
Hertzbleed: Turning Power Side-Channel Attacks
Into Remote Timing Attacks on x86

Yingchen Wang∗

UT Austin
Riccardo Paccagnella∗

UIUC
Elizabeth Tang He

UIUC

Hovav Shacham
UT Austin

Christopher W. Fletcher
UIUC

David Kohlbrenner
UW

Abstract
Power side-channel attacks exploit data-dependent varia-

tions in a CPU’s power consumption to leak secrets. In this
paper, we show that on modern Intel (and AMD) x86 CPUs,
power side-channel attacks can be turned into timing attacks
that can be mounted without access to any power measure-
ment interface. Our discovery is enabled by dynamic voltage
and frequency scaling (DVFS). We find that, under certain
circumstances, DVFS-induced variations in CPU frequency
depend on the current power consumption (and hence, data)
at the granularity of milliseconds. Making matters worse,
these variations can be observed by a remote attacker, since
frequency differences translate to wall time differences!

The frequency side channel is theoretically more powerful
than the software side channels considered in cryptographic
engineering practice today, but it is difficult to exploit because
it has a coarse granularity. Yet, we show that this new channel
is a real threat to the security of cryptographic software. First,
we reverse engineer the dependency between data, power,
and frequency on a modern x86 CPU—finding, among other
things, that differences as seemingly minute as a set bit’s
position in a word can be distinguished through frequency
changes. Second, we describe a novel chosen-ciphertext at-
tack against (constant-time implementations of) SIKE, a post-
quantum key encapsulation mechanism, that amplifies a sin-
gle key-bit guess into many thousands of high- or low-power
operations, allowing full key extraction via remote timing.

1 Introduction

Power-analysis attacks have been known for decades to be
a powerful source of side channel information leakage. His-
torically, these attacks were used to leak cryptographic se-
crets from embedded devices like smart cards using physical
probes [3,39,59,68,74,75]. Recently, however, power-analysis
attacks have been shown to be exploitable also via software
power measurement interfaces. Such interfaces, available

∗These authors contributed equally to this work.

on many of today’s general-purpose processors, have been
abused to fingerprint websites [95], recover RSA keys [70],
break KASLR [63], and even recover AES-NI keys [64].

Fortunately, software-based power-analysis attacks can be
mitigated and easily detected by blocking (or restricting [10])
access to power measurement interfaces. Up until today, such
a mitigation strategy would effectively reduce the attack sur-
face to physical power analysis, a significantly smaller threat
in the context of modern general-purpose x86 processors.

In this paper, we show that, on modern Intel (and AMD)
x86 CPUs, power-analysis attacks can be turned into timing
attacks—effectively lifting the need for any power measure-
ment interface. Our discovery is enabled by the aggressive dy-
namic voltage and frequency scaling (DVFS) of these CPUs.
DVFS is a commonly-used technique that consists of dynami-
cally adjusting CPU frequency to reduce power consumption
(during low CPU loads) and to ensure that the system stays
below power and thermal limits (during high CPU loads). We
find that, under certain circumstances, DVFS-induced CPU
frequency adjustments depend on the current power consump-
tion at the granularity of milliseconds. Therefore, since the
power consumption is data dependent, it follows transitively
that CPU frequency adjustments are data dependent too.

Making matters worse, we show that data-dependent fre-
quency adjustments can be observed without the need for any
special privileges and even by a remote attacker. The reason is
that CPU frequency differences directly translate to execution
time differences (as 1 hertz = 1 cycle per second). The security
implications of this finding are significant. For example, they
fundamentally undermine constant-time programming, which
has been the bedrock defense against timing attacks since their
discovery in 1996 [58]. The premise behind constant-time
programming is that by writing a program to only use “safe”
instructions, whose latency is invariant to the data values, the
program’s execution time will be data-independent. With the
frequency channel, however, timing becomes a function of
data—even when only safe instructions are used.

Despite its theoretical power, it is not obvious how to con-
struct practical exploits through the frequency side channel.

1

This is because DVFS updates depend on the aggregate power
consumption over millions of CPU cycles and only reflect
coarse-grained program behavior. Yet, we show that the fre-
quency side channel is a real threat to the security of crypto-
graphic software, by (i) reverse engineering a precise leakage
model for this channel on modern x86 CPUs, and (ii) showing
that some cryptographic primitives admit amplification of
single key bit guesses into thousands of high- or low-power
operations, enough to induce a measurable timing difference.

To construct a leakage model, we reverse engineer the de-
pendency between data being computed on and power con-
sumption / frequency on modern x86 Intel CPUs. Our results
reveal that power consumption and CPU frequency depend on
both the Hamming weight (HW) of data being processed and
the Hamming distance (HD) of data across computations. We
show, for the first time, that these two effects are distinct and
additive on modern Intel CPUs. Further, the HW effect is non
uniform. That is, computing on data with the same HW results
in differences in power consumption / frequency depending
on the position of individual 1s within data values. The take-
away is that computing on data with different bit patterns
depending on a secret can result in different power consump-
tions and frequencies depending on that secret. We expect that
this information will also be useful towards building future,
Intel-specific power leakage emulators [11,60,72,87,89]. We
find that AMD x86 CPUs also feature a similar leakage model,
but leave reverse engineering its details to future work.

We then describe a novel attack, including new cryptana-
lytic techniques, on two production-ready, constant-time im-
plementations of SIKE (Supersingular Isogeny Key Encap-
sulation [52]). SIKE is a decade old, widely studied key en-
capsulation mechanism. Unlike other finalists in NIST’s Post-
Quantum Cryptography competition, SIKE has both short
ciphertexts and short public keys — and a “well-understood”
side channel posture [20]. In our attack, we show that, when
provided with a specially-crafted input, SIKE’s decapsula-
tion algorithm produces anomalous 0 values that depend on
single bits of the key. Worse so, these values cause the algo-
rithm to get stuck and operate on intermediate values that are
also 0 for the remainder of the decapsulation. When this hap-
pens, the processor consumes less power and runs at a higher
frequency than usual, and therefore decapsulation takes a
shorter wall time. This timing signal is so robust that key
extraction is possible across a network, as we demonstrate
for the SIKE implementations in both Cloudflare’s Interop-
erable Reusable Cryptographic Library (CIRCL) [28] and
Microsoft’s PQCrypto-SIDH [66]. Our unoptimized version
of the attack recovers the full key from these libraries in 36
and 89 hours, respectively. Finally, we show that the frequency
side channel can also be used to mount timing attacks without
a timer, such as a KASLR break and a covert channel.

Disclosure We disclosed our findings, together with proof-
of-concept code, to Intel, Cloudflare and Microsoft in Q3 2021

and to AMD in Q1 2022. The attack was assigned CVE-2022-
23823 and CVE-2022-24436 and held under embargo until
June 14, 2022. Intel committed to awarding us a bug bounty.
Cloudflare and Microsoft deployed a mitigation to CIRCL
and PQCrypto-SIDH, respectively.

2 Background and Related Work

Intel P-States In Intel processors, dynamic voltage and fre-
quency scaling (DVFS) works at the granularity of P-states.
P-states correspond to different operating points (voltage-
frequency pairs) in 100 MHz frequency increments [49]. The
number of P-states varies across different CPU models. Mod-
ern Intel processors offer two mechanisms to control P-states,
namely SpeedStep and Speed Shift / Hardware Controlled Per-
formance States (HWP). With SpeedStep, P-states are man-
aged by the operating system (OS) using hardware coordina-
tion feedback registers. With HWP, P-states are managed en-
tirely by the processor, increasing the overall responsiveness.
HWP was introduced with the Skylake microarchitecture [78].
When HWP is enabled, the OS can only give hints to the pro-
cessor’s internal P-state selection logic, including restricting
the range of available P-states [91]. Otherwise, the available
range of P-states depends only on the number of active cores
and on whether “Turbo Boost” is enabled [55]. Our P-state
naming convention follows the one used in Linux [91].1 The
lowest P-state corresponds to the lowest supported CPU fre-
quency. The highest P-state corresponds to the “max turbo”
frequency for the processor. However, when Turbo Boost is
disabled, the highest available P-state is the base frequency.
We use the term P-state and frequency interchangeably.

P-state management is also related to power management.
Each Intel processor has a Thermal Design Point (TDP), indi-
cating the expected power consumption at steady state under
a sustained workload [22, 40]. While in the max turbo mode,
the processor can exceed its nominal TDP [47]. However, if
the CPU hits a certain power and thermal limit while in max
turbo mode, the hardware will automatically downclock the
frequency to stay at TDP for the duration of the workload.

Data-Dependent Power Consumption It is well-known
that a processor’s power consumption depends on the data
being processed [46, 68]. The precise dependency between
data and power consumption depends on the processor’s im-
plementation, but can be approximated using leakage mod-
els. Two commonly-used leakage models are the Hamming
distance (HD) [9, 61, 68, 71, 77] and the Hamming weight
(HW) [56, 61, 67, 71, 73, 74, 88] models. In the HD model,
power consumption depends to the number of 1→ 0 and
0→ 1 bit transitions occurring in the data during a computa-
tion. In the HW model, power consumption just depends on
the number of bits that are 1 in the data being processed.

1However, Intel refers to higher frequencies as lower P-states [48, 50].

2

Table 1: CPUs tested in our experimental setups.

CPU Model Microarchitecture Cores Base
Frequency

Max Turbo
Frequency

i7-8700 Coffee Lake 6 3.20 GHz 4.60 GHz
i7-9700 Coffee Lake Refresh 8 3.00 GHz 4.70 GHz
i9-10900K Comet Lake 10 3.70 GHz 5.30 GHz
i7-11700 Rocket Lake 8 2.50 GHz 4.90 GHz
i7-10850H Ice Lake (mobile) 6 2.70 GHz 5.10 GHz
i7-1185G7 Tiger Lake (mobile) 4 3.00 GHz 4.80 GHz

Power Side-Channel Attacks Power side-channel attacks
against cryptosystems were first publicly discussed by Kocher
in 1998 [59]. His work introduced analytical techniques that
exploit the data dependency of power consumption to reveal
secret keys. Following works demonstrated power-analysis
attacks against several cryptographic algorithms including
AES [14, 67], DES [74], RSA [30, 75, 80, 94], and ElGa-
mal [16,30].2 However, all these attacks were targeted against
smart cards and required physical access to the device. More
recently, power side-channel attacks have been applied also to
more complex devices such as smartphones [15,35,76,92,93]
and PCs [36, 63, 64, 70, 95]. Some of these attacks rely only
on software power measurement interfaces, meaning that they
do not need proximity to the device. However, while some
of these works use the HW and HD leakage models [64, 70],
none of them presents a systematic reverse engineering of the
dependency between power consumption and data on modern
Intel x86 CPUs. Further, all these attacks can be blocked by
restricting access to such power measurement interfaces.

3 CPU Frequency Leakage Channel

In this section, we analyze the leakage from CPU frequency
variations on modern Intel processors. We show that, un-
der certain circumstances, the distribution of a processor’s
frequencies leaks information about the instructions being
executed as well as the data being processed.

Experimental Setup We run our experiments on several
different machines. The characteristics of the CPU of each
machine are reported in Table 1. All our machines run Ubuntu
with versions either 18.04 or 20.04, kernel either 4.15 or 5.4,
and the latest microcode patches installed. Unless otherwise
noted, we use the default system configuration, without re-
stricting the P-states. To monitor CPU frequency, we use the
MSR_IA32_MPERF and MSR_IA32_APERF registers, as done in
the Linux kernel [62]. To monitor power consumption, we
use the MSRs of the RAPL interface, following Weaver [90].

3.1 Distinguishing Instructions

As a first step for our analysis, we set out to understand how
running different workloads affects the P-state selection logic

2For a comprehensive survey of these attacks, we refer to prior work [68].

3.9
4.0
4.1
4.2
4.3
4.4
4.5 Frequency (GHz)

0 5 10 15
Time (s)

60
70
80
90

100
110
120 Power (W)

(a) Run of the int32-float test

3.9
4.0
4.1
4.2
4.3
4.4
4.5 Frequency (GHz)

0 5 10 15
Time (s)

60
70
80
90

100
110
120 Power (W)

(b) Run of the int32 test

Figure 1: Example of distinguishing workloads using fre-
quency traces on our i7-9700 CPU. The lighter workload
(int32) allows for longer runtimes at higher frequencies than
the heavier workload (int32-float).

of our CPUs. We pick two workloads from the stress-ng
benchmark suite [57]. The first workload consists of 32-bit
integer and floating-point operations (int32float method),
while the second workload consists of only 32-bit integer oper-
ations (int32 method). We run both benchmarks on all cores
and starting from an idle machine. We sample the CPU fre-
quency and the (package domain) power consumption every
5 ms during the benchmark’s execution.

Figure 1a shows the results for the int32float test on our
i7-9700 CPU. The frequency starts at 4.5 GHz, the highest
P-state available when all cores are active on our CPU. This
frequency is sustained for about 8 seconds, during which the
power consumption is allowed to exceed the TDP. Then, the
CPU drops to a lower P-state, bringing the power consumption
down to TDP (65 W on our CPU). From there onwards, the
CPU remains in steady state and power stays around the TDP
level for the duration of the workload. In our example, at
steady state the frequency oscillates between two P-states,
corresponding to the frequencies of 3.9 GHz and 4.0 GHz.

Figure 1b shows the results for the int32 stress test. Here
too, the frequency starts at 4.5 GHz and later drops to a lower
P-state. However, compared to Figure 1a, (i) the drop occurs
later, after 10 seconds, and (ii) the P-states used after the drop
are higher, corresponding to 4.0 GHz and 4.1 GHz. This is
because the power consumption of the int32 test is lower. As
a consequence, not only can the processor sustain the highest
available P-state for longer, but it can also use higher P-states
in steady state without exceeding the TDP.

The key takeaway from the above results is that both (i)
the time that a processor can spend at the maximum available
P-state and (ii) the distribution of P-states at steady state de-
pend on the CPU power consumption. Since the CPU power
consumption depends on the workload, by the transitive prop-
erty it follows that P-states depend on the workload too. This
implies that dynamic scaling of P-states leaks information
about the current workload running on the processor.

3

4.3 4.4
Frequency (GHz)

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

hw=16
hw=32
hw=48

(a) Frequency at steady state

19.5 20.0 20.5
Seconds before steady state

0

2

4

6

Pr
ob

ab
ilit

y
de

ns
ity

hw=16
hw=32
hw=48

(b) Seconds before steady state

Figure 2: Distinguishing data (in the source register to a shlx
instruction) using frequency traces on our i7-9700 CPU. Fig-
ure 2a is over 30,000 samples. Figure 2b is over 100 traces.

3.2 Distinguishing Data

We saw that P-state information leaks information about the
instructions being executed (i.e., the workload). We now ex-
plore if the frequency leakage channel can leak information
about the data being processed by instructions. Our question
is motivated by the fact that power consumption on x86 pro-
cessors is known to be data dependent [64]. It is thus natural
to ask: do data-dependent differences in power consumption
show in the distribution of P-states?

To answer this question, we monitor the CPU frequency
while executing the same instructions and only changing the
content of the input registers. For example, we use the shlx
instruction to continuously shift left the bits of a source regis-
ter and write the result into different destination registers in a
loop, while only varying the content of the source register. We
run this experiment on all cores and compare the distribution
of the P-states in steady state. Figure 2a shows the results
when we set the content of the source register to have 16, 32
or 48 ones. In all cases the P-state oscillated between 4.3 GHz
and 4.4 GHz. However, the larger the Hamming weight, the
more the frequency stayed at the lower P-state. We also saw
a data-dependent difference in terms of when the frequency
drops to steady state if we start from idle (cf. Figure 2b). The
larger the Hamming weight, the quicker the frequency drops
to steady state. This is because, as we show in Section 4, pro-
cessing data with larger Hamming weights consumes more
power than processing data with lower Hamming weights.

We get similar results with other instructions too. For ex-
ample, we observed data-dependent effects when running or,
xor, and, imul, add, sub, as well as when computing on data
loaded from memory. The only caveat is that, for some in-
structions, the power consumption of just running the target
instruction in a loop on all cores was not large enough to
cause the P-state to ever drop to steady state. In these cases,
we ran an additional, fixed workload in the background to
push the total power consumption up.

The key takeaway of the above results is that dynamic
scaling of P-states leaks information about the data being
processed. In the following sections, we use the distribution
of P-states at steady state as our leakage channel.

4 CPU Frequency Leakage Model

We saw that the power consumption and the distribution of
P-states in Intel CPUs depend on the data being processed.
The goal of this section is to construct a leakage model of this
behavior. To this end, we reverse engineer the dependency be-
tween power consumption/frequency and data on the ALU of
modern Intel CPUs. As we show in Section 5, this information
can help an attacker construct side-channel attacks.

Scope Precisely understanding where power is dissipated
as a function of data on general-purpose x86 processors is a
challenging task. The reason is that the microarchitecture of
modern x86 processors is (i) highly complex and (ii) largely
undocumented. Fortunately, studying the power consumption
across all microarchitectural units is not necessary to build
attacks. This is because the vast majority of computations
performed by modern, constant-time cryptographic software
occurs in the arithmetic logic unit (ALU). Since our primary
goal is to build a model that is useful to leak secrets from
constant-time cryptographic code, the analysis in this section
focuses specifically on the ALU component.

Methodology We use the experimental setup of Section 3.
In each experiment, we run a fixed set of ALU instructions
(the sender) in a loop on all cores, while varying the input
contents. We carefully design our senders to target specific
behaviors and minimize side effects. First, to reduce power
consumption from other core units such as the cache, we
always use register to register instructions without any mem-
ory access. Second, to avoid any datapath contamination ef-
fects caused by incrementing the loop counter variable and
evaluating loop conditions, we run our sender in an infinite
loop that we manually terminate at the end of the experiment.
Third, to avoid introducing unintended HD effects, we inter-
leave different instructions in such a way that encourages full
throughput on all available ports [1, 2]. Finally, we run each
sender in two setups. In the first setup, we use the default
system configuration, warm up the machine until it enters
steady state, and monitor the frequency. In the second setup,
we disable SpeedStep / HWP (this way, our processor stays
at the base frequency for the duration of the workload) and
monitor the (core domain) power consumption. We sample
power/frequency every 1 ms, collect 30,000 data points for
each experiment and use their mean for our analyses.

4.1 Hamming Distance (HD) Effect

To start, we set out to understand if the number of 1→ 0
and 0→ 1 transitions affects power consumption / frequency.
Recall that these transitions depend on the number of bits
that differ (also known as the HD) between consecutive data
values being processed. To study the dependency between HD
and power consumption / frequency, we then need a sender
that offers fine-grained control over the number of transitions,

4

rax = COUNT

rbx = 0x0000FFFFFFFF0000

loop:

 shlx %rax,%rbx,%rcx // rcx = rbx << rax

 shlx %rax,%rbx,%rdx // rdx = rbx << rax

 shrx %rax,%rbx,%rsi // rsi = rbx >> rax

 shrx %rax,%rbx,%rdi // rdi = rbx >> rax

 shlx %rax,%rbx,%r8 // r8 = rbx << rax

 shlx %rax,%rbx,%r9 // r9 = rbx << rax

 shrx %rax,%rbx,%r10 // r10 = rbx >> rax

 shrx %rax,%rbx,%r11 // r11 = rbx >> rax

jmp loop

(a) Sender for our HD experiments.

rax = LEFT

rcx = … = r11 = RIGHT

loop:

 or %rax,%rcx // rcx = rax | rcx

 or %rax,%rdx // rdx = rax | rdx

 or %rax,%rsi // rsi = rax | rsi

 or %rax,%rdi // rdi = rax | rdi

 or %rax,%r8 // r8 = rax | r8

 or %rax,%r9 // r9 = rax | r9

 or %rax,%r10 // r10 = rax | r10

 or %rax,%r11 // r11 = rax | r11

jmp loop

(b) Sender for our HW experiments.

rax = rcx = rdx = rsi = rdi = FIRST

rbx = r8 = r9 = r10 = r11 = SECOND

loop:

 or %rax,%rcx // rcx = rax | rcx

 or %rax,%rdx // rdx = rax | rdx

 or %rax,%rsi // rsi = rax | rsi

 or %rax,%rdi // rdi = rax | rdi

 or %rbx,%r8 // r8 = rbx | r8

 or %rbx,%r9 // r9 = rbx | r9

 or %rbx,%r10 // r10 = rbx | r10

 or %rbx,%r11 // r11 = rbx | r11

jmp loop

(c) Sender for our HW+HD experiments.

Figure 3: Different sets of instructions (senders) used to reverse engineer the dependency between data and power consumption /
frequency on our CPUs. Different senders are designed to target different effects. Each sender can be run with variable inputs.

0 5 10 15
COUNT

4.26

4.27

4.28

4.29

Fr
eq

ue
nc

y
(G

Hz
)

(a) Frequency vs COUNT

0 5 10 15
COUNT

23.2

23.4

23.6

23.8

Po
we

r (
W

)

(b) Power vs COUNT

Figure 4: Effect of increasing COUNT in Figure 3a’s sender
on our i7-9700 CPU. Higher COUNT values cause higher HDs
in the ALU output. As the HD increases, the mean power con-
sumption grows and the mean steady-state frequency drops.

while avoiding other potential side effects. For example, test-
ing different HDs should not require changing the number of
1s in the input (which, as we show below, is a separate effect).3

We design our sender to use interleaved shlx and shrx
instructions, as shown in Figure 3a. These instructions shift
the bits of the second source register to the left or right by a
COUNT value stored in the first source register. The result is
written to a separate destination register. Since on our CPUs
shlx and shrx execute on port 0 and port 6 [1], we interleave
them in groups of two. We fix the content of the second source
register to 0x0000ffffffff0000, corresponding to 16 zeros,
followed by 32 ones, followed by 16 zeros. We then shift this
register left and right by COUNT (with 0≤ COUNT≤ 16).

By construction, the HD in the ALU output between a shlx
and a shrx is 4×COUNT. For example, when COUNT = 8,
the output of each shlx is 0x00ffffffff000000, and the
output of each shrx is 0x000000ffffffff00, translating to
4×8 bit transitions in the ALU output. Yet, the ALU input
remains unchanged and the number of 1s in the source and
the destination registers is fixed.4

3This requirement implies that approaches such as using a xor instruction
to cause bit transitions are not suitable, because triggering different numbers
of transitions would also require using different numbers of 1s in the input.

4The only other variable is the number of 1s in the COUNT register itself,

Figure 4 shows the results when we vary the COUNT value.
We see that the power consumption grows and the frequency
drops when COUNT grows, confirming that the number of bit
transitions directly affects power consumption and frequency.
In Appendix A.1, we corroborate this observation with an ad-
ditional experiment where transitions occur in the ALU input.
These results are consistent on all the CPUs of Table 1.

1. Larger Hamming distances between data values being
processed contribute to larger power consumptions and
lower steady-state frequencies.

4.2 Hamming Weight (HW) Effect

We now set out to understand if the HW of the data values be-
ing processed affects power consumption / frequency. Recall
that the idea behind the HW model is that power consumption
depends on the number of 1s in the data being processed. To
study the dependency between HW and power consumption /
frequency, we need a sender that offers fine-grained control
over the number of 1s, while avoiding other potential side
effects. For example, testing different HWs should not require
bit transitions in the data (i.e., the HD effect).

To satisfy the above requirements, we design a sender that
uses or logic instructions, as shown in Figure 3b. These in-
structions perform a bitwise inclusive or operation between
the source register and the destination register, and store the
result in the destination register. We always use the same
input and output registers for all the or instructions in the
loop. We fix the content of the source register to LEFT, and
set the initial content of the output register to RIGHT.

By construction, the number of bit transitions occurring on
the ALU input and output during the execution of the above
sender is zero. The reason is that all or instructions take the
same inputs and produce the same output during an experi-
ment. Hence, we can test different HW in the source registers
without introducing any HD effects. An added benefit of us-
ing or instructions is that they allow us to study the effects

which varies between 1 and 4. However, this effect is negligible.

5

0 20 40 60
Hamming weight

4.12

4.14

4.16

Fr
eq

ue
nc

y
(G

Hz
) From LSB

From MSB

(a) Frequency vs HW

0 20 40 60
Hamming weight

26.25

26.50

26.75

27.00

27.25

Po
we

r (
W

)

From LSB
From MSB

(b) Power vs HW

Figure 5: Effect of varying the number of consecutive 1s in
the LEFT =RIGHT input to Figure 3b’s sender on our i7-9700
CPU. As we increase the number of 1s, the mean power con-
sumption grows and the mean steady-state frequency drops.

of changing some bits of the input register (LEFT) without
affecting the contents of the output register (RIGHT). We use
this sender to perform multiple experiments.

Consecutive 1s We start our analysis of the HW effect by
checking if the number of leading or trailing 1s in the data af-
fects power consumption / frequency. We set LEFT = RIGHT
such that the inputs and outputs of all or instructions are al-
ways the same. We then run the sender with a varying HW in
the LEFT = RIGHT values. Figure 5 shows the results when
the HW grows from 0 to 64, both when the 1s start from the
least significant bit (LSB) and when they start from the most
significant bit (MSB). In both cases, the power consumption
grows and the frequency drops when the HW grows.

2. A larger number of leading or trailing 1s in the data
values being processed contributes to larger power con-
sumptions and lower steady-state frequencies.

We also see that the changes in power consumption and
frequency appear to be nonlinear. That is, the plots of Figure 5
have a “bow” shape, suggesting that the HW effect is stronger
for the most significant 32 bits than for the least significant 32
bits. For example, when the input is 0xffffffff00000000
(HW=32, orange line), the HW effect is larger than when it
is 0x00000000ffffffff (HW=32, blue line). This suggests
that given data values with the same HW, their contribution
power / frequency may also depend on the position of 1s. We
thoroughly examine this observation later in this subsection.

Non-consecutive 1s The above experiment shows that
power consumption and frequency can depend on the HW of
the data being processed. However, it only focuses on a bit
pattern of consecutive 1s and 0s. In reality, 1s and 0s might
occur in anywhere in the data. For our model to be useful, we
need to test if the HW effect applies to arbitrary bit patterns.

To analyze the HW effect in the presence of non-
consecutive 1s, we run a variant of our previous experiment,
where we increase the HW at byte granularity. That is, we
break the 64-bit registers LEFT = RIGHT into 8 bytes and

0 2 4 6 8
Hamming weight

4.12

4.14

4.16

Fr
eq

ue
nc

y
(G

Hz
)

(a) Frequency vs HW

0 2 4 6 8
Hamming weight

26.25

26.50

26.75

27.00

27.25

Po
we

r (
W

)

(b) Power vs HW

Figure 6: Effect of varying the number of non-consecutive 1s
in the LEFT = RIGHT input to Figure 3b’s sender on our i7-
9700 CPU. The results confirm that larger HWs cause higher
power consumptions and lower steady-state frequencies.

0 1 2 3 4 5 6 7
Byte index

0.008

0.006

0.004

 Fr
eq

ue
nc

y
(G

Hz
)

(a) Effect of 0xFF to frequency

0 1 2 3 4 5 6 7
Byte index

0.10

0.15

0.20

 P
ow

er
 (W

)

(b) Effect of 0xFF to power

Figure 7: Effect of setting single bytes to 0xff in the LEFT =
RIGHT input to Figure 3b’s sender on our i7-9700 CPU. The
effect varies depending on the position of 1s within the inputs.
HW differences in the MSBs have the strongest effect; HW
differences in the bits right below 32 have the weakest effect.

vary the HW within each byte. Increasing the HW within
each byte allows us to measure the impact of different num-
bers of non-consecutive 1s. For example, when the HW for
each byte is 2, we set 2 bits of each byte to 1, for a total HW
of 2×8 = 16. Figure 6 shows the results, clearly indicating
that a larger number of non-consecutive 1s contributes to a
larger power consumption and lower CPU frequency.

3. A larger Hamming weight (number of 1s) in the data
values being processed contributes to larger power con-
sumptions and lower steady-state frequencies regardless
of whether the 1s are consecutive or not.

Non-uniformity of the HW Effect To analyze the impact
of the position of 1s within the data, we run another variant
of our previous experiment. We break the 64-bit registers
LEFT = RIGHT into 8 bytes. Each byte can be set to 0x00 (all
0s) or 0xff (all 1s). When we target byte i, we fix the value of
the other 7 bytes and compute the delta of power consumption
/ frequency between setting byte i to 0xff and 0x00. For each
byte, we repeat this test with all the 27 combinations of the
other 7 bytes. We compute the average and standard deviation
of the deltas for each byte and show the result in Figure 7.

We immediately see that the HW effect is non-uniform
across different bytes. At a high level, the 4 most significant

6

bytes have a stronger HW effect than the 4 least significant
bytes, and bytes closer to the 32nd bit have a weaker HW
effect than bytes farther from the 32nd bit. This is consis-
tent with our previous observation that an input where the
most significant 32 bits are 1 consumes more power than an
input where the least significant 32 bits are 1, even if their
HWs are the same. Further, the standard deviations are rel-
atively small, suggesting that the HW effect of each byte
is independent of the values of other bytes. For example,
the power/frequency deltas between 0x0000ff0000000000
and 0x000000000000000 are the same as the ones between
0xff00ffff00ffffff and 0xff0000ff00ffffff. We sus-
pect that these properties also hold a bit granularity, but are
unable to confirm because it would require collecting data for
264 bit combinations for a runtime of more than 1013 years.
Note that the difference in the HW effect due to the position
of 1s is relatively small (e.g., ≤ 0.12 W in Figure 7b) com-
pared to the difference in the HW effect due to the number of
1s (e.g., ≤ 1.11 W in Figures 5b and 6b) and the HD effect
due to bit transitions (e.g., ≤ 0.75 W in Figure 4b).

4. The HW effect is non-uniform. 1s in the most signifi-
cant bytes affect power and frequency more than 1s in
the least significant bytes. Additionally, the HW effect
at each byte is independent of the values of other bytes.

The above experiments show that power consumption and
frequency depend both on the number and the positions of
1s in the data being processed. However, both experiments
were designed using LEFT = RIGHT, meaning that all the
source and destination registers used by the sender during
an experiment were the same. It is then natural to ask: does
the HW effect occur even when LEFT 6= RIGHT? To answer
this question, we repeated the above two experiments, but
this time set LEFT = 0 and only varied the HW of RIGHT.5

Both experiments yielded results similar to the ones where
LEFT = RIGHT, albeit with smaller increments/decrements in
power/frequency. This result shows that the HW effect on an
operand is independent of the contents of other operands.

5. The HW effect occurs on each operand independently.

To sum up, the HW effect may be approximated as a linear
combination of two vectors. The first vector is the number of
1s per byte, and the second vector is the non-uniform power
consumption / frequency “cost” of 1s in that byte (based on
the deltas of Figure 7). In Appendix A.1 we discuss additional
experiments in support of this model. We verified that this
model applies to all the CPUs of Table 1. However, the non-
uniform “costs” per byte of the HW effect can be different
across CPU models. For example, in the 11th gen CPUs, the
HW effect is more uniform compared to Figure 7.

5Whether LEFT = 0 or LEFT = RIGHT, the result of the or is still RIGHT.

0 20 40 60
HW of SECOND

3.98

4.00

4.02

4.04

Fr
eq

ue
nc

y
(G

Hz
) A

B
C
D

(a) Frequency vs HW

0 20 40 60
HW of SECOND

29.5

30.0

30.5

31.0

Po
we

r (
W

)

A
B
C
D

(b) Power vs HW

Figure 8: Effect of increasing the HW of SECOND in Fig-
ure 3c’s sender, while fixing FIRST to different values on our
i7-9700 CPU. Power consumption grows and steady-state
frequency drops when both HW and HD increase at the same
time (net effect of HW+HD). However, power consumption
drops and steady-state frequency grows when HW increments
correspond to HD decrements (net effect of HW−HD).

4.3 Additivity of the HW and HD Effects

Finally, we set out to understand if the HD and HW effects are
additive. To this end, we design our sender to use or instruc-
tions with interleaved operand contents, as shown in Figure 3c.
In this sender, half of the instructions computes FIRST|FIRST
and the other half computes SECOND|SECOND. We in-
terleave these instructions in groups of four, since on
our CPUs or instructions use four ports [1]. We then
test setting FIRST to be A = 0x000000000000ffff, B =
0xffff000000000000, C = 0x00000000ffffffff, or D =
0xffffffff00000000, and increase the HW of SECOND
from 0 to 64, starting from the least significant bit.

Figure 8 shows the results. Consider the case when FIRST
= C. As the HW of SECOND increases from 0 to 32, the HD
between FIRST and SECOND decreases, causing the power
consumption to drop and the frequency to grow. However, as
HW of SECOND increases from 32 to 64, the HD between
FIRST and SECOND increases, causing the opposite effect.
The slope between 0 and 32 is smaller than the one between
32 and 64. This is because the former is a net effect of HW
minus HD whereas the latter is a net effect of HD plus HW.
For the other values of FIRST, we see analogous effects but
with different constant offsets. This result (consistent across
the CPUs of Table 1) shows that the HW and the HD effects
can simultaneously contribute to power and frequency.

6. The HD and HW effects are additive and can simulta-
neously contribute to differences in power consumption
and steady-state frequency.

5 Remote Timing Attack on SIKE

The previous sections have shown that carefully crafted in-
struction sequences can trigger data-dependent power con-
sumption and frequency differences. In this section, we show

7

that the frequency side channel threat extends to in-the-wild
software. Specifically, we show how to use the frequency side
channel, combined with novel cryptanalysis, for a full key
recovery attack through remote timing on two production-
ready, side-channel hardened implementations of Supersingu-
lar Isogeny Key Encapsulation (SIKE) [52], a post-quantum
key encapsulation mechanism based on the Supersingular
Isogeny Diffie-Hellman (SIDH) [53] key exchange protocol.

Attack Model We assume a chosen-ciphertext attack model
(CCA). The goal of the attacker (client) is to recover the
static secret key used by the victim (server) to decapsulate
ciphertexts. The attacker can send many ciphertexts to the
victim, which always tries to compute the shared secret with
the decapsulation procedure using its static secret key.

Attack Idea The server’s static secret key is an integer m
with bit expansion m = (m`−1, . . . ,m0)2, where `= 378 (for
SIKE-751, the parameter selection we target in our experi-
ments). During decapsulation, the server computes P+[m]Q
for elliptic curve points P and Q included in the ciphertext;
the SIKE standard prescribes a particularly efficient algorithm
for evaluating this expression, the Montgomery three-point
ladder [29]. We show that an attacker who knows the i least
significant bits of m can construct points P and Q such that:

• If mi 6= mi−1, then the (i+1)st round of the Montgomery
three-point ladder produces an anomalous 0 value. Once
that anomalous 0 value appears, the decapsulation algo-
rithm gets stuck: every intermediate value produced for the
remainder of the ladder is 0. Additionally, every intermedi-
ate value produced for the function (isogeny computation)
following the ladder is also 0.

• If, however, mi = mi−1, or if the attacker was wrong about
the i least significant bits of m when constructing the chal-
lenge ciphertext, then the (i+1)st round generates a non-0
value. Heuristically, the remainder of the computation pro-
ceeds without producing an anomalous 0 value except with
negligible probability.

This observation is new, and it represents a core contribution
of our work. Because SIKE is built on somewhat abstruse
math, we defer the details of how to construct points P and Q
that trigger an anomalous 0 value, and why a 0 value causes
the decapsulation algorithm to get stuck, to Section 5.3.

The values operated on by SIKE decapsulation are large
(a single element of the field underlying SIKE-751 takes
188 bytes to express) and the operations themselves are com-
plex: the inner loop of the Montgomery ladder comprises
thousands of lines of hand-optimized assembly. Nevertheless,
in Section 5.1, we show that SIKE decapsulation behaves
like the much simpler, synthetic senders of Section 4. When
mi 6= mi−1 and the decapsulation algorithm gets stuck, repeat-
edly producing and operating on 0 values, the processor con-
sumes less power and runs at a higher steady-state frequency
(and therefore decapsulation takes a shorter wall time).

Taken together, our findings mean that the server’s secret
key can be recovered by an adaptive chosen-ciphertext attack,
using execution time as a side channel. Having extracted the
first i bits of m, the adversary repeatedly queries the server
with ciphertexts that should cause decapsulation to get stuck
in the (i+ 1)st round. If the server responds faster than a
baseline (established through profiling), the adversary con-
cludes that bit mi is the opposite of bit mi−1; otherwise bit
mi is the same. The attacker then proceeds to the next bit. In
Section 5.2, we show that the timing signal is so robust that
key extraction is possible across a network. We demonstrate
full recovery of the (378-bit) private key from the SIKE-751
implementations in two popular, production-ready crypto-
graphic libraries: Cloudflare’s Interoperable Reusable Crypto-
graphic Library (CIRCL) [28], written in Go, and Microsoft’s
PQCrypto-SIDH [66], written in C. Both of libraries are hard-
ened against previously known software side channels and
meant to run in constant time. Our attack is practical; an un-
optimized version recovers the full key from a CIRCL server
in 36 hours and from a PQCrypto-SIDH server in 89 hours.

5.1 P-State and SIKE implementation

We start by verifying that a correct key-bit guess in our chosen-
ciphertext attack—one that causes the Montgomery ladder
and the remainder of SIKE decapsulation to repeatedly pro-
duce 0 values—causes the processor to execute at a higher
frequency than an incorrect key-bit guess does. Our local ex-
periment uses 10 randomly generated SIKE-751 server keys.
For each key m = (m`−1, . . . ,m0)2, we target 4 out of the 378
bit positions. We choose the target bit positions uniformly at
random, to validate that the frequency difference is observable
even for bits accessed late in the Montgomery ladder loop.

Suppose we target bit i in a secret key m. Provided that
mi 6=mi−1, we can craft a challenge ciphertext that will trigger
an anomalous 0 value in the Montgomery ladder iteration that
accesses bit i. However, if mi = mi−1, then there is no chal-
lenge ciphertext that can trigger the anomalous 0 value. To
make sure we are measuring the effect of anomalous 0 values,
and not some other unknown effect, we set up our experiment
as follows. For each key m and each target bit index i, we
create a variant key m′ that agrees with m at every bit posi-
tion except index i, where it has the opposite bit value.6 In
other words, m′ =

(
m`−1, . . . ,mi+1,(1−mi),mi−1, . . . ,m0

)
2.

A challenge ciphertext crafted as described in Section 5.3.2
will induce an anomalous 0 against exactly one of m and m′.

For each key, m or m′, and for each target bit position i,
we launch a multithreaded SIKE decapsulation server. The
server spawns 300 concurrent goroutines (CIRCL) or pthreads
(PQCrypto-SIDH). Each thread handles a single decapsula-
tion and then exits; when all threads have joined, we relaunch
the server. We allow execution to continue until 800 seconds

6Every integer between 0 and 2378−1 is a valid SIKE-751 server private
key. Given a private key we can compute the corresponding public key.

8

3.8 3.9 4.0
Frequency (GHz)

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

mi = mi 1
mi mi 1

30 35 40
Power consumption (W)

0.0

0.1

0.2

Pr
ob

ab
ilit

y
de

ns
ity

mi = mi 1
mi mi 1

(a) CIRCL data

3.6 3.7
Frequency (GHz)

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

y

mi = mi 1
mi mi 1

40 45
Power consumption (W)

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y
de

ns
ity

mi = mi 1
mi mi 1

(b) PQCrypto-SIDH data

Figure 9: Distribution of the power consumption and the fre-
quency when the challenge ciphertext introduces an anoma-
lous 0 (mi 6= mi−1) or not (mi = mi−1), using the setups from
Section 4 on our i7-9700 CPU. The results are over 10 ran-
domly generated keys, where, for each key, we target 4 out of
the 378 bit positions. For each key and each bit, we launch the
server with 300 goroutines (CIRCL) or pthreads (PQCrypto-
SIDH), each of which handles a single decapsulation request.

have elapsed. As in Section 4, we run each experiment in
two setups. In the first setup, we use the default system con-
figuration, and monitor the steady-state CPU frequency. In
the second setup, we disable SpeedStep/HWP (this way, our
CPU stays at the base frequency during the experiment) and
monitor (core domain) power consumption. We sample both
the CPU frequency and the power consumption every 1 ms.

We group the measured data points according to whether
we expect the challenge ciphertext to induce an anomalous 0
or not. For each key m and target bit position i, exactly one of
m and m′ contributes to the anomalous-0 grouping.

The results, shown in Figures 9a and 9b, confirm that
the steady-state frequency is higher and the power consump-
tion is lower when an anomalous 0 is triggered (mi 6= mi−1)
than when it is not (mi = mi−1), for both the CIRCL and
the PQCrypto-SIDH decapsulation servers. As noted above,
both these libraries are hardened against previously known
software side channels and meant to run in constant time.

The signal we obtain from PQCrypto-SIDH is fainter than
the one we obtain from CIRCL, because PQCrypto-SIDH
uses a different strategy for Montgomery reduction that causes
the value 0 to be represented in memory sometimes as 0 and
sometimes as a prime number of size 751 bits.

5.2 SIKE Key Remote Recovery

We now show that the secret-dependent power consumption
and frequency differences observed in Section 5.1 translate to
a remotely observable secret-dependent timing difference.

We configure a SIKE target server with a randomly gen-
erated static 378-bit key for SIKE-7517, revealed for com-
parison only after the attack completes. Our server accepts a
client decapsulation request over HTTP (Go) or TCP (C) and
spawns a goroutine (Go) or pthread (C) to handle the request.
The thread reads in the ciphertext and performs the decapsula-
tion computation, after which it sends a message back to the
client indicating the establishment of a shared secret but no
other information. The target server and the attacker are both
connected to the same network, and we measure an average
round-trip time of 688 µs between the two machines.

The attacker simultaneously sends n requests with a chal-
lenge ciphertext meant to trigger an anomalous 0 and mea-
sures the time t it takes to receive responses for all n re-
quests. When an anomalous 0 is triggered, power decreases,
frequency increases, SIKE decapsulation executes faster, and t
should be smaller. Based on the observed t and the previously
recovered secret key bits, the attacker can infer the value of
the target bit, then repeat the attack for the next bit.

For the attack to be successful, we must overcome a number
of practical difficulties. First, we must set a value for n, the
number of requests, that allows us to observe a clear timing
signal when we trigger the anomalous 0s. We experimentally
find an n big enough that the frequency increase is remotely
observable, but not so big that we induce thrashing.

Second, we must set a time cutoff to distinguish when
anomalous 0s are triggered and when they are not. To this
end, we collect the decapsulation times when querying the
server with a random ciphertext, and use these times to set
a cutoff for queries not triggering anomalous 0s. We then
query the server with the challenge ciphertexts for the first
few bits of the key until we see a speedup compared to the
random ciphertext, and use these times to set a cutoff for
queries triggering anomalous 0s.

Third, we must detect and recover from mistakes caused
by random variations in the server’s decapsulation time. Re-
call that a challenge ciphertext constructed using a wrong
value for the i least significant bits of m will never trigger
anomalous 0s regardless of the relationship of mi and mi−1.
Measuring no timing reduction in many consecutive rounds
is evidence either that many consecutive key bits all have
the same value (unlikely since key bits are independent and
uniformly distributed), or that the value we are using for the
least significant bits of the key is wrong (cf. Appendix A.4).
In our experiments, we backtrack when experiments for 40
consecutive bit positions show no timing reduction.

Finally, there is a chance that a challenge ciphertext con-
structed as in Section 5.3.2 will accidentally trigger an anoma-
lous 0 later in the decapsulation process even if it does not at
the target bit index i of the Montgomery ladder. This will hap-

7The SIKE standard and the implementations we examined place the
long-term keypair in the 3-torsion and the ephemeral key used for forming
a ciphertext in the 2-torsion, so this is the case we studied. A variant of our
attack applies also if the roles are swapped.

9

650 660 670
Time (ms)

0.00

0.05

0.10

0.15

Pr
ob

ab
ilit

y
de

ns
ity

mi = mi 1
mi mi 1

(a) CIRCL histogram

1550 1560 1570 1580
Time (ms)

0.00

0.05

0.10

Pr
ob

ab
ilit

y
de

ns
ity

mi = mi 1
mi mi 1

(b) PQCrypto-SIDH histogram

Figure 10: Distribution of the timings measured by the at-
tacker during the remote key extraction attack, with the server
running on an i7-9700 CPU. The attacker makes 300 (CIRCL)
and 1000 (PQCrypto-SIDH) connections (all with the same
challenge ciphertext, constructed as per Section 5.3.2) and
measures the time until the last connection completes. We
group the execution time (filtered) of each key bit extraction
based on whether it should have triggered an anomalous 0 in
the Montgomery ladder (i.e., whether mi = 1−mi−1 or not).

pen with exponentially small probability for most bit indices,
but larger probability for the last few bit indices. We defer
a detailed explanation to Appendix A.3. It may be possible
to avoid triggering this misbehavior with a different way of
constructing the challenge key. We instead sidestep it by stop-
ping our interaction with the server after extracting all but the
last 14 bits; we recover these last bits by brute-force search.

Attack Setup We run the SIKE target server on our i7-9700
CPU using the default system configuration. In the attack
on CIRCL, the server is an HTTP server written using Go’s
net.http library, which handles each request in a goroutine.
In the attack on PQCrypto-SIDH, the server is a TCP server
written in C, which handles each request in a pthread.

We configure the attacker to send n = 300 concurrent re-
quests in the CIRCL case, and n = 1000 requests in the
PQCrypto-SIDH case. In both cases, concurrent requests are
sent all with the same challenge ciphertext (constructed as
described in Section 5.3.2), and the attacker measures the
time until the last connection completes. We experimentally
determine the expected timings when the CPU frequency in-
creases because of anomalous 0s and when it does not: for
CIRCL, at most 660.2 ms and at least 662.5 ms, respectively;
for PQCrypto-SIDH at most 1556 ms and at least 1558 ms,
respectively. We repeat the measurement 400 times, exclude
outliers (CIRCL: below 650 ms or above 675 ms; PQCrypto-
SIDH: below 1500 ms or above 1580 ms), compute the me-
dian of the remaining values, and compare to the cutoffs. If
the result is inconclusive for a bit, we repeat the attack on that
bit. We use our side channel to extract the key up to bit 364
and recover the last 14 bits by brute force search.

Results In Figure 10a and Figure 10b, we show the timing
distribution of the 300-connection runs (CIRCL) and 1000-
connection runs (PQCrypto-SIDH) respectively, grouped ac-

0 3 6 9 12 15 18
Secret key bit index

660

661

662

663

Ti
m

e
(m

s)

mi mi 1
mi = mi 1

(a) CIRCL first 20 bits

345 348 351 354 357 360 363
Secret key bit index

660

661

662

663

Ti
m

e
(m

s)

mi mi 1
mi = mi 1

(b) CIRCL last 20 bits

Figure 11: Median times used to extract the first 20 bits (0
to 19) and the last 20 bits (345 to 364) of the key for the
same attack against CIRCL SIKE-751 as in Figure 10a. The
timings depend on whether the challenge ciphertext triggered
an anomalous 0 (mi 6= mi−1) or not (mi = mi−1).

0 3 6 9 12 15 18
Secret key bit index

1554

1556

1558

1560

Ti
m

e
(m

s)

mi mi 1
mi = mi 1

(a) PQCrypto-SIDH first 20 bits

345 348 351 354 357 360 363
Secret key bit index

1556

1558

Ti
m

e
(m

s)

mi mi 1
mi = mi 1

(b) PQCrypto-SIDH last 20 bits

Figure 12: Median times used to extract the first 20 bits (0 to
19) and the last 20 bits (345 to 364) of the key for the same
attack against PQCrypto-SIDH SIKE-751 as in Figure 10b.
The timings depend on whether the challenge ciphertext trig-
gered an anomalous 0 (mi 6= mi−1) or not (mi = mi−1).

cording to whether the challenge ciphertext of that run trig-
gered an anomalous 0 (mi 6= mi−1) or not (mi = mi−1).

For the first and the last 20 bit positions of the key that we
extract by interacting with the server (bits 0–19 and 345–364,
respectively), we plot, in Figure 11 (CIRCL) and Figure 12
(PQCrypto-SIDH), the median time among the 400 measure-
ments for that bit and whether the run triggered an anoma-
lous 0 (mi 6= mi−1) or not (mi = mi−1) at that bit position. The
signal is strong for both the top bits and the bottom bits.

Both attacks successfully recovered the full secret key. The
attack on CIRCL completed in 36 hours, while the attack on
PQCrypto-SIDH completed in 89 hours. We expect that the at-
tack running time could be reduced with careful optimization.
Unlike our attack on CIRCL, our attack on PQCrypto-SIDH
made 1 mistake and needed to backtrack; see Appendix A.4
for our error correction strategy.

5.3 Anomalous 0s in SIKE Decapsulation

We now explain how an attacker can construct SIKE cipher-
texts that trigger an anomalous 0 in the (i+ 1)st iteration
of the Montgomery ladder when mi 6= mi−1, and why that
anomalous 0, once generated, causes the remainder of the
decapsulation algorithm to also produce 0s repeatedly.

10

We briefly recall some relevant mathematical background
in Appendix A.2. We recommend that readers review a longer
introduction to the math behind elliptic curves, isogenies, and
SIKE; Costello’s tutorial expositions of elliptic curves [18]
and isogenies [19] are especially good choices.

The first subroutine in the SIKE decapsulation algorithm
recovers (the Montgomery coefficient A of) the curve E ′0 on
which the points P, Q, and Q−P, included in the ciphertext
provided by the attacker, lie. This subroutine is fast and inde-
pendent of the secret key; we do not consider it further.

The second subroutine uses the Montgomery three-point
ladder to compute P+ [m]Q on the curve E ′0 recovered by
the first subroutine. This is the subroutine in which a correct
key-bit guess (mi 6= mi−1) can trigger the generation of an
anomalous 0 value. We explain how in Section 5.3.2.

The third subroutine evaluates the isogeny corresponding
to the point P+ [m]Q, computing (the Montgomery coeffi-
cient of) the curve E ′e3

that is the image of E ′0 under that
isogeny. The fourth subroutine computes the j-invariant of the
curve E ′e3

; this j-invariant is the shared SIDH secret. In Sec-
tion 5.3.3 and Appendix A.3, we explain how an anomalous 0
value output by the Montgomery ladder causes the isogeny
evaluation (third subroutine) and the j-invariant computation
(fourth subroutine) to produce additional anomalous 0s.

The final step in SIKE decapsulation is a Fujisaki–Okamoto
consistency check [31, 44] that checks that the ciphertext was
properly generated. If the check fails, the recipient generates
a random session key instead of the one prescribed by the
(invalid) ciphertext. The Fujisaki–Okamoto check immunizes
SIKE against attacks, such as that due to Galbraith et al. [32],
that require partial information about the j-invariant computed
when decapsulating (invalid) ciphertexts.

We do not claim to invalidate SIKE’s proof of security.
None of the ciphertexts we construct in our attack passes the
Fujisaki–Okamoto check. Nevertheless, our attack recovers
the server’s secret key, because we obtain the information
we need from the running time of the subroutines performed
before the Fujisaki–Okamoto check.

While our paper was under embargo (cf. Section 1), our
chosen-ciphertext attack triggering anomalous 0s in SIKE
decapsulation, described in this subsection, was independently
rediscovered by De Feo et al. [25].

5.3.1 Affine and Projective X-Coordinate Point Repre-
sentations on Montgomery Curves

A Montgomery curve is defined by the equation EA,B : By2 =
x3 +Ax2 + x, with parameters A,B ∈ Fp2 such that B(A2−
4) 6= 0. Montgomery curves have properties that make them
suitable for efficient, side-channel resistant implementations.
In particular, many operations needed in cryptography can
be computed using just the x-coordinate of a point (ignoring
the y-coordinate) and just the curve parameter A (ignoring
the curve parameter B). The point with x- and y-coordinate

Algorithm 1: Three point ladder ([52], Appendix A)

1 function Ladder3pt
Input: m = (m`−1, . . . ,m0)2 ∈ Z, (xP,xQ,xQ−P),

and (A : 1)
Output:

(
XP+[m]Q : ZP+[m]Q

)
1
(
(X0 : Z0),(X1 : Z1),(X2 : Z2)

)
←

(
(xQ : 1),(xP :

1),(xQ−P : 1)
)

2 a+24← (A+2)/4
3 for i = 0 to `−1 do
4 if mi = 1 then
5

(
(X0 : Z0),(X1 : Z1)

)
← xDBLADD

(
(X0 :

Z0),(X1 : Z1),(X2 : Z2),(a+24 : 1)
)

6 else
7

(
(X0 : Z0),(X2 : Z2)

)
← xDBLADD

(
(X0 :

Z0),(X2 : Z2),(X1 : Z1),(a+24 : 1)
)

8 return (X1 : Z1)

both equal to 0 is a point of order 2 with special significance
to arithmetic on a Montgomery curve; it is denoted by T .

To minimize the need for (expensive) modular inversions,
implementations typically work using projective rather than
affine x-coordinate representation. For a point P, we write
xP for its affine x-coordinate and (XP : ZP) for its projective
x-coordinate representation, where xP = XP ·Z−1

P . As usual,
there are many equivalent (X : Z) pairs that represent the same
affine point. We write (X : Z)∼ (X ′ : Z′) to mean that there
exists a scaling factor r such that X = rX ′ and Z = rZ′.

The point T is represented as (0 : 1) when using projective
x-coordinates; the point at infinity, O, as (1 : 0). The projective
pair (0 : 0) is not considered the valid projective x-coordinate
representation of any point. This is important to our attack.

5.3.2 Anomalous 0s in the Montgomery Ladder

The Montgomery three-point ladder is implemented using
Ladder3pt shown in Algorithm 1, reproduced from the SIKE
specification [52]. The inputs are an integer m, curve points
P, Q, and Q−P (in affine x-coordinate representation), and
the curve parameter A. The output is the point P+[m]Q (in
projective x-coordinate representation).

The subroutine invoked inside the loop, xDBLADD, when
applied to points U , V , and U−V , returns a tuple consisting
of [2]U and U +V . As the names suggest, invoking xDBLADD
is equivalent to invoking xDBL to compute [2]U and xADD to
compute U +V , but the combined algorithm evaluates some
repeated subexpressions just once.

The points P, Q, and Q−P, as well as the curve parameter
A, are supplied by the attacker, whereas the integer m is the
secret key. The goal of the attacker is to leak m.8

8As written, algorithm Ladder3pt is not constant time, but the branch in
line 4 is implemented in practice using constant-time conditional swaps.

11

Consider the algorithm xADD that, given points U , V , and W
in projective x-coordinate form where W =U−V , computes
the point U +V in projective x-coordinate form, as:

X ← ZW
[
(XU −ZU)(XV +ZV)+(XU +ZU)(XV −ZV)

]2

Z← XW
[
(XU −ZU)(XV +ZV)− (XU +ZU)(XV −ZV)

]2
.

When U−V is any point except O or T , xADD(U,V,U−V)
correctly returns U +V . However, when U −V is O or T ,
xADD(U,V,U−V) misbehaves and returns the invalid projec-
tive representation (0 : 0) instead of U +V [21].9

Worse, xADD(U,V,W) will also return (0 : 0) if called with
any of U , V , or W equal to (0 : 0), regardless of the value
of the other two inputs.10 Repeated applications of xADD can
thus get stuck at (0 : 0). We use exactly this fact for our attack.

Suppose that we can arrange that, at the beginning of iter-
ation k in Ladder3pt, (X2 : Z2)∼ T , i.e., that X2 = 0 and Z2
is nonzero. There are 2 cases to consider:

• if mk = 1, then T will be passed into the third argument of
xDBLADD, triggering the misbehavior in xADD and causing
(X1 : Z1) to be set to (0 : 0).

• otherwise, if mk = 0, then T will instead be passed into
the second argument of xDBLADD. This will not trigger
the misbehavior in xADD and not produce (0 : 0) as an
output. The point (X2 : Z2), which was equal to T , will be
overwritten with whatever xADD returns.

In the first case, xADD will get stuck; the second element
of the tuple returned by xDBLADD will be (0 : 0) in every
subsequent iteration of Ladder3pt’s loop, and Ladder3pt
will eventually return (0 : 0). In the second case, it is likely
that 0 values will not recur during the ladder computation.

It remains to show how the attacker can arrange for (X2 : Z2)
to equal T at loop iteration k. Let `i = (mi−1, . . . ,m0)2 rep-
resent the least significant i bits of m. Algorithm Ladder3pt
maintains the invariant that, at the beginning of iteration i of
the loop, the points (X0 : Z0), (X1 : Z1), and (X2 : Z2) satisfy

(X0 : Z0)∼ [2i]Q

(X1 : Z1)∼ P+[`i]Q

(X2 : Z2)∼ (X0 : Z0)− (X1 : Z1) .

Suppose that that the attacker, proceeding bit-by-bit, has ex-
tracted `k. The attacker picks an arbitrary curve and sets Q to
be an arbitrary point on the curve.

If mk−1 = 0, the attacker sets

P←
[
2k− `k

]
Q−T . (1)

9If U −V = O then U = V and therefore (XU : ZU) ∼ (XV : ZV). If
U −V = T then U = gT (V) where gT is the translation-by-T map; by a
property of Montgomery curves, it follows that (XU : ZU)∼ (ZV : XV).

10In this case it does not matter — indeed, does not make sense to ask —
whether W =U−V .

Then, at iteration k of the Ladder3pt loop, we will have (X2 :
Z2) ∼ T . If mk = 1, T will be passed as the third argument
to xDBLADD, triggering the misbehavior as described above.

If mk−1 = 1, the attacker instead sets

P← T −
[
`k
]
Q . (2)

Then, at iteration k of the Ladder3pt loop, we will have (X1 :
Z1) ∼ T . If mk = 0, T will be passed as the third argument
to xDBLADD, triggering the misbehavior.

To summarize, if mk 6= mk−1, the crafted input ciphertext
will trigger the anomalous 0 misbehavior.

When generated according to the SIKE specification, P
and Q are always linearly independent points of order 3e3 and
never produce T or O during the execution of Ladder3pt.
When generated according to our algorithm above but with
an incorrect key-bit guess, we expect that T or O will be
produced only with negligible probability.11 This conjecture
is supported by our experiments.

5.3.3 Anomalous 0s in Isogeny Evaluation and j-
Invariant Calculation

The next task in SIKE decapsulation, isogeny evaluation, is
carried out by algorithm 3_e_iso, which takes as input the
point P+ [m]Q (in projective x-coordinate form) as output
by Ladder3pt, expecting it to be a point of exact order 3e3 .
In Appendix A.3, we show that, when invoked on the invalid
input (0 : 0), 3_e_iso and its subroutines repeatedly operate
on and produce 0 values. Isogeny evaluation in 3_e_iso thus
acts as an amplifier for the signal produced by the ladder
evaluation in Ladder3pt, making it possible to observe even
an anomalous 0 produced in a late Ladder3pt loop iteration.

After isogeny evaluation, the next task in SIKE decapsula-
tion is j-invariant calculation, using algorithm jInvariant.
When 3_e_iso returns (0 : 0), jInvariant is invoked with
input (0 : 0), every intermediate value it computes is 0, and
its return value (the SIDH shared secret) is 0.12

5.4 Mitigations

We now describe the mitigation that Cloudflare and Microsoft
deployed after we disclosed our attack on SIKE.

The mitigation, which was originally proposed by De Feo
et al. [25], consists of validating that the ciphertext (public
key) consists of a pair of linearly independent points of the
correct order 3e3 . This check is performed before running the
three-point ladder and prevents attack ciphertexts from being
further processed, thus hindering the attack. When running
decapsulation on a single thread on our i7-9700 CPU, we

11This fact allows us not only to distinguish a correct from an incorrect bit
guess for bit mk but also to detect and recover from mistakes in determining
the earlier bits `k; see Appendix A.4.

12Note that this output depends on the result of inverting 0 in Fp2 in step 15
of jInvariant. The Montgomery inversion algorithms in the implementa-
tions we examined have 1/0 = 0 (see Savas and Koç [83]).

12

found that the mitigation adds a performance overhead of 5%
for CIRCL and of 11% for PQCrypto-SIDH.

6 Timer-free Attacks

We now show that not only can we use the frequency side
channel to turn power attacks into remote timing attacks (as
we saw in Section 5), but we can also use it to mount timing
attacks without a timer. To this end, we use the frequency side
channel to mount a KASLR break and a covert channel.

KASLR Break Like prior work [12,13,37,43,45,51,63,64],
the goal of the (unprivileged) attacker is to de-randomize the
kernel base address. Knowledge of the kernel base address is
useful to mount memory corruption exploits.

In Linux, the kernel text is placed at a 2 MB boundary in the
0xffffffff80000000 – 0xffffffffc0000000 range [13].
Hence, the kernel can be placed at one of 512 possible offsets.
Prior work has shown that, on Intel and AMD processors,
there is a timing and power consumption difference when ex-
ecuting prefetch instructions on a memory address depending
on whether that address is mapped or not [43, 63]. This dif-
ference can be used to infer the location of the kernel within
its predefined region. We show that this power consumption
difference manifests also as a CPU frequency difference.

To this end, we build a sender process similar to the ones
of Figure 3, but using only prefetcht0 instructions. While
the sender runs, a separate thread measures the current CPU
frequency using the unprivileged scaling_cur_freq inter-
face from the cpufreq driver. We ran the sender with all
the 512 possible kernel base addresses, for 10 different ran-
domizations (i.e., repeating across 10 reboots) on our Intel
i7-9700 CPU. In all 10 cases, we were able to identify the
base address successfully (as verified by checking the privi-
leged /proc/kallsyms interface). We measured an average
steady-state CPU frequency of 4.04 GHz when repeatedly
prefetching mapped addresses, and 4.24 GHz when repeat-
edly prefetching unmapped addresses. The runtime of our un-
optimized, proof-of-concept implementation is of 2 minutes.
This runtime is larger than state-of-the-art KASLR breaks,
but could be reduced with additional engineering effort.

Covert Channel Like prior work, our covert channel uses
a sender and a receiver. To transmit a 0, the sender executes
a loop of or instructions with high HD and HW in their data
flow. This loop increases the power consumption and results
in lower CPU frequency values. To transmit a 1, the sender
executes a loop of shlx instructions with low HD and HW in
their data flow. This loop decreases the power consumption
and results in higher CPU frequency values. The receiver
measures the current CPU frequency using the unprivileged
scaling_cur_freq interface from the cpufreq driver.

We evaluated our covert channel by transmitting 1 kB of
random data on our i7-9700 CPU. Our unoptimized, proof-
of-concept implementation achieved a bandwidth of 30 bps

with an error rate of 0.03% (average across 10 runs). This
bandwidth is similar to the one of prior covert channels relying
on software-based power measurement interfaces [63, 64].

7 Discussion

Affected CPUs We successfully reproduced our attack on
Intel CPUs from the 8th to the 11th generation of the Core
microarchitecture (reported in Table 1). We also tested two
desktop CPUs from older generations, namely the i7-6700K
(Skylake) and i7-7700K (Kaby Lake), and we found that both
models only support Turbo frequencies on single core work-
loads: as soon as more than 1 core is active, the P-state is
capped at the base frequency. In our experiments, we were
not able to force the frequency into steady state (i.e., below the
max turbo frequency) with single-core workloads, and were
therefore unable to reproduce our attack on these models.

Besides CPUs from the (client-class) Core microarchitec-
ture, our attack should also work on Intel Xeon CPUs (server-
class) since they also use similar P-state management tech-
niques. Additionally, other CPU vendors implement similar
DVFS mechanisms and are likely vulnerable. For example,
we verified that the AMD Ryzen processors are also vulnera-
ble to our attack, featuring a similar HW/HD leakage model
and enabling the same SIKE vulnerability that we described
in Section 5. We leave reverse engineering the specific char-
acteristics of the AMD leakage model to future work.

Mitigating Leakage via the Frequency Channel Our at-
tack is enabled by data-dependent frequency adjustments at
steady state. As we showed, the affected CPUs enter this state
when certain power and thermal limits are hit during a work-
load’s execution. Thus, one approach to mitigate the attack is
to reduce the likelihood that the CPU hits these limits. One
workload-independent way to do so is to either disable Turbo
Boost, or to disable SpeedStep and HWP from the BIOS. We
verified that, with otherwise standard system configurations,
both methods cause the frequency to stay fixed at the base
frequency during workload execution and never enter steady
state, preventing leakage via the frequency side channel. How-
ever, this approach significantly reduces system performance.
Moreover, this approach may not be sufficient on system con-
figurations with custom power limits. Indeed, in concurrent
work, Liu et al. show that a privileged adversary can extract
AES-NI keys using the frequency side channel after reducing
the power limits to fractions of their default values [65].

Mitigating Leakage in Ciphers Another mitigation strat-
egy consists of removing secret-dependent leakage in crypto-
graphic software. For example, SIKE’s mitigation discussed
in Section 5.4 hinders our attack by preventing attack cipher-
texts from triggering secret-dependent computations on 0s.

For cryptographic software in general, mitigating the power
leakage itself would naturally close the frequency channel.

13

True decoupling would require that all operands have no sta-
tistical correlation with secrets, which is only feasible with
techniques like fully homomorphic encryption. A more realis-
tic approach takes advantage of the fact that it is not the power
usage of each operand that is leaked, but an average of the
power usage across all operands in a time period. This goal
may be achieved using masking/blinding techniques. Prior
works have introduced protocol-specific masking techniques
for ciphers such as AES [8,38,82,86] and blinding techniques
for elliptic-curve cryptography [54]. Automatic masking tech-
niques have also been proposed either in software [7, 17, 27]
or leveraging additional hardware support [26, 33, 41, 42, 79].
However, masked/blinded implementations may still leak in
practice via power side channels [4, 5, 34, 69, 81, 84, 85].

Future defenses could also examine the potential of fus-
ing unrelated loops, vectorizing operations, or other meth-
ods of interleaving different computations. These approaches
could be done by combining multiple, normally sequential,
computations in the program or by introducing an additional
complementary kernel. Effective blinding will require that
the combined computation’s power trace is not related to any
secret computation. For example, if we can construct a bit-
inverted version of a cryptographic kernel, we can interleave
the real kernel and the blinding kernel. Our model of HW and
HD provides a starting point for future work on blinding.

8 Conclusion

We discovered that in modern Intel (and AMD) x86 CPUs,
DVFS-induced frequency variations depend on the current
power consumption, and hence on the data being processed.
We showed, for the first time, that the HD and HW of data
individually and non-uniformly contribute to power consump-
tion and frequency on modern x86 CPUs. We described a
novel chosen-ciphertext attack against SIKE, which uses this
knowledge to leak full cryptographic keys via remote timing.

The security implications of our findings are significant.
Not only do they expand the attack surface of power side-
channel attacks by removing the need for power measurement
interfaces, but they also show that, even when implemented
as constant time, cryptographic code can still leak via remote
timing analysis. The takeaway is that current cryptographic
engineering practices for how to write constant-time code are
no longer sufficient to guarantee constant time execution of
software on modern, variable-frequency processors.

Acknowledgments

This work was funded in part through NSF grants 1942888
and 1954521, and gifts from Google, Mozilla, and Qualcomm.
Wang was partly supported by a Packard Fellowship (via
Brent Waters). We thank our shepherd Michael Schwarz and
the anonymous reviewers for their valuable feedback.

Availability

We have open sourced the code of all the experiments of this
paper at https://github.com/FPSG-UIUC/hertzbleed.

References
[1] Andreas Abel and Jan Reineke. uops.info: Characterizing latency,

throughput, and port usage of instructions on Intel microarchitectures.
In ASPLOS, 2019.

[2] Andreas Abel and Jan Reineke. uiCA: Accurate throughput prediction
of basic blocks on recent Intel microarchitectures. In ICS, 2022.

[3] Ross Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems, 3rd Edition. John Wiley & Sons, 2020.

[4] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked
software implementations. In CARDIS, 2014.

[5] Sven Bauer. Attacking exponent blinding in RSA without CRT. In
COSADE, 2012.

[6] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the
Montgomery ladder. In Topics in Computational Number Theory
Inspired by Peter L. Montgomery. Cambridge University Press, 2017.

[7] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko.
Optimal first-order boolean masking for embedded iot devices. In
CARDIS, 2017.

[8] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably
secure masking of AES. In SAC, 2004.

[9] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In CHES, 2004.

[10] Len Brown. powercap: restrict energy meter to root access. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/lin
ux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e4463
7e71, 2020. Accessed on Jun 7, 2022.

[11] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. SoK:
Design tools for side-channel-aware implementions. In ASIACCS,
2022.

[12] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on Meltdown-resistant CPUs. In CCS, 2019.

[13] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break it, fix it, repeat. In
ASIACCS, 2020.

[14] Suresh Chari, Charanjit Jutla, Josyula R Rao, and Pankaj Rohatgi. A
cautionary note regarding evaluation of AES candidates on smart-cards.
In AES2, 1999.

[15] Yimin Chen, Xiaocong Jin, Jingchao Sun, Rui Zhang, and Yanchao
Zhang. POWERFUL: Mobile app fingerprinting via power analysis.
In INFOCOM, 2017.

[16] Jean-Sébastien Coron. Resistance against differential power analysis
for elliptic curve cryptosystems. In CHES, 1999.

[17] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and
Praveen Kumar Vadnala. Conversion from arithmetic to boolean mask-
ing with logarithmic complexity. In FSE, 2015.

[18] Craig Costello. Pairings for beginners. Online: https://www.craigc
ostello.com.au/s/PairingsForBeginners.pdf, 2012.

[19] Craig Costello. Supersingular isogeny key exchange for beginners. In
SAC, 2019.

[20] Craig Costello. The case for SIKE: A decade of the supersingular
isogeny problem. Cryptology ePrint Archive, Report 2021/543, 2021.

14

https://github.com/FPSG-UIUC/hertzbleed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
https://www.craigcostello.com.au/s/PairingsForBeginners.pdf
https://www.craigcostello.com.au/s/PairingsForBeginners.pdf

[21] Craig Costello and Benjamin Smith. Montgomery curves and their
arithmetic - the case of large characteristic fields. J. Cryptogr. Eng.,
8(3), 2018.

[22] Ian Cutress. Why Intel processors draw more power than expected:
TDP and Turbo explained. https://www.anandtech.com/show/1
3544/why-intel-processors-draw-more-power-than-expec
ted-tdp-turbo, 2018. Accessed on Jun 7, 2022.

[23] Luca De Feo. Mathematics of isogeny based cryptography. Preprint,
arXiv:1711.04062 [cs.CR], 2017.

[24] Luca De Feo. Exploring isogeny graphs. Habilitation thesis, Université
de Versailles Saint-Quentin-en-Yvelines, 2018.

[25] Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kalud̄erović,
Natacha Linard de Guertechin, Simon Pontié, and Élise Tasso. SIKE
channels. Cryptology ePrint Archive, Report 2022/054, 2022.

[26] Elke De Mulder, Samatha Gummalla, and Michael Hutter. Protecting
RISC-V against side-channel attacks. In DAC. IEEE, 2019.

[27] Hassan Eldib and Chao Wang. Synthesis of masking countermeasures
against side channel attacks. In CAV, 2014.

[28] Armando Faz-Hernández and Kris Kwiatkowski. Introducing CIRCL:
An Advanced Cryptographic Library. Cloudflare, 2019. https://gi
thub.com/cloudflare/circl. Accessed on Jun 7, 2022.

[29] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and
Francisco Rodríguez-Henríquez. A faster software implementation of
the supersingular isogeny Diffie-Hellman key exchange protocol. IEEE
Transactions on Computers, 67(11), 2018.

[30] Pierre-Alain Fouque and Frédéric Valette. The doubling attack–why
upwards is better than downwards. In CHES, 2003.

[31] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. Journal of Cryptology,
26(1), 2013.

[32] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On
the security of supersingular isogeny cryptosystems. In ASIACRYPT,
2016.

[33] Si Gao, Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham,
and Francesco Regazzoni. An instruction set extension to support
software-based masking. Cryptology ePrint Archive, Report 2020/773,
2020.

[34] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing:
Friend or foe? TCHES, 2020.

[35] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and
Yuval Yarom. ECDSA key extraction from mobile devices via nonin-
trusive physical side channels. In CCS, 2016.

[36] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off
my laptop: Physical side-channel key-extraction attacks on PCs. In
CHES, 2014.

[37] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative probing: Hacking blind in the Spectre
era. In CCS, 2020.

[38] Jovan D Golić and Christophe Tymen. Multiplicative masking and
power analysis of AES. In CHES, 2002.

[39] Louis Goubin and Jacques Patarin. DES and differential power analysis
the “duplication” method. In CHES, 1999.

[40] Corey Gough, Ian Steiner, and Winston Saunders. Energy Efficient
Servers: Blueprints for Data Center Optimization. Apress, 2015.

[41] Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas Unterluggauer,
and Mario Werner. Concealing secrets in embedded processors designs.
In CARDIS, 2016.

[42] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented
masking: Compact masked hardware implementations with arbitrary
protection order. In TIS, 2016.

[43] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. In CCS, 2016.

[44] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular
analysis of the Fujisaki-Okamoto transformation. In TCC, 2017.

[45] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In S&P, 2013.

[46] Intel. Running average power limit energy reporting / cve-2020-8694 ,
cve-2020-8695 / intel-sa-00389. https://www.intel.com/conten
t/www/us/en/developer/articles/technical/software-secu
rity-guidance/advisory-guidance/running-average-power-
limit-energy-reporting.html. Accessed on Jun 7, 2021.

[47] Intel. Thermal design power (TDP) in Intel processors. https://www.
intel.com/content/www/us/en/support/articles/000055611
/processors.html. Accessed on Jun 7, 2022.

[48] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
June 2021.

[49] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
June 2021.

[50] Intel. Power management - technology overview. https://builders
.intel.com/docs/networkbuilders/power-management-techn
ology-overview-technology-guide.pdf, 2021. Accessed on Jun
7, 2022.

[51] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with Intel TSX. In CCS, 2016.

[52] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello,
Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev,
David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron
Hutchinson. SIKE. Technical report, National Institute of Standards
and Technology, 2020.

[53] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In PQCrypto, 2011.

[54] Marc Joye and Christophe Tymen. Protections against differential
analysis for elliptic curve cryptography. In CHES, 2001.

[55] Manuel Kalmbach, Mathias Gottschlag, Tim Schmidt, and Frank Bel-
losa. TurboCC: A practical frequency-based covert channel with Intel
Turbo Boost. Preprint, arXiv:2007.07046 [cs.CR], 2020.

[56] Nikolaos Kavvadias, Periklis Neofotistos, Spiridon Nikolaidis, CA Kos-
matopoulos, and Theodore Laopoulos. Measurements analysis of the
software-related power consumption in microprocessors. IEEE Trans-
actions on Instrumentation and Measurement, 53(4), 2004.

[57] Colin Ian King. stress-ng. https://github.com/ColinIanKing/
stress-ng, 2022. Accessed on Jun 7, 2022.

[58] Paul Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, 1996.

[59] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In CRYPTO, 1999.

[60] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-
architectural power simulator for leakage assessment of cryptographic
software on ARM Cortex-M3 processors. In COSADE, 2018.

[61] Sheayun Lee, Andreas Ermedahl, Sang Lyul Min, and Naehyuck Chang.
An accurate instruction-level energy consumption model for embedded
RISC processors. ACM SIGPLAN Notices, 36(8), 2001.

[62] Linux. aperfmperf.c. https://git.kernel.org/pub/scm/lin
ux/kernel/git/torvalds/linux.git/tree/arch/x86/kernel/
cpu/aperfmperf.c. Accessed on Jun 7, 2022.

[63] Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD prefetch
attacks through power and time. In USENIX Security, 2022.

15

https://www.anandtech.com/show/13544/why-intel-processors-draw-more-power-than-expected-tdp-turbo
https://www.anandtech.com/show/13544/why-intel-processors-draw-more-power-than-expected-tdp-turbo
https://www.anandtech.com/show/13544/why-intel-processors-draw-more-power-than-expected-tdp-turbo
https://github.com/cloudflare/circl
https://github.com/cloudflare/circl
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://builders.intel.com/docs/networkbuilders/power-management-technology-overview-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/power-management-technology-overview-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/power-management-technology-overview-technology-guide.pdf
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kernel/cpu/aperfmperf.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kernel/cpu/aperfmperf.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kernel/cpu/aperfmperf.c

[64] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Cather-
ine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS: Software-
based power side-channel attacks on x86. In S&P, 2021.

[65] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel.
Frequency throttling side-channel attack. Preprint, arXiv:2206.07012
[cs.CR], 2022.

[66] Patrick Longa. Post-quantum Cryptography. Microsoft, 2019. Avail-
able at https://github.com/microsoft/PQCrypto-SIDH. Ac-
cessed on Jun 7, 2022.

[67] Stefan Mangard. A simple power-analysis (SPA) attack on implemen-
tations of the AES key expansion. In ICISC, 2002.

[68] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards, volume 31. Springer
Science & Business Media, 2008.

[69] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Success-
fully attacking masked AES hardware implementations. In CHES,
2005.

[70] Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich
Weber. How secure is green IT? the case of software-based energy side
channels. In ESORICS, 2018.

[71] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power
of simple power analysis on smartcards. In CHES, 2000.

[72] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards
practical tools for side channel aware software engineering:’grey
box’modelling for instruction leakages. In USENIX Security, 2017.

[73] Thomas Messerges. Using second-order power analysis to attack DPA
resistant software. In CHES, 2000.

[74] Thomas Messerges, Ezzy Dabbish, and Robert Sloan. Investigations of
power analysis attacks on smartcards. In USENIX Smartcard, 1999.

[75] Thomas Messerges, Ezzy Dabbish, and Robert Sloan. Power analysis
attacks of modular exponentiation in smartcards. In CHES, 1999.

[76] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian,
Dan Boneh, and Gabi Nakibly. PowerSpy: Location tracking using
mobile device power analysis. In USENIX Security, 2015.

[77] Jeremy Morse, Steve Kerrison, and Kerstin Eder. On the limitations of
analyzing worst-case dynamic energy of processing. ACM Transactions
on Embedded Computing Systems (TECS), 17(3):1–22, 2018.

[78] Hassan Mujtaba. [IDF15]Intel’s 6th gen Skylake unwrapped - CPU
microarchitecture, Gen9 graphics core and Speed Shift hardware P-
state. https://wccftech.com/idf15-intel-skylake-analysis-
cpu-gpu-microarchitecture-ddr4-memory-impact/4/, 2015.
Accessed on Jun 7, 2022.

[79] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
implementations against side-channel attacks and glitches. In ICICS,
2006.

[80] Roman Novak. SPA-based adaptive chosen-ciphertext attack on RSA
implementation. In PKC, 2002.

[81] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: To-
wards secure 1st-order masking in software. In COSADE, 2017.

[82] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order
masking of AES. In CHES, 2010.

[83] Erkay Savas and Çetin Kaya Koç. Montgomery inversion. J. Cryptogr.
Eng., 8(3), 2018.

[84] Werner Schindler and Andreas Wiemers. Power attacks in the presence
of exponent blinding. J. Cryptogr. Eng., 4(4), 2014.

[85] Werner Schindler and Andreas Wiemers. Generic power attacks on
RSA with CRT and exponent blinding: new results. J. Cryptogr. Eng.,
7(4), 2017.

[86] Kai Schramm and Christof Paar. Higher order masking of the AES. In
CT-RSA, 2006.

[87] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,
Markus Wagner, and Yuval Yarom. Rosita: Towards automatic elimina-
tion of power-analysis leakage in ciphers. NDSS, 2021.

[88] Ankush Varma, Eric Debes, Igor Kozintsev, and Bruce Jacob.
Instruction-level power dissipation in the Intel XScale embedded mi-
croprocessor. In Embedded Processors for Multimedia and Communi-
cations II, 2005.

[89] Nikita Veshchikov. SILK: high level of abstraction leakage simulator
for side channel analysis. In PPREW, 2014.

[90] Vince Weaver. Reading RAPL energy measurements from linux. http:
//web.eece.maine.edu/~vweaver/projects/rapl/. Accessed
on Jun 7, 2022.

[91] Rafael J. Wysocki. intel_pstate CPU performance scaling driver.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/i
ntel_pstate.html. Accessed on Jun 7, 2022.

[92] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A study on power
side channels on mobile devices. In Internetware, 2015.

[93] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Kiran
Balagani. On inferring browsing activity on smartphones via USB
power analysis side-channel. IEEE Trans. Inf. Forensics Secur., 12(5),
2016.

[94] Sung-Ming Yen, Wei-Chih Lien, SangJae Moon, and JaeCheol Ha.
Power analysis by exploiting chosen message and internal collisions -
vulnerability of checking mechanism for RSA-decryption. In Mycrypt,
2005.

[95] Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao. Red alert
for power leakage: Exploiting Intel RAPL-induced side channels. In
ASIACCS, 2021.

A Appendix

A.1 Leakage Model—Additional Experiments

HD in the ALU Input In Section 4.1, we saw that increas-
ing the number of bit transitions in the ALU output causes an
increase in power consumption and a decrease in frequency.
Here, we set out to understand if the same effect happens when
bit transitions occur in the ALU input. We need a sender that
offers fine-grained control over the number of transitions in
the ALU input, while avoiding potential side-effects such as
the HW effect or bit transitions in the ALU output.

We design a sender that is symmetric to the one of Figure 3a.
Our sender still uses shlx and shrx instructions, as shown
in Figure 13a. However, it is designed such that the output
of all shlx and shrx instructions is always the same, and
only their input varies as a function of COUNT. Hence, any
HD effect is caused by bit transitions on the ALU input only.
For example, when COUNT = 8, the source register to each
shlx contains 0x000000ffffffff00, and the source register
to each shrx contains 0x00ffffffff000000, the alternation
of which translates to a HD of 4×8 in the ALU input.

Figure 14 shows the results for increasing COUNT values.
We see that the power consumption grows and the frequency
drops when COUNT grows, confirming that the number of
bit transitions (i.e., the HD) in the ALU input directly affects
power consumption and CPU frequency. We also see that the
changes in power / frequency become more significant when

16

https://github.com/microsoft/PQCrypto-SIDH
https://wccftech.com/idf15-intel-skylake-analysis-cpu-gpu-microarchitecture-ddr4-memory-impact/4/
https://wccftech.com/idf15-intel-skylake-analysis-cpu-gpu-microarchitecture-ddr4-memory-impact/4/
http://web.eece.maine.edu/~vweaver/projects/rapl/
http://web.eece.maine.edu/~vweaver/projects/rapl/
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/intel_pstate.html

rax = COUNT

rbx = 0x0000FFFFFFFF0000 >> COUNT

rcx = 0x0000FFFFFFFF0000 << COUNT

loop:

 shlx %rax,%rbx,%rdx // rdx = rbx << rax

 shlx %rax,%rbx,%rsi // rsi = rbx << rax

 shrx %rax,%rcx,%rdi // rdi = rcx >> rax

 shrx %rax,%rcx,%r8 // r8 = rcx >> rax

 shlx %rax,%rbx,%r9 // r9 = rbx << rax

 shlx %rax,%rbx,%r10 // r10 = rbx << rax

 shrx %rax,%rcx,%r11 // r11 = rcx >> rax

 shrx %rax,%rcx,%r12 // r12 = rcx >> rax

jmp loop

(a) Variant of sender for the HD experiments.

rax = 1
rsp = pointer_to_memory
rbx = … = r15 = INPUT
loop:
 mov %rax,(%rsp) // store rax to memory
 mov %rax,(%rsp) // store rax to memory
 mov %rax,(%rsp) // store rax to memory
 mov %rax,(%rsp) // store rax to memory
 mov %rax,(%rsp) // store rax to memory
 mov %rax,(%rsp) // store rax to memory
 mov %rax,(%rsp) // store rax to memory
 mov %rax,(%rsp) // store rax to memory
jmp loop

(b) Sender for the HW at rest experiments.

Figure 13: Additional sets of instructions (senders) used to reverse engineer the dependency between data and power consumption
/ frequency on our CPUs. Different senders are designed to target different effects. Each sender can be run with variable inputs.

0 5 10 15
COUNT

4.275

4.280

4.285

4.290

4.295

Fr
eq

ue
nc

y
(G

Hz
)

(a) Mean frequencies.

0 5 10 15
COUNT

22.8

22.9

23.0

23.1

Po
we

r (
W

)

(b) Mean power consumptions.

Figure 14: Effect of increasing COUNT in Figure 13a’s sender
on our i7-9700 CPU. Higher COUNT values cause higher HDs
in the ALU output. As the HD increases, the mean power con-
sumption grows and the mean steady-state frequency drops.

the COUNT > 8, as a result of the non-uniform HW cost of
having 1s closer to the MSB in the fixed source register rcx.

Non-uniform HW In Section 4.2, we saw that the HW ef-
fect it depends on the position of 1s in the data (i.e., it is
non-uniform). We now discuss two experiments that provide
additional evidence that the HW effect is non-uniform. We
refer to these experiments as shift0 and shift1. Both experi-
ments use the same sender of Section 4.2, shown in Figure 3b.
In shift1, we fix the number of consecutive 1s and measure
the impact of changing the position of these consecutive 1s
in the LEFT = RIGHT input, when all surrounding bits are
0s. In shift0, we do the opposite: we fix the number of con-
secutive 0s and measure the impact of changing the position
of these consecutive 0s in the LEFT = RIGHT input, when
all surrounding bits are 1s. By construction, since the HW is
fixed and the sender does not introduce any HD effect, any
differences in the results depend only on the position of 1s.

We label different positions of the consecutive bit patterns
based on their “shift offset” starting from the LSB. For exam-
ple, when the number of consecutive 1s in shift1 is 32, a shift
offset of 0 refers to input value 0x00000000ffffffff and a
shift offset of 16 refers to input value 0x0000ffffffff0000.

20 40 60
Shift Offset

4.12

4.13

4.14

4.15

Fr
eq

ue
nc

y
(G

Hz
)

8 ones
16 ones
32 ones
48 ones

(a) Frequency vs shift offset

20 40 60
Shift Offset

26.4

26.6

26.8

27.0

27.2

Po
we

r (
W

)

8 ones
16 ones
32 ones
48 ones

(b) Power vs shift offset

Figure 15: Effect of shifting consecutive 1s in the LEFT =
RIGHT input to Figure 3b’s sender on our i7-9700 CPU. As
we shift the 1s towards the MSB, the mean power consump-
tion grows and the mean steady-state frequency drops.

Similarly, when the number of consecutive 0s in shift0 is 32, a
shift offset of 16 refers to input value 0xffff00000000ffff.

Figure 15 shows the results for the shift1 experiment when
we fix the number of 1s to 8, 16, 32, or 48. Consider the
case when the number of 1s is 16. When the shift offset is
between 0 to 16, we see almost no variation in the mean power
/ frequency. This is because as we shift in this range, 1s are
still all the low 32 bits, and we know from Figure 7 that there
is little difference in the HW effect for 1s that are in the low
32 bits. However, when the shift offset increases from 16 to
48, the power consumption grows and the frequency drops.
This is because we start gaining 1s in the high 32 bits and
approaching the MSB. This is consistent with what we saw
in Figure 7, where 1s closer to the MSB have a stronger HW
effect than 1s closer to the 32nd bit. The results are similar
when the number of 1s is 8. When the number of 1s is 32 or 48,
the HW effect increases every time the shift offset increases.
This is because, in these cases, shifting means that we lose 1s
in the low 32 bits and gain 1s in the high 32 bits, and we know
from Figure 7 that 1s in the high 32 bits have a stronger HW
effect than 1s in the low 32 bits. The HW increments in these
cases are also more significant, because the delta between the
HW effect of the bits we gain and the bits we lose is larger.

17

20 40 60
Shift Offset

4.12

4.13

4.14

4.15

Fr
eq

ue
nc

y
(G

Hz
) 8 zeros

16 zeros
32 zeros
48 zeros

(a) Frequency vs shift offset

20 40 60
Shift Offset

26.6

26.8

27.0

27.2

Po
we

r (
W

)

8 zeros
16 zeros
32 zeros
48 zeros

(b) Power vs shift offset

Figure 16: Effect of shifting consecutive 0s in the LEFT =
RIGHT input to Figure 3b’s sender on our i7-9700 CPU. As
we shift the 0s towards the MSB, the mean power consump-
tion drops and the mean steady-state frequency grows.

Figure 16 shows the results for the shift0 experiment. These
results are symmetrical to the shift1 ones and can be explained
by the same reasons described for the shift1 experiment.

In summary, the shift0 and shift1 experiments support our
observation that the HW effect is non-uniform.

HW Root Cause In Section 4.3, we saw that the HD effect
and the HW effect are additive. Recall that the HD effect
is due to 1→ 0 and 0→ 1 bit transitions in the data being
processed. This is a well-understood effect in the literature,
and can be attributed to the fact that when more bits flip during
a computation, more transistors are switched in the datapath,
which causes dynamic power consumption to grow [46, 68].
However, it is difficult to pinpoint the root cause of the HW
effect on x86 Intel CPUs. For example, it is unclear if the HW
effect occurs only when data is actively computed on, or if it
is due to any data-dependent power cost of simply keeping
data stored inside registers. Our sender from Figure 3b cannot
distinguish between these two cases because it is designed to
continuously compute on and overwrite identical data values.
Here, we design a new sender to test if the HW effect occurs
also when data values with different HWs are simply stored
into registers (at rest), but not actively computed on.

Our sender, shown in Figure 13b, is designed as follows.
First, it sets the content of rax to 1, rsp to a memory location,
and all other architectural registers to a fixed INPUT value.
Then, it enters an infinite loop of stores that write the content
of rax into the memory location pointed to by rsp.13

By construction, the store operations in the loop are always
the same and independent of the value of INPUT. Changing
the value of INPUT only affects the content of registers that
are initialized, but not actively computed on by the sender.
Any difference in power consumption due to different INPUT
values would then be due to HW effect at rest.

Figure 17 shows the results when we increase the HW of
INPUT from 0 to 64. We see no differences in the mean power
consumption and mean steady-state frequency when the HW

13We use a store so that the register file is constantly being read from, in
the offchance an inactive register file could be powered down.

0 20 40 60
HW of INPUT

4.33

4.34

4.35

4.36

4.37

Fr
eq

ue
nc

y
(G

Hz
)

(a) Frequency vs HW

0 20 40 60
HW of INPUT

21.2

21.4

21.6

21.8

22.0

Po
we

r (
W

)

(b) Power vs HW

Figure 17: Effect of increasing the HW of INPUT (at rest)
in Figure 13b’s sender on our i7-9700 CPU. As we increase
HW from 0 to 64, the mean power consumption and the mean
steady-state frequency do not change.

grows. This result suggests that the HW effect does not occur
when simply keeping data stored inside registers.

A.2 Mathematical Preliminaries for SIKE

SIKE is an isogeny-based key encapsulation method which in-
volves arithmetic operations of elliptic curves over finite fields.
In particular, SIKE uses Montgomery elliptic curves. Its se-
curity relies on the hardness of finding a specific isogeny be-
tween two such elliptic curves. Here, we provide an overview
of the details of SIKE that are relevant to our attack.14

Let p be a prime of the form 2e23e3 − 1. SIKE works in
the field Fp2 = Fp(i) with i2 =−1 (mod p) and uses the su-
persingular elliptic curves over Fp2 that have (2e23e3)2 points.
The set of points P ∈ E(Fp) that satisfy [n]P = O is called
the n-torsion of E. The curves of interest were chosen so that
the entire (2e23e3)-torsion is already defined over Fp2 , and
we have E[2e23e3]∼= Z/(2e23e3)Z×Z/(2e23e3)Z; as a result,
for each curve of interest, E[2e2] can be generated by linear
combinations of two points P2 and Q2 with coefficients in Fp2 ;
and likewise E[3e3] can be generated by linear combinations
of two points P3 and Q3 with coefficients in Fp2 .

An isogeny q : E1(Fp2)→ E2(Fp2) is a group homomor-
phism from E1(Fp2) to E2(Fp2) and a non-constant rational
map defined over Fp2 that preserves the point at infinity O.
The kernel of an isogeny is kerq = {P ∈ E1 : q(P) = O}.

Every finite subgroup H of a curve E(Fp2) defines an
isogeny q : E→ E/H, unique up to isomorphism, such that
kerq = H. The cardinality of H is also the degree of the ra-
tional map q. Given H, Vélu’s algorithm allows the rational
map for the isogeny corresponding to H to be computed; the
computation is tractable when |H| is small.

An `-isogeny is defined as q` : E → E/〈P〉, where P has
exact order `. The order of q(Q) in E/〈P〉 is the same as
the order of Q in E unless Q lies above kerq (meaning that

14For more information on SIKE, we refer to the SIKE tutorial by
Costello [19] and to the SIKE specification [52]. For more information on
elliptic curves and isogenies, we refer to the pairings tutorial by Costello [18]
and to De Feo’s lecture notes [23] and habilitation thesis [24]. For more
information on Montgomery ladders, we refer to Bernstein and Lange [6].

18

Algorithm 2: Computing and evaluating a 3e-isogeny,
simple version ([52], Appendix A)

1 function 3_e_iso
Static parameters: Integer e3 from the public

parameters
Input: Constants (A+

24 : A−24) corresponding to a
curve EA/C, (XS : ZS) where S has exact
order 3e3 on EA/C

Output: (A+
24
′ : A−24

′
) coresponding to the curve

EA′/C′ = E/〈S〉
1 for e = e3−1 downto 0 by −1 do
2 (XT : ZT)← xTPLe

(
(XS : ZS),(A+

24 : A−24),e
)

3
(
(A+

24 : A−24),(K1,K2)
)
← 3_iso_curve

(
(XT :

ZT)
)

4 if e 6= 0 then
5 (XS : ZS)← 3_iso_eval

(
(K1,K2),(XS : ZS)

)
6 return (A+

24 : A−24)

[n]Q ∈ kerq \ {O} for some n), in which case the order of
q(Q) is reduced by a factor of `.

Two curves are isogenous (meaning that there exists an
isogeny from one to the other) if they have the same number
of points. The curves of interest are all isogenous. If there
is an isogeny q from E1 to E2 then there is also an inverse
isogeny q−1 from E2 to E1; the composition q−1 ◦ q is the
map [degq] on E1, and likewise q ◦q−1 on E2.

If isogenies q and q−1 between E1 and E2 are such that
q−1 ◦q is the identity map [1] then E1 and E2 are isomorphic.
Isomorphic curves share the same j-invariant; the j-invariant
of a curve can be computed given a description of the curve.

A.3 Anomalous 0s in Isogeny Evaluation: Details

Algorithm 2 reproduces the implementation of 3_e_iso from
the specification [52] with optional arguments omitted.15

3_e_iso calls xTPLe to compute [3e](XS : ZS), by repeated
application of the tripling map xTPL; if (XS : ZS) has ex-
act order 3e3 then (XT : ZT) is a point of exact order 3.
3_iso_curve expects a point of exact order 3 as input and
uses Vélu’s algorithm to compute the isogeny corresponding
to the group

〈
(XT : ZT)

〉
. It also outputs the curve constant

for the curve that is the image of E under that isogeny. Fi-
nally, 3_iso_eval uses the values returned by 3_iso_curve
to compute the image of (XS : ZS) under the isogeny. Because
(XS : ZS) lies above (XT : ZT), which is in the kernel of the
isogeny, the order of the image of (XS : ZS) is 3e−1. We refer
to the SIKE specification [52] for a more detailed description
of the xTPLe, 3_iso_curve and 3_iso_eval algorithms.

When the attacker has made a correct key-bit guess using

15In fact, optimized implementations evaluate the isogeny using a more
complicated but more efficient strategy. Our attack applies to either approach.

the methods of Section 5.3.2, Ladder3pt, which is supposed
to return P+[sk3]Q in projective x-coordinate form, instead
returns the invalid value (0 : 0). This is not a valid projec-
tive representation of any point on E ′0, and certainly not the
representation of a point of exact order 3e3 .

An examination of the subroutines invoked by 3_e_iso
reveals some remarkable facts:
• If xTPL or xTPLe is called with (0 : 0) as its first argument,

every intermediate value it computes is 0, and its return
value is (0 : 0), regardless of its second argument.

• If 3_iso_curve is called with (0 : 0) as its argument, every
intermediate value it computes is 0, and it returns (0 : 0)
for (A+

24 : A−24) and (0,0) for (K1,K2).
• If 3_iso_eval is called with (0 : 0) as its first argument,

every intermediate value it computes is 0, and its return
value is (0 : 0), regardless of the value of its second argu-
ment (which, in this case, is (0,0)).

As a result, when 3_e_iso is invoked on input (XS : ZS) =
(0 : 0), every single intermediate value computed during every
loop iteration of 3_e_iso is a 0, including every intermediate
value computed in every subroutine that 3_e_iso calls.

For inputs generated according to our algorithm in Sec-
tion 5.3.2 above but with an incorrect key-bit guess, the point
(XS : ZS) on which 3_e_iso is called will not be (0 : 0), but
it will also not be a point of exact order 3e3 , so the behavior
of 3_e_iso on it is unspecified. On such inputs, we expect
that 3_e_iso will get stuck on (0 : 0) only with negligible
probability. This conjecture is likewise supported by our ex-
periments, with one caveat noted above: there is some chance
that the challenge ciphertext we form to target a bit accessed
late in the ladder will cause Ladder3pt to output a point of
order 3e for some e � e3.16 Evaluating 3_e_iso on such a
point will trigger isogenies computed with kernel as the group
formed by point of infinity O, which will trigger a frequency
increase. We sidestep this problem by recovering the last
14 bits of the key by brute-force search.

A.4 SIKE Error correction

During our attack, a mistake made at bit position k invalidates
measurements targeting all subsequent bit positions. With
mk correct, we expect to observe frequency increases (and
thus mk 6= mk−1) with probability 1/2. By contrast, with mk
incorrect we expect to never to observe frequency increases.

After a sufficiently long run without observing frequency
increases, we backtrack to find the misinterpreted bit. In Sec-
tion 5’s experiments, we set the backtrack threshold to 40 bits.

16In our challenge ciphertext, we set Q = P2 +P3, so Q is a point of order
2e2 3e3 . The output of Ladder3pt is a linear combination of T and [2i]Q,
[a]T + [b][2i]Q, where a and b depend on the secret m. When i is large,
[2i]P2 will have small order 2e2−i. Since T is a point of order 2, [a]T and
[b][2i]P2 might happen to cancel each other, and [a]T +[b][2i]Q will end up
as [b][2i][P3]. If b happens to be a multiple of 3, the output of Ladder3pt
would be a point of order smaller than 3e3 .

19

	Introduction
	Background and Related Work
	CPU Frequency Leakage Channel
	Distinguishing Instructions
	Distinguishing Data

	CPU Frequency Leakage Model
	Hamming Distance (HD) Effect
	Hamming Weight (HW) Effect
	Additivity of the HW and HD Effects

	Remote Timing Attack on SIKE
	P-State and SIKE implementation
	SIKE Key Remote Recovery
	Anomalous 0s in SIKE Decapsulation
	Affine and Projective X-Coordinate Point Representations on Montgomery Curves
	Anomalous 0s in the Montgomery Ladder
	Anomalous 0s in Isogeny Evaluation and j-Invariant Calculation

	Mitigations

	Timer-free Attacks
	Discussion
	Conclusion
	Appendix
	Leakage Model—Additional Experiments
	Mathematical Preliminaries for SIKE
	Anomalous 0s in Isogeny Evaluation: Details
	SIKE Error correction

