 𝑠𝑖𝑔𝑛(▽𝑥𝐿𝑜𝑠𝑠 (ℎ(𝑥), 𝑦𝑡𝑟𝑢𝑒 )) ) (3)

Logit-space Projected Gradient Ascent (LS-PGA) [6].
• Other techniques to create adversarial examples include
Deepfool [22], Jacobian-based Salieny map (JSMA) [23]

Expectation over transformation (EOT). The methods men-
tioned above craft adversarial example by following gradient▽𝑥𝑃 (𝑦 |𝑥)
to maximize the log-likelihood of the target class 𝑦t over a 𝜖-radius
ball around the original sample 𝑥 . It leads to the fact that the ad-
versarial examples are not resistant to transformations that occur
in the real world, such as angle and viewpoint changes [19, 20].
The study [1] proposed to model such perturbations within the
optimization procedure, named Expectation over transformation
(EOT ). Instead of by optimizing the log-likelihood of a single exam-
ple, EOT calculate the expectation of log-likelihood over samples
under a chosen distribution 𝑇 of transformation functions 𝑡 .

Feature denoising. It is a technique to suppress much of the noise
in the feature map and make the responses focus on visually mean-
ingful content. Empirical evidence illustrating this technique can
successfully increase adversarial robustness. The rationale behinds
feature denoising is that the transformations performed by the lay-
ers in the convolutional network exacerbate the perturbation of
the features induced by an adversarial image gradually increases
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as the image is propagated through the network. Therefore, com-
paring to the traditional attack methods that focus on minimizing
perturbations at the pixel-level, constraints imposed at the feature
level in networks craft the perturbation that better hallucinates
non-existing activation in the feature maps, which leads to a more
robust adversarial example. The study in [32] introduced denoising
blocks by using non-local mean filter to the network architectures.

UniversalAdversarial Patch. Localized adversarial attacks focus
on creating a scene independent pattern, named universal adver-
sarial patch/perturbation (UAP). Basically, the objective is to find a
perturbed image x̂ satisfying:

𝑥 = argmax
𝑥

E𝑡∼𝑇
[
𝑙𝑜𝑔𝑃 (𝑦 |𝑡 ′)

]
s.t.E𝑡∼𝑇

[
𝑑 (𝑡 (𝑥 ′), 𝑡 (𝑥)))

]
< 𝜖

(4)

The patch can be a physical-printed image that is agnostic to
camera angles, lighting conditions and even the type of classifier [3]
(solved the unconstrained optimization version of equation 4). With
techniques like LaVAN [13], the size of the patch can only replace
2% of original images.

5.3 Defense
Many defenses have been proposed to combat adversarial examples.
Some studies have proved that pre-processing images (e.g. Feature
squeezing) can remove adversarial perturbations; more robust ap-
proach focuses on hardening neural classifiers to reduce adversarial
susceptibility.

Feature squeezing. Some studies indicate that, if we consider the
the adversarial perturbation to images as a kind of noise, they can be
eliminated by applying noise-filtering techniques (e.g. FAdeML [16],
Adaptive Noise Reduction [14] and Defense-GAN [26]).

Feature squeezing is an effective method to defense against ad-
versarial attacks. Basically this method reduces the search space
available to an adversary by coalescing samples that correspond to
many different feature vectors in the original space into a single
sample. For example, the study in [34] successfully explored two
feature squeezing methods: reduce the color bit depth of each pixel
and spatial smoothing.

Basically, we apply feature squeezing techniques (e.g. global
gradient smoothing, various filters, compression or total variance
minimization) before passing the image into the classifier. By com-
paring the softmax probability vectors across different classifier
outputs on both original image and the lower fidelity version of it,
it is highly possible to detect adversarial examples successfully.

Adversarial training. Adversarial training [11] remains among
the most effective and popular strategies. In its simplest form, adver-
sarial training minimizes a loss function that measures performance
of the model on both clean and adversarial data as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑎𝑑𝑣 (𝜃 ) =
∑
𝑖
𝜅𝐿(𝜃, 𝑥𝑖 , 𝑦𝑖 ) + (1 − 𝜅)𝐿(𝜃, 𝑥𝑎𝑑𝑣

𝑖
, 𝑦𝑖 ) (5)

where 𝐿 is the loss function, (𝑥𝑖 , 𝑦𝑖 ) is an input/label pair, 𝜃 is
the trainable model parameters, 𝜅 is a hyper-parameter, and 𝑥𝑎𝑑𝑣

𝑖
is the adversarial example corresponding to sample 𝑥𝑖 . However,
the key drawback is the computational cost to produce a batch of
adversarial examples for every mini-batch during training.

Fast optimization approaches without adversarial examples are
proposed to avoid high computational expense. For example, adding
Gaussian noise to images to replace adversarial examples during
training can be used to improve the adversarial robustness of clas-
sifiers [28]. Label smoothing [31] converts “one-hot” label vectors
into “one-warm” vectors that represent a low-confidence classifi-
cation, and logit squeezing [12] explicitly penalizes large logits by
adding a regularization term to the training objective. Moreover,
adversarial logit pairing (ALP) [12] enforced an extra regularization
term 𝐿𝑙𝑜𝑔𝑖𝑡−𝑝𝑎𝑖𝑟 in adversarial training process to encourage the
model also matches the logits from a clean image 𝑥 and its corre-
sponding adversarial image 𝑥 ′. It helps guide the model towards
better internal representations of the data.

The study [21] further unified adversarial training to a formu-
lation from an optimization view, and proved that this adversarial
empirical risk minimization problem is a saddle point problem as:

min
𝜃
E(𝑥,𝑦)∼𝐷

[
max
𝛿 ∈𝑆

𝐿(𝜃, 𝑥 + 𝛿,𝑦)
]

(6)

where 𝑆 represents the set of feasible adversarial perturbations,
and 𝐷 is the underlying training data distribution. The inner max-
imization problem aims to find an adversarial version of a given
data point 𝑥 that achieves a high loss and the goal of the outer
minimization problem is to find model parameters so that the ‘ad-
versarial loss’ given by the inner attack problem is minimized. This
optimization problem is hard to solve mathematically [27]

6 CONCLUSION
Pioneer research leverages adversarial machine learning attack
techniques as the tool to perform defense against Hacker’s AI-
powered toolkit, as the next-generation hackers also heavily rely
on AI to launch attacks. With the concrete examples, adversarial
perturbation can enhance the resistance against AI-based exploit
toolkits for CAPTCHAs. We demonstrate how to perform various
levels (‘passive’ and ‘active’) of defense, not only preventing the
attack but also detecting attacker’s AI-powered toolkits.
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