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Abstract
While the number of vulnerabilities in the Linux kernel has
increased significantly in recent years, most have limited capa-
bilities, such as corrupting a few bytes in restricted allocator
caches. To elevate their capabilities, security researchers have
proposed software cross-cache attacks, exploiting the mem-
ory reuse of the kernel allocator. However, such cross-cache
attacks are impractical due to their low success rate of only
40 %, with failure scenarios often resulting in a system crash.

In this paper, we present SLUBStick, a novel kernel ex-
ploitation technique elevating a limited heap vulnerability to
an arbitrary memory read-and-write primitive. SLUBStick
operates in multiple stages: Initially, it exploits a timing side
channel of the allocator to perform a cross-cache attack reli-
ably. Concretely, exploiting the side-channel leakage pushes
the success rate to above 99 % for frequently used generic
caches. SLUBStick then exploits code patterns prevalent in
the Linux kernel to convert a limited heap vulnerability into
a page table manipulation, thereby granting the capability to
read and write memory arbitrarily. We demonstrate the appli-
cability of SLUBStick by systematically analyzing two Linux
kernel versions, v5.19 and v6.2. Lastly, we evaluate SLUB-
Stick with a synthetic vulnerability and 9 real-world CVEs,
showcasing privilege escalation and container escape in the
Linux kernel with state-of-the-art kernel defenses enabled.

1 Introduction

Operating system kernels, such as Linux, are susceptible to
memory safety vulnerabilities due to their size and complexity.
However, most of these vulnerabilities have limited capabil-
ities, such as corrupting a few bytes in restricted allocator
caches. These limitations make exploitation difficult in prac-
tice. To make these vulnerabilities even more difficult to
exploit, researchers and kernel developers have included de-
fenses such as SMAP, KASLR, and kCFI [37]. In addition, the
kernel’s allocator is designed to restrict exploits that propagate
from heap vulnerabilities. One particular hardening strategy

is to enforce coarse-grained heap separation. This separation
places objects in distinct allocator caches that maintain blocks
of adjacent pages, called slabs, and separate security-critical
objects from frequently used objects. Hence, vulnerabilities
in frequently used caches cannot be directly exploited to ma-
nipulate security-critical objects, such as credentials.

To circumvent coarse-grained heap separation, security re-
searchers [50] presented software cross-cache attacks, which
have been used by several kernel exploits [2,13,17,19,28–30,
47]. Software cross-cache attacks exploit the memory reuse of
the kernel allocator as follows: Initially, an adversary triggers
a heap vulnerability to obtain and hold on to a write capability
for a victim object. They then free all memory slots on the
slab page containing the victim object and allocate a different
(sensitive) object type. This triggers the allocation of new
slab pages, presumably reclaiming the previously freed and
recycled slab page. The adversary then continues to overwrite
the victim object, which now resides in the same memory
location as the newly allocated sensitive object, corrupting it.

The Linux kernel has two types of allocator caches: ded-
icated and generic caches. While dedicated caches can be
reliably exploited for cross-cache attacks [2, 17, 19, 28, 47],
generic caches cannot [28, 50]. In particular, exploitation of
generic caches has a success rate of only 40 % [50], with
failure scenarios often leading to system crashes. To in-
crease the reliability of generic cache exploitation, security
experts [13, 29, 30, 47] have used stabilization objects, e.g.,
msg_msg or pipe_buffer. However, these objects cannot be
used in newer kernel versions due to more refined heap sepa-
ration, i.e., v5.14 introduced kmalloc-cg-*. Therefore, for
newer kernel versions, cross-cache attacks on generic caches
do not provide the reliability required in practice [28, 50].

In this paper, we present SLUBStick, a novel kernel ex-
ploitation technique that converts a limited kernel heap vul-
nerability into an arbitrary read-and-write primitive. At its
core, SLUBStick exploits timing side-channel leakage of the
kernel’s allocator to reliably trigger the recycling and reclaim-
ing process for a specific memory target. Exploiting this side-
channel leakage significantly enhances the success rate of soft-



ware cross-cache attacks, exceeding 99 % for generic caches
with a single slab page and 82 % for multiple slab pages.
With this substantial increase, our approach overcomes the
prior unreliability and makes cross-cache attacks practical
for exploitation. Using our reliable side-channel supported
approach, SLUBStick performs a cross-cache attack to recy-
cle a slab page that contains a write capability. SLUBStick
then reclaims the slab page as a page table, i.e., Page Upper
Directory (PUD), used for userspace address translation. By
triggering the write capability, SLUBStick overwrites page
table entries, obtaining arbitrary read and write capabilities.

To perform SLUBStick, we overcome the following tech-
nical challenges: First, we present reliably exploitable prim-
itives for our timing side channel that are accessible to un-
privileged users. Second, hardly any kernel heap vulnerabil-
ities provide the capability to modify kernel data directly.
Therefore, we present techniques that exploit code patterns
prevalent in the Linux kernel. These techniques convert heap
vulnerabilities before the recycling phase to allow a write ca-
pability after reclamation as a page table. Third, manipulating
page table entries to obtain an arbitrary memory read-and-
write primitive is challenging because the physical memory
layout is randomized due to KASLR, and we do not assume
address information leakage. Hence, we introduce a reliable
solution that obtains such a primitive from an overwrite.

We conduct a systematic analysis for two Linux kernel
versions, v5.19 and v6.2, providing a comprehensive list of
primitives to successfully execute SLUBStick for all generic
caches from kmalloc-8 to kmalloc-4096. We also evaluate
SLUBStick with a synthetic vulnerability as well as with 9
real-world CVEs for both kernel versions on x86_64 as well
as aarch64, demonstrating its architecture and kernel version
independence. Based on these findings, we conclude that
SLUBStick poses a significant threat to kernel security.

Contributions. The main contributions of SLUBStick are:
(1) Side-Channel Supported Recycling and Reclaiming:

We present a novel approach to reliably trigger the recy-
cling process of a specific memory target and reclaim it
by using a software timing side channel. Our approach
shows success rates exceeding 99 % for frequently used
generic caches, making cross-cache attacks practical.

(2) Novel Exploitation Method: Leveraging our reliable
side-channel supported recycling and reclaiming ap-
proach, we present a novel exploitation technique to
convert kernel heap vulnerabilities with limited capabili-
ties into an arbitrary memory read-and-write primitive
with state-of-the-art kernel defenses enabled.

(3) Comprehensive Analysis and Attack Evaluation: We
systematically analyze two Linux kernel versions, v5.19
and v6.2, showing that SLUBStick can be executed for
generic cache from kmalloc-8 to kmalloc-4096. We
also evaluate SLUBStick using a synthetic vulnerability
and 9 real-world CVEs to escalate privileges.

Outline. Section 2 describes the background and threat

kmem_cache {
kmem_cache_cpu *c __per_cpu;
...
kmem_cache_node *n[];

}

kmem_cache_cpu {
void **freelist;
...
slab *slab;
...
slab *partial;

}

kmem_cache_node {
...
list_head partial;
...
}

slab A

slab B

slab C

slab D

slab E

partial->next

slab->slab_list

slab->freelist

partial->freelist

slab = container_of(&partial, slab)
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free list next pointer

freed object

allocated object

Figure 1: kmem_cache layout for the SLUB implementation.

model. Section 3 presents SLUBStick. Section 4 introduces
our reliable recycling and reclaiming process. Section 5 de-
scribes pivoting heap vulnerabilities. Section 6 details how to
gain arbitrary read-and-write capabilities. Section 7 compre-
hensively evaluates our attack. Section 8 discusses valuable
insights and kernel defenses. Section 9 concludes this work.

2 Background and Threat Model

2.1 Buddy and SLUB Allocator

Linux’s page allocator is based on the Binary Buddy Alloca-
tor [23], mainly referred to as buddy allocator. It allocates
physical contiguous memory in chunks of page order size,
i.e., 2n ·PAGE_SIZE, where n is the page order. Moreover, it
combines this page-order allocation with free chunk merging.

SLUB allocator. As the buddy allocator only provides
page-order allocations, the slab allocator caches available ob-
jects with a predefined size in a multi-level free-list hierarchy,
using pages obtained from the buddy allocator. There are
three main implementations: SLUB is the default choice for
several Linux distributions [22], while SLOB has become
obsolete, and SLAB will be deprecated soon [8].

In the Linux kernel, the SLUB allocator provides two pri-
mary types of allocator caches: dedicated and generic caches.
Dedicated caches are employed for frequently used fixed-size
objects, such as cred or task_struct. Generic caches are
utilized for generic object allocation and deallocation or for
objects whose sizes are not known during compile-time, e.g.,
elastic objects [5]. Both types of caches utilize kmem_cache,
with each dedicated cache having its own kmem_cache, while
generic caches have multiple kmem_caches matched to dif-
ferent sizes. When allocating memory from a generic cache,
the kernel matches the requested size to one of these caches
and allocates an object from the corresponding kmem_cache.
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Figure 2: SLUB allocation of an object, where the terms c and n refer to the kmem_cache_cpu and kmem_cache_node,
respectively. The free lists (i.e., c->freelist and c->slab->freelist) and slab lists (i.e., c->partial and n->partial)
are checked to be either empty or partial.
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Figure 3: SLUB deallocation of an object, where the term slab refers to the slab that contains the object to be freed. The term c
represents the kmem_cache_cpu associated with this slab. The slab is either active (i.e., slab stored as c->slab), or stored in
the partial slab list (i.e., slab located within c->partial) or node partial slab list (i.e., slab located within n->partial).

The Linux kernel incorporates cache aliasing to optimize
memory management. Cache aliasing merges freed objects
stored in distinct kmem_caches with similar characteristics,
e.g., object size and allocation properties. For security rea-
sons, kmem_caches of dedicated or generic caches consid-
ered security-critical are marked as accounted to prevent
aliasing. Essentially, these accounted kmem_caches separate
accounted objects from the non-accounted ones. Security-
critical caches include those that store sensitive information,
such as cred, and objects commonly used for exploitation
(allocated using kmalloc-cg-*), such as elastic objects [5].

Architecture. The architecture of a kmem_cache [22],
shown in Figure 1, includes a kmem_cache_cpu for each
logical CPU and an array of kmem_cache_nodes. The
kmem_cache_cpu comprises various free lists: a CPU free
list (c->freelist), a slab free list (slab->freelist), and
additional free lists of partial slabs (partial->freelist,
maintained as a single-linked list). Despite each slab having
its free list, the separate CPU free list allows lockless alloca-
tion, improving performance. The kmem_cache_node has a
double-linked list of slabs (partial) also containing freed
objects. In the context of this work, we refer to a list (i.e.,
free list, and single- and double-linked list) as full when it
reaches its capacity of containing objects. It is considered
empty when no object is present in it. A list is classified as
partial when it is neither full nor empty.

Allocation and deallocation. kmem_cache stores objects
in a multi-level free-list hierarchy. As shown in Figure 2,
the allocation process starts by searching for an available

object in the lower free-list levels [22]. This process continues
throughout the hierarchy until an available object is found.
These levels include the CPU free list ①, slab free list ②, CPU
partial slab list ③, and node partial slab list ④, with each level
taking more allocation time. If no object is available in any
of these free lists, the SLUB allocator falls back to the buddy
allocator ⑤, which allocates a memory chunk.

When deallocating, the SLUB allocator attempts to place
the object in the lower free-list levels, e.g., CPU free
list ① [22], as shown in Figure 3. Upon deallocation, the
kernel may check the number of free slabs, i.e., the number of
slabs with full free list stored in the node partial slab list ③. If
this number exceeds a particular capability (see Table 4), the
SLUB allocator deallocates the slab’s memory chunks ⑤, re-
turning them to the buddy allocator. Memory chunks returned
in such a recycling phase are reused for future allocations.

Timing attacks on allocation. Lee et al. [26] demon-
strated with PSPRAY the feasibility of performing a timing
side channel on the SLUB allocator. PSPRAY deduces when
the allocator allocates a fresh memory chunk (see ⑤ in Fig-
ure 2). This insight increases the likelihood of successful ker-
nel heap exploitation, which primarily relied on heap spraying,
i.e., for Use-After-Free (UAF) and Double-Free (DF), or heap
grooming, i.e., for Out-Of-Bounds (OOB) [4, 26, 53].

However, their method relies on a precise measurement
primitive that is no longer available in recent kernel versions.
Their primary proposed primitive uses msg_msg. Since it is al-
located via the segregated kmalloc-cg-* for kernel versions
v5.14 or higher, it is limited to scenarios where the vulnerable
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Figure 4: Software cross-cache attack with an initial state,
where a write capability refers to a freed object. An attacker
enforces a recycling ❶ of slab A’s memory chunk by freeing
obj1/2. By allocating sensitive objects, the attacker presum-
ably reclaims ❷ the chunk for a sensitive slab B, resulting in
write capability referring obj3. Lastly, obj3 is overwritten.

object is also allocated from the segregated generic cache.
Other proposed primitives are limited because the compu-
tational overhead of non-allocation tasks primarily masks
allocation timing (e.g., read). Furthermore, their approach
fails to identify suitable measurement primitives, e.g., for
kmalloc-8/16. For other identified primitives, we could not
reproduce the allocation of a single data object (e.g., fchown),
or the primitives are privileged and therefore unusable (e.g.,
kexec_load). We contacted the authors about the applica-
bility of using their identified syscalls (apart from msg_msg)
to determine the timing difference. They confirmed that the
overhead of the syscalls they identified limits their applicabil-
ity. In summary, while their work demonstrates feasibility, its
applicability is limited to older kernel versions.

2.2 Software Cross-Cache Attacks

When the SLUB allocator frees memory chunks using the
buddy allocator, as shown with ⑤ in Figure 3, these chunks
are reused. Classic cross-cache attacks [2,17,19,28,29,47,50]
exploit this reusing behavior. Initially, an adversary compels
the SLUB allocator to recycle a memory chunk containing a
write capability due to vulnerabilities. Subsequently, they allo-
cate numerous sensitive objects from another allocator cache,
hoping to reclaim the previously freed chunk. If successful,
the memory that was previously occupied with the write ca-
pability will now be occupied by sensitive objects. Lastly,
they trigger the write capability to this memory, corrupting
a sensitive data object. The recycling ❶ and reclaiming ❷
phases are shown in a simplified setting in Figure 4.

Xu et al. [50] demonstrated the feasibility of cross-cache
attacks, and subsequent research [28, 29] has further explored
their impact. However, executing such attacks is notably chal-

lenging, particularly for frequently used generic caches. One
significant hurdle is the introduction of noise through uncon-
trolled allocations, complicating to achieve state ⑤ in Figure 3.
For example, unknown allocations from a kernel thread can
thwart the freeing of the slab’s memory chunk, thereby pre-
venting the reclamation [28]. Adding to the complexity, the
unpredictable occurrence of both phases, recycling ❶ and
reclaiming ❷, introduces instability to the exploit.

In summary, mounting cross-cache attacks is complex and
fraught with challenges. Although these attacks are com-
pelling, in practice, they have a limited success rate, as low
as 40 % [50]. Importantly, this percentage only represents the
success rate of the cross-cache attack, excluding additional
stages of an end-to-end exploit, e.g., vulnerability triggering
and memory manipulation, which further reduces the overall
success rate. The process of repeatedly triggering vulnerabil-
ities carries its risks. Traces left in the kernel often make it
difficult to trigger the same vulnerability again. For instance,
an OOB write may corrupt lists when triggered. Hence, re-
peated activation of the vulnerability can result in a crash,
severely limiting the attack’s practicality.

2.3 Threat Model
We assume that an unprivileged user has code execution. Ad-
ditionally, we consider the presence of a heap vulnerability
in the Linux kernel. We assume that the Linux kernel incor-
porates all defense mechanisms available in version 6.4, the
most recent Linux kernel version when we started our work.
These mechanisms include features such as WˆX, KASLR,
SMAP, and kCFI [37]. We do not assume any microarchitec-
tural vulnerabilities, e.g., transient execution [24, 31], fault
injection [43], or hardware side channels [3, 51].

In this work, we primarily focus on heap vulnerabilities
(most common type of software vulnerability according to
Microsoft [36]) that result in a Double-Free (DF), or a Use-
After-Free (UAF) or an Out-Of-Bounds (OOB) allowing for
a limited writing capability. For instance, CVE-2023-21400
enables the double free of an object within the kmalloc-32
generic cache, while CVE-2023-3609 permits a write opera-
tion at offset 0x18 on an object allocated from kmalloc-64.

3 Technical Overview and Challenges

This section outlines SLUBStick’s capability to overcome
several technical challenges when exploiting a limited heap
vulnerability to obtain an arbitrary read-and-write primitive.

3.1 Overview
Obtaining an arbitrary read-and-write primitive with SLUB-
Stick involves three stages, as depicted in Figure 5. In the
first stage (see Figure 5a), SLUBStick exploits a heap vulner-
ability to acquire a Memory Write Primitive (MWP). This
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lowing it to be overwritten from the userspace.

Figure 5: High-level overview of SLUBStick subdivided into three stages exploiting an MWP.

MWP provides an adversary with a write capability at an
adversary-determined time, with the primitive referring to the
memory of a freed object. Subsequently, SLUBStick triggers
the recycling process of its slab’s memory chunk by deallocat-
ing all objects of the slab. This chunk is then returned to the
buddy allocator for future allocations. Crucially, even after
the recycling, the MWP still refers to the recycled chunk.

In the second stage (see Figure 5b), SLUBStick allocates
page tables to reclaim the recycled memory chunk for a page-
table page used to translate a userspace address. The entries in
this table refer to user-accessible pages, storing crucial infor-
mation, e.g., their page frame number and access permissions.

In the third stage (see Figure 5c), SLUBStick triggers the
MWP to overwrite the referenced memory of the page table.
This manipulation allows an adversary to change the page
frame number and permission bits, granting access to any
physical page and adjusting user access permissions. As a
result, the virtual address now refers to the selected page
with permission to modify it from userspace. For example, by
referring to kernel code, this capability allows the adversary to
alter the kernel’s behavior. As another example, the adversary
can reference data of privileged files such as /etc/passwd,
thus modifying it to bypass authentication checks.

SLUBStick does not violate the kernel’s control flow or any
of the existing kernel defenses outlined in Section 2.3. Hence,
these existing kernel defenses cannot mitigate SLUBStick,
highlighting its severe threat to current systems. Furthermore,
efforts to separate generic caches [9] are ineffective in mitigat-
ing SLUBStick. We discuss the limitations of existing kernel
defenses in Section 8.

3.2 Technical Challenges
This section briefly describes how SLUBStick overcomes
several technical challenges to escalate privileges, while the
subsequent sections discuss our solutions in more detail.

Triggering recycling/reclaiming. SLUBStick performs a
cross-cache attack on generic caches. As described in Sec-
tion 2.2, cross-cache attacks have been challenging to execute
because they are unstable and unpredictable [28, 50]. Uncon-
trolled allocations and deallocations introduce noise, making

it difficult to determine when the recycling and reclaiming
phase will occur. However, we present a side-channel sup-
ported approach to reliably trigger the recycling process of a
targeted memory chunk, which is then reclaimed. This signif-
icantly increases the success rate, exceeding 99 % for slabs
with single page-size chunks and 82 % for multi-page-size
chunks, which were previously considered impractical. In
Section 4, we explain our novel approach, which exploits the
side-channel timing leakage of the SLUB allocator.

Pivoting heap vulnerabilities. Pivoting a kernel heap vul-
nerability to establish an MWP presents two sub-challenges:
First, SLUBStick obtains a dangling pointer from the vulnera-
bility. DF vulnerabilities provide us with this capability, while
OOB and UAF write vulnerabilities do not. Hence, SLUB-
Stick requires an appropriate pivoting approach to utilize them
fully. Second, in most cases, a dangling pointer does not di-
rectly allow for controlled overwriting with controlled timing.
Hence, SLUBStick must pivot the dangling pointer, perform-
ing an adversary-controlled write, i.e., MWP. In Section 5, we
explain the process of adequately pivoting capabilities from
kernel heap vulnerabilities to obtain the MWP.

Arbitrary read-and-write. By triggering the MWP,
SLUBStick can overwrite a page table used for address trans-
lations of a userspace address. As the kernel memory layout
is randomized (for physical addresses) by KASLR, and we
do not assume any address information leakage, pivoting an
MWP to an arbitrary memory read-and-write primitive is not
straightforward. In Section 6, we explain how we achieve this
pivot to an arbitrary read-and-write primitive.

4 Triggering Recycling and Reclaiming

In this section, we present a novel approach that reliably trig-
gers the recycling process of a targeted memory chunk and
reclaims it, making cross-cache attacks practical for exploita-
tion. Our approach leverages a software timing side-channel
attack on the SLUB allocator. Through this side channel, we
gain valuable information about when a memory chunk is
allocated and deallocated using the buddy allocator. These
insights allow us to reliably trigger the recycling process of a
targeted chunk (see Section 4.1). To ensure the return of this



chunk during the reclamation phase, we massage the buddy al-
locator’s internal state (see Section 4.2). By combining these
two strategies, our novel approach triggers the recycling and
reclaiming process reliably. To demonstrate the effectiveness,
we provide a proof-of-concept (including experiments), offer-
ing comprehensive details on deploying generic caches from
kmalloc-8 to kmalloc-4096 (see Section 4.3).

4.1 Side-Channel Supported Recycling

To trigger the recycling of a targeted memory chunk, our
approach first groups allocated objects according to their slab
by using a software timing side channel on the allocation. It
then deallocates these grouped objects, prompting the kernel
to recycle the slabs’ chunks, including our targeted chunk.

The principal approach to grouping allocated objects in-
volves timing measurements during standalone object alloca-
tion from userspace. A fast to medium timing indicates that
the object was allocated from one of the slab’s lists (①, ②, ③,
or ④ in Figure 2). Hence, we group it with the previously
allocated object in the same slab. Conversely, if the allocation
time is notably higher (⑤), this indicates that the object origi-
nates from a newly allocated memory chunk and thus a new
slab, which prompts us to group it separately. As a result, we
obtain a list of grouped objects organized by their slabs.

One challenge with this approach is the lack of primitives
in the Linux kernel to accurately measure standalone alloca-
tion times with minimal non-allocation tasks from userspace.
This is because a single object allocation involves notable
non-allocation tasks, e.g., allocating an object by opening its
device. Using primitives with notable non-allocation tasks, as
proposed by PSPRAY [26] for non-separated generic caches,
leads to inaccurate and unusable results. To address this chal-
lenge, we separate the timing measurement from the persistent
object allocation. While an allocation primitive persistently
allocates an object, the timing measurement primitive is used
to group this allocated object based on its slab.

Measurement primitive. We measure the timing of prim-
itives that involve both allocation and deallocation within a
single syscall while only performing minimal non-allocation
tasks. During the deallocation process within this primitive,
the previously allocated object is consistently set to the active
CPU free list (state ① in Figure 3), which only minimally af-
fects the measured timing. The minimal non-allocation tasks
executed during the syscall exhibit high consistency, which
also minimally affects the results. Thus, the measured timing
depends primarily on the allocation. This allows us to deter-
mine when a new memory chunk is allocated from userspace,
indicated by a notable slow allocation timing. To illustrate the
notable difference between fast and slow allocation timings,
we provide detailed experiments in Appendix B.

An example of a measurement primitive is the add_key
syscall, shown in Listing 1. To ensure minimal interference
from non-allocation tasks, our approach invokes the add_key

1 ssize_t __do_sys_add_key(const char __user *_desc) {
2 ssize_t ret;
3 size_t len = strnlen_user(_desc) + 1;
4 char *desc = kmalloc(len, GFP_KERNEL);
5 size_t n = copy_from_user(desc, _desc, len);
6 if (n) goto ERR;
7 desc[len - 1] = 0;
8 if (IS_INVALID(desc)) goto ERR;
9 ... /* add_key code execution */

10 ERR:
11 kfree(desc);
12 return ret;
13 }

Listing 1: The add_key syscall serves as a measurement
primitive to determine whether Line 4 allocates a new chunk.

1 size_t timed_alloc(int *time) {
2 /* allocate the 64 byte struct snd_ctl_file */
3 int fd = open("/dev/snd/controlC0", O_RDONLY);
4 /* timed allocation with invalid add_key */
5 char _desc[64] = INVALID_DESC;
6 size_t t0 = rdtsc_begin();
7 add_key(_desc);
8 size_t t1 = rdtsc_end();
9 *time = t1 - t0;

10 /* return allocated object */
11 return fd;
12 }

Listing 2: An example of a 64 byte allocation from userspace,
where Line 3 allocates a snd_ctl_file object. Between
Lines 6 and 8, we use the add_key measurement primitive to
determine whether a new chunk was allocated.

syscall with a _desc, which fails the validation check at
Line 8. As a result, the syscall primarily involves two privi-
lege switches, allocation and deallocation, with the execution
time mainly depending on the allocation. By measuring the
timing of this syscall, our approach determines whether Line 4
allocates a new memory chunk. Crucially, while the add_key
syscall is one example, measurement primitives are common
in the Linux kernel, as we later illustrate in Section 4.3.

Persistent allocation primitive. A persistent allocation
refers to a situation where the allocated kernel object remains
allocated until the corresponding deallocation counterpart is
executed. Crucially, the deallocation of the object must occur
within the deallocation syscall, not at a later time. Therefore,
objects released inside a Read-Copy-Update (RCU) [35] call-
back function cannot be used for persistent allocation. Also,
the de-/allocation syscalls must be unprivileged.

Triggering the recycling process. Using our method of
accurately measuring allocation timing and persistently allo-
cating objects, our approach to reliably triggering the recy-
cling process consists of two stages.

In the first stage, we allocate and group kernel objects
based on their slabs. We start emptying all free lists within
the cache’s multi-level hierarchy by allocating many objects.
Next, we persistently allocate objects to fill the free memory
slots of the slab while using our measurement primitive to



exploit the timing side channel for grouping the allocated
objects. Listing 2 shows an example of combining a measure-
ment primitive (e.g., add_key) with a persistent allocation
primitive (e.g., snd_ctl_file). The timed_alloc function
provides two outputs: the measured timing at Line 9 and the
allocated object as an identifier at Line 11. Using the mea-
sured *time, we determine whether the object belongs to the
same slab as the previously allocated object (i.e., indicated
by a low value) or whether it originates from a new memory
chunk and hence a new slab (i.e., indicated by a notably high
value). This allows us to group objects identified with fd by
their slabs.

In the second stage, we proceed to free the grouped objects,
prompting the Linux kernel to deallocate their slabs via the
buddy allocator, as denoted by the state ⑤ in Figure 3. The
release of slabs occurs when the number of free slabs exceeds
the capacity of the node’s partial slab list ③, detailed in Ta-
ble 4. Since we know the objects of the slabs and the capacity
of the partial slab list, we retain control over when the memory
chunks, including our target, are recycled. While uncontrolled
deallocations may introduce noise, we show remarkable noise
resilience in our experiments in Section 4.3.

4.2 Massaging the Buddy Allocator

This section determines the reclaiming phase of a targeted
memory chunk based on the recycling phase, where our ap-
proach is tailored to the generic cache size. A memory chunk
can consist of a single or multiple pages, as shown in Table 4.
Our goal is to ensure the reliable reclaiming of either the
recycled chunk or a page-size part of it. Notably, the reclama-
tion chunk’s size is required to be one page, as SLUBStick
reclaims it as a page table, as we later show in Section 6.

For generic caches from kmalloc-8 to kmalloc-256, the
memory chunk consists of a single page. When releasing
slabs’ memory chunks, the buddy allocator follows a Last In
First Out (LIFO) principle to return recycled memory chunks.
Therefore, to obtain a targeted chunk, one can request a page-
size chunk shortly after the recycling process in the opposite
order of the deallocation process.

In contrast, for generic caches from kmalloc-512 to
kmalloc-4096, the memory chunk consists of multiple
pages. To ensure the reclaiming of the recycled memory
chunk as page size, we need to put the allocator in a state
where it splits the targeted memory chunk into smaller ones.
To accomplish this, we take the following strategy: First, we
empty smaller memory chunks, reducing the number of avail-
able smaller chunks. Next, we perform the recycling process,
preparing for subsequent chunk splitting and reclaiming. Fi-
nally, we allocate multiple page-size chunks. This compels
the kernel to split the targeted memory chunk into smaller
ones, making it available for allocation. Through these steps,
we ensure that the buddy allocator splits the targeted memory
into smaller chunks and returns them for page-size allocation.

4.3 Proof-of-Concept and Experiments

For our Proof-Of-Concept (POC), we first systematically ana-
lyze the Linux kernel to identify kernel objects suitable for
a measurement and allocation primitive. We then combine
our approaches discussed in Sections 4.1 and 4.2 to reliably
trigger the recycling and reclamation phase. Our POC demon-
strates the feasibility and effectiveness of our approach with a
success rate of between 99.3 % to 99.9 % for single page-size
chunks and 82.1 % to 93.5 % for multi-page-size chunks.

Systematic analysis. Our approach requires a measure-
ment (e.g., add_key in Listing 1) and an allocation (e.g.,
snd_ctl_file in Listing 2) primitive. We scan the kernel
code for suitable code patterns using the query language Cod-
eQL [15], as we explain in detail in Appendices C.2 and C.3.

Many kernel execution paths in the kernel allow measure-
ment primitives, as any snippet that copies user data to a
dynamically allocated buffer and subsequently performs vali-
dation checks can be leveraged. This includes functions that
delegate the allocation and copying process to commonly
used routines like strndup_user and memdup_user. Hence,
our analysis yields a measurement primitive for each generic
cache from kmalloc-8 to kmalloc-4096 (see Table 8).

Similarly, the kernel has many execution paths that allow
persistent allocation primitives, as any unprivileged syscall
that persistently allocates an object and has a freeing coun-
terpart that instantly releases the object can be leveraged. As
a result, our analysis also yields an allocation primitive for
each of these generic caches (see Tables 6 and 7).

We conduct this analysis for Linux kernel versions v5.19
and v6.2. Our results, presented in Table 8 for measurement
primitives and Tables 6 and 7 for allocation primitives, under-
line the high applicability of our approach across versions.

Experiments. We demonstrate the feasibility and effec-
tiveness of our approach by showcasing how to reliably trig-
ger the recycling process of a targeted memory chunk and
reclaim it during the reclaiming phase. To perform this exper-
iment, we use a read device driver rdd, shown in Listing 6.
The driver provides object allocation (ALLOC), deallocation
(FREE), and reading of the object’s contents (READ). Alloca-
tion and deallocation are used to allocate and release an object
on a target memory chunk while reading determines if the
reclamation was successful. In this experiment, we use a page
table as the object that reclaimed the recycled memory chunk.
To allocate a page table, we map a page without all page ta-
ble levels mapped. We consider the experiment successful
if we can read the page table entries from our rdd after the
reclaiming phase since this means that the page table success-
fully reclaimed our target memory chunk. The experiment is
considered unsuccessful if we can not trigger the recycling
process for the chunk containing the target object or if the
recycled page is not reclaimed as a page table.

We ran this experiment 100 times to determine the suc-
cess rate, which we repeated 10 times to compute the mean



Table 1: Success rate of triggering the recycling and reclama-
tion process for generic caches.

Generic Cache #Pages Success Rate
Idle No CPU pinning External noise

% % %
kmalloc-8 1 99.9±0.1 99.9±0.1 99.6±0.7
kmalloc-16 1 99.4±0.6 98.9±1.2 99.9±0.4
kmalloc-32 1 99.4±0.9 99.7±0.5 99.9±0.3
kmalloc-64 1 99.2±1.3 99.2±0.9 81.0±6.4
kmalloc-96 1 99.9±0.4 99.9±0.1 99.8±0.6
kmalloc-128 1 99.9±0.4 99.8±0.5 99.9±0.3
kmalloc-192 1 99.9±0.4 99.8±0.4 99.3±1.2
kmalloc-256 1 99.9±0.3 99.9±0.3 99.7±0.7
kmalloc-512 2 90.2±5.4 87.2±3.1 65.2±2.8
kmalloc-1024 4 88.1±7.2 79.5±3.3 70.3±8.1
kmalloc-2048 8 83.1±9.2 70.5±16 57.8±5.7
kmalloc-4096 8 82.1±3.4 73.3±19 53.8±10

and standard deviation. We tested under an idle system with
CPU pinning and two noise conditions: no CPU pinning and
external noise, demonstrating our noise resilience. Our exper-
imental setup was Ubuntu 22.04 LTS with the generic Linux
kernel v6.2 for x86, where v5.19 gives similar results. We ran
this on a machine with Intel i7-1260P and 48 GB RAM.

CPU pinning is the method used to fix a process to a CPU,
preventing CPU migration. Since both the slab and buddy al-
locator maintain per-CPU lists, CPU migration may introduce
noise. To examine this effect, we included both scenarios:
with and without CPU pinning. To introduce external noise,
we ran stress-ng concurrently with two workers for each
CPU, IO, and VM, saturating approximately 100% usage on
all CPUs. This aligns with prior noise evaluation [26].

Results. Under idle, our experiments (see Table 1) show
remarkable results, with a more than 99.2 % success rate for
generic caches with page-size chunks, i.e., kmalloc-8 to
kmalloc-256. The failure scenarios are primarily due to the
targeted chunk that can not be reclaimed as a page table. The
results of generic caches with multiple page-sized chunks
decrease with increasing size from 90.2 % to 82.1 %. This is
primarily due to the failure in reclaiming the targeted page
from the split chunk. The larger the original chunk, the more
error-prone the reclaiming is, as seen by the lowest success
rate of about 83 % for generic caches with 8 pages.

Our results demonstrate remarkable noise resilience for al-
most all generic caches with page-size chunks with more than
98 % for no CPU pinning and external noise. One exception is
kmalloc-64 for the noise evaluation since stress-ng per-
forms frequent allocation directly following deallocation for
kmalloc-64. Hence, it appends a memory chunk to the node
partial list, which makes it confusing to reclaim the memory
chunk before the actual target chunk as the target chunk. For
multiple page-sized chunks, no CPU pinning decreases the
success rate to 70.5 %, while external noise decreases it to
53.8 %. Crucially, despite the induced noise, our approach is
still notably better than the prior success rate of 40 % with no
noise [50].

5 Pivoting Kernel Heap Vulnerabilities

SLUBStick leverages a kernel heap vulnerability to gain a
Memory Write Primitive (MWP). This primitive provides an
adversary with a write capability to previously freed mem-
ory at a controlled time. To achieve this, SLUBStick initially
obtains a dangling pointer (see Section 5.1), i.e., a pointer
referencing an already freed object from a heap vulnerabil-
ity. SLUBStick then establishes an MWP from this dangling
pointer (see Section 5.2). Crucially, we must extend the time
window between converting the dangling pointer to an MWP
(i.e., before the recycling) and when it is triggered (i.e., after
the reclaiming). These steps provide the adversary with an
MWP that can be triggered at the desired time.

5.1 Obtaining a Dangling Pointer

In this section, we pivot DF, and UAF and OOB write vulner-
abilities to obtain a dangling pointer.

Double-Free. By exploiting a DF vulnerability and free-
ing an object twice, we induce a situation where the pointer
to an object becomes dangling. However, freeing the same
object twice will cause it to reside twice in the CPU free list,
corrupting this free list and causing a system crash. Hence, to
leverage a DF vulnerability for obtaining a dangling pointer,
SLUBStick allocates an object after its initial freeing and then
utilizes the subsequent double free to create a dangling pointer
pointing to this newly allocated object. Reallocating the ob-
ject prevents the duplicate free list entry, avoiding free-list
corruption and a subsequent system crash.

Out-Of-Bounds and Use-After-Free write. While
UAFs that allow write control over dangling pointers might
work, they often fall short in practice. For direct use in
SLUBStick, a UAF vulnerability would need specific criteria:
First, they must retain overwriting capability post-zeroing
during recycling. Second, they must be triggerable after
reclaiming as a page table. Third, they require the ability to
overwrite specific values, i.e., malicious page-table entries.
However, most UAFs [2, 19, 40, 52] provide limited write
primitives and small race windows, thus failing these criteria.

Hence, SLUBStick leverages significantly weaker write
capabilities offered by UAF (and OOB) vulnerabilities com-
monly found in practice to enforce a double free of an object.
It does so by using this capability to manipulate either a ref-
erence counter or an object pointer within an object of the
same cache. By corrupting these members, SLUBStick forces
an object into a DF state (see Double-Free above).

In Linux, reference counters manage the lifetime of an ob-
ject. At its core, the counter increases with each new reference
and decreases with each release. When the counter reaches
zero, all the object’s resources are released. For exploitation,
SLUBStick identifies a victim object within the same cache
containing a reference counter located at the write capabil-
ity. Using heap manipulation [6, 26, 50], it aligns this victim



1 int ipmi_open(void) {
2 ipmi_file_private *priv;
3 /* allocate object */
4 priv = kmalloc(sizeof(*priv));
5 }
6 long ipmi_ioctl(file *f, u64 data) {
7 ipmi_file_private *priv;
8 ipmi_timing_parms parms;
9 /* copy data from user */

10 copy_from_user(&parms, data);
11 priv->parms = parms;
12 }

Listing 3: Persistent code pattern 1.

1 u64 netlink_sendmsg(msghdr *msg, u64
len) {

2 /* allocate object */
3 sk_buff *skb = kmalloc(len);
4 /* copy data from user */
5 copy_from_user(obj, msg, len);
6 }

Listing 4: Persistent code pattern 2.

1 u64 keyctl_pkey_verify(void *uaddr, void *
uaddr2, u64 size, u64 size2) {

2 /* allocate and copy data from user */
3 void *in = kmalloc(size);
4 copy_from_user(in, uaddr, size);
5 /* second copy for extending time window */
6 void *in2 = kmalloc(size2);
7 copy_from_user(in2, uaddr2, size2);
8 /* free obj */
9 kfree(in2);

10 kfree(in);
11 }

Listing 5: Temporal code pattern.

Figure 6: Examples of code patterns allowing to be exploited as a Memory Write Primitive (MWP).

object in memory with the write capability. SLUBStick then
utilizes the write capability to corrupt the counter, forcing the
release of the object still in use and placing it in a DF state.

To demonstrate the applicability of this approach, we an-
alyze the kernel for the available objects with a reference
counter located at each potential 8 byte write capability. We
found 873 objects with a reference counter. They cover 100 %
of overwrite locations for generic caches up to kmalloc-32
and more than 80 % for generic caches between kmalloc-64
and kmalloc-256. For caches between kmalloc-512 and
kmalloc-4096 the availability ranges from 73.4 % to 2.7 %.

Regarding pointer corruption, SLUBStick identifies a vic-
tim object within the same cache that contains a pointer to
an object from a separate cache. SLUBStick then places the
victim object to align the overwrite capability and triggers
it to corrupt the pointer by zeroing out the two least signif-
icant bytes. This creates an additional reference to another
object in the separate cache. When the kernel releases this
object, SLUBStick obtains a dangling pointer to the other
object stored in the separate cache without leaking KASLR.

The uncorrupted pointer must refer to an object in a dif-
ferent slab. Otherwise, the slab that now contains a double-
referenced object cannot be recycled, as the object that was
originally pointed to has lost its reference and cannot be freed.
To ensure that the uncorrupted pointer refers to an object in a
different slab, SLUBStick employs our side channel (see Sec-
tion 4.1). This technique allows for detecting and preventing
failure scenarios, enhancing the success rate of pivoting.

Primitive conversion. The success rate of converting a
UAF (including DF) vulnerability to a dangling pointer re-
lies on the time window between the free and use stages.
Techniques like ExpRace [27] can enhance exploitability by
widening the time window. Additionally, UAF and OOB write
vulnerabilities require an object with a reference counter or
pointer located at the write capability.

5.2 Establishing a Memory Write Primitive
In this section, we detail how SLUBStick establishes a Mem-
ory Write Primitive (MWP) from a dangling pointer, allowing
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Figure 7: The execution timeline of persistent code patterns
1 (P1) and 2 (P2), where timed alloc performs persistent
allocations combined with our timing side channel. kmalloc
allocates the memory slot referenced by the dangling pointer.
Since this slot resides on the page table after recycling and
reclamation, copy_from_user overwrites page table entries.

an adversary to overwrite memory reclaimed for a page table
(see Section 6). The main challenge is to extend the time
window from converting the dangling pointer into an MWP
before recycling, while triggering must be done after the re-
claim as a page table. To address this challenge, we exploit
three distinct code patterns prevalent in the Linux kernel, as
demonstrated in our systematic analysis.

Persistent code pattern 1. The pattern shown in Listing 3
grants SLUBStick an MWP with control over the timing. The
process involves allocating the memory slot referred to by
the dangling pointer, e.g., as an ipmi_file_private object
at Line 4, before recycling. After reclamation, SLUBStick
triggers the MWP with ipmi_ioctl to overwrite page table
entries at Line 11. Figure 7 shows P1 with its timeline.

While this pattern allows the MWP to be triggered
arbitrarily, it has limitations as the allocated object, e.g.,
ipmi_file_private, is zeroed during recycling. If other
code parts access the (unexpectedly) zeroed data, this could
lead to a crash. Notably, this limitation does not affect
ipmi_file_private, but others like timerfd_ioctl.

Persistent code pattern 2. The second pattern (see List-



ing 4) allows SLUBStick to trigger an MWP at a controlled
time as follows: It allocates the memory slot referred to by
the dangling pointer, e.g., as sk_buff at Line 3, before the
recycling. Within the same syscall, the overwriting step at
Line 5 follows after memory reclamation. To extend the
time window between allocation and overwriting, SLUBStick
can use techniques such as userfaultfd, Filesystem for
USErspace (FUSE) [16], or slow page fault [20], controlling
the duration of a user page fault, e.g., from of msg at Line 5.

While prior work [29, 40, 55] controlled the duration
of copying from userspace with userfaultfd, recent sys-
tems restrict userfaultfd to privileged users for handling
user page faults while in kernel mode [7]. Alternatively, re-
searchers [16] showed that FUSE also allows control of the
duration of copying from userspace. FUSE is a framework for
userspace filesystems and can be utilized by an unprivileged
user [16, 21]. We hence use FUSE to extend the time win-
dow between allocation and overwriting, allowing us to per-
form the recycling and reclaiming in between. Besides FUSE,
SLUBStick can leverage the slow page fault approach [20].

We show P2 with its execution timeline in Figure 7, where
thread B’s page fault starts before recycling and ends after
reclaiming. The hourglass illustrates this time window ex-
tension, e.g., with FUSE. Hence, SLUBStick successfully
overwrites entries in the reclaimed page table.

Temporal code pattern. Beyond persistent patterns,
SLUBStick can also utilize temporal ones, as exemplified
in Listing 5. This approach demands the management of two
specific timing windows. The first ensures that object allo-
cation at Line 3 and subsequent overwriting at Line 4 occur
during the intended phases. The second window is crucial
to avert premature object deallocation, leading to a potential
failure scenario since the object is concurrently accessed as a
page table. To extend these time windows, SLUBStick uses
FUSE files as described for persistent pattern 2.

Systematic analysis. We use CodeQL [15] to identify suit-
able code patterns. We detail this approach in Appendix C.4.
Our results for Linux kernel versions v5.19 and v6.2 are
shown in Table 9. They indicate that persistent code pattern 1
is with 3 instances (and limited sizes) rare. For persistent code
pattern 2, we identify 5 instances with sizes that cover generic
caches from kmalloc-8 to kmalloc-4096. A similar stands
true for temporal code patterns with 7 identified. These find-
ings underline the portability of the existing patterns.

6 Arbitrary Memory Read-and-Write

This section describes the three-stage process to obtain an
arbitrary memory read-and-write primitive by triggering an
MWP once, with an example shown in Figure 8. The single
triggering of the MWP is crucial since both the persistent
pattern 2 and the temporal pattern only allow a single trigger.

Initially, SLUBStick starts with a mapped userspace
page using a Page Upper Directory (PUD) for address

translation, with an MWP associated with it. The goal
is to corrupt the content of a targeted page. Figure 8a
shows an example where the userspace page utilizes the
cr3->pgde->pude->pmde->pte->page translation, and
SLUBStick aims to corrupt the targeted page containing data
of /etc/passwd. While /etc/passwd is the target in this
example, any page can be targeted, including kernel code.

In the first stage (Figure 8b), SLUBStick utilizes the
MWP to partially overwrite the PUD page with pude’ entries,
each comprising a page frame number of zero and set user-
accessible and size bit. As a result, userspace addresses using
these entries for the page-table walk (cr3->pgde->pude’)
are granted read and write access over the first physical GB.

In the second stage (Figure 8c), SLUBStick maps userspace
pages, prompting the kernel to map page tables. It continues
this process until a page table (PT’ in the case of Figure 8c)
is mapped in the first GB of physical memory. Given SLUB-
Stick’s control over reading and writing the first GB, the con-
tent of this page table PT’ can be modified.

In the third stage (Figure 8d), SLUBStick overwrites an
entry in the page table PT’ with pte’. This grants an arbitrary
physical memory read and write, using the userspace page
with the cr3->pgde->pude->pmde’->pte’ address transla-
tion. Since kpti is enabled by default on Ubuntu, SLUBStick
uses an invalid syscall to flush this translation from the TLBs
and force a page-table walk. Other methods, such as using
a TLB eviction set referring to zero pages, would also work.
With this primitive, SLUBStick can locate the targeted page
and tamper with its content to escalate privileges, e.g., adding
a privileged user with no authentication required.

This example uses the MWP to overwrite a PUD page but
can also be used to overwrite a Page Middle Directory (PMD)
page. By tampering with a PMD page, SLUBStick has an
access space to find PT’ of 2 MB instead of 1 GB.

In fact, we can use our MWP to overwrite not just a single
page table entry but the entire memory slot previously used
by the object. For instance, the function netlink_sendmsg
allows an adversary to overwrite len (see Line 5 of Listing 4)
bytes of the page table page. Thus, to increase the access space
after the first stage to find PT’, SLUBStick overwrites the
page table with entries of increasing page frame number. This
approach increases the access space to sizeof(cache)

8 · 1GB
and sizeof(cache)

8 ·2MB for PUD and PMD, respectively.
Reliability of obtaining an MWP to a PMD/PUD page.

In order to reliably obtain an MWP primitive to a PMD or
PUD page, SLUBStick employs the following strategies.

For generic caches from kmalloc-8 to kmalloc-256,
SLUBStick maps a single PUD page, as explained in Sec-
tion 4.2, with an MWP associating the PUD, as follows: Ex-
ploiting the LIFO approach inherent to the buddy allocator
for returning recycled memory chunks, SLUBStick initiates
the mapping of a user page with an unmapped PUD, PMD,
and PT. This procedure guarantees the reliable reclamation of
the recycled memory chunk for the PUD page.
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(a) SLUBStick has an MWP to a
PUD page used for a user address
translation. It aims to tamper with
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(b) SLUBStick leverages the
MWP to write pude’ (i.e., pfn=0,
size=1, and user=1) to the PUD
page. As a result, user addresses
using pude’ now reference the
first GB of the physical memory.
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(c) SLUBStick maps alot of page
tables, till a page table (i.e., PT’)
is mapped within the first GB of
the physical memory.
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(d) SLUBStick uses first GB map-
ping to tamper with the entry pte’
of page table PT’. As a result,
the user address using pte’ now
references an arbitrary page, e.g.,
/etc/passwd.

Figure 8: Converting an MWP to an arbitrary read-and-write primitive to find and tamper with the targeted page /etc/passwd.

Conversely, achieving an MWP to a PMD page involves
another strategy. For generic caches from kmalloc-512 to
kmalloc-4096, where the memory chunk size exceeds a
single page, SLUBStick initially prompts the kernel to split
the recycled memory chunk. To reliably reclaim the split
part of the memory chunk containing the MWP, SLUBStick
employs an extensive mapping strategy for PMD pages, ac-
complished by mapping 2 MB huge pages. This extensive
mapping tactic compels the buddy allocator to predominantly
allocate PMD pages, including the page associated with the
MWP. There are two options for using huge pages: Transpar-
ent Huge Pages (THP) or hugetlbfs. Albeit hugetlbfs offers
more stable exploitation results, these huge pages must be
pre-allocated. However, due to the widely spread application
of hugetlbfs [25], such as databases [38], virtualization, and
even Java [18], SLUBStick utilizes hugetlbfs.

7 Attack Evaluation

In this section, we evaluate the effectiveness of SLUBStick.
We initially exploit a synthetic DF vulnerability (see Sec-
tion 7.1) to show its applicability across generic caches from
kmalloc-8 to kmalloc-4096. We then exploit 9 CVEs (see
Section 7.2), consisting of DF, UAF, and OOB vulnerabilities.

Evaluation setup. For our experimental setup, we run the
exploits in a virtual machine via QEMU 6.2.0, equipped with

4 cores and 16 GB RAM. We ran Ubuntu 22.04 LTS, with
Linux kernels v5.19 and v6.2 for x86, and v6.2 for aarch64,
to demonstrate architecture and version independence. These
kernels were the unmodified generic ones, which presents a
considerable challenge for exploitation.

7.1 Synthetic Vulnerability
To evaluate SLUBStick for all generic caches, we create a
synthetic DF vulnerability in the Linux kernel, integrated into
a module, i.e., read device driver rdd. Its simplified code is
seen in Listing 6. For the exploitation processes, we need this
driver code’s allocation (ALLOC) and release (FREE) function-
alities. We compile and then include this driver code during
the operating system’s startup for our three kernels.

With the synthetic DF vulnerability in place, we exe-
cute SLUBStick on all generic caches from kmalloc-8
to kmalloc-4096. For the measurement primitive, we use
add_key with the invalid argument _descr (see Section 4.1).
As allocation primitive, we utilize objects retrieved via
our systematic analysis (see Section 5.2). For the MWP,
we accomplish the exploitation with all three types, per-
sistent 1 and 2 as well as temporal, using do_signalfd4,
replace_user_tlv, and key_ctl_key_verify, respec-
tively. Table 2 shows all primitives used for this evalua-
tion. Equipped with these primitives, we successfully execute
SLUBStick, exploiting the DF for privilege escalation.



Table 2: Primitives used for our attack evaluation.

Generic Cache MP AP MWP
kmalloc-8 add_key signalfd_ctx do_signalfd4
kmalloc-16 add_key aa_revision key_ctl_key_verfify
kmalloc-32 add_key anon_vma_name key_ctl_key_verfify
kmalloc-64 add_key snd_ctl_file key_ctl_key_verfify
kmalloc-96 add_key vfio_container key_ctl_key_verfify
kmalloc-128 add_key dlm_user_proc key_ctl_key_verfify
kmalloc-192 add_key pp_struct key_ctl_key_verfify
kmalloc-256 add_key snd_compr_file replace_user_tlv
kmalloc-512 add_key tls_context replace_user_tlv
kmalloc-1024 add_key pipe_buffer replace_user_tlv
kmalloc-2048 add_key key.description replace_user_tlv
kmalloc-4096 add_key net_device replace_user_tlv
MP: Measurement Primitive AP: Allocation Primitive MWP: Memory Write Primitive.

Table 3: Exploitability shown on real-world vulnerabilities.

CVE Capability Cache
CVE-2023-21400 DF kmalloc-32
CVE-2023-3609 UAF kmalloc-96
CVE-2022-32250 UAF kmalloc-64
CVE-2022-29582 UAF files_cachep
CVE-2022-27666 OOB kmalloc-4096
CVE-2022-2588 DF kmalloc-192
CVE-2022-0995 OOB kmalloc-96
CVE-2021-4157 OOB kmalloc-64
CVE-2021-3492 DF kmalloc-4096

7.2 Real-World Vulnerabilities
In line with prior research [6,29,46,49,53], we evaluate SLUB-
Stick with a selection of real-world vulnerabilities. We port
these vulnerabilities to our kernels to demonstrate the version,
architecture, and kernel binary independence of SLUBStick.
Our evaluation includes 9 vulnerabilities that are systemat-
ically classified based on the capability they provide. If the
root cause of a vulnerability is a race condition that allows
an adversary to derive a kernel heap vulnerability, we clas-
sify it as a heap vulnerability. For instance, since both race
conditions, CVE-2023-21400 and CVE-2022-29582, can be
pivoted to a UAF and DF, respectively, we classify them as a
UAF and DF. In total, our selection consists of 3 DF vulnera-
bilities that enable SLUBStick directly, as well as 3 OOB and
3 UAF that we pivot to achieve a DF state.

The feasibility of pivoting an OOB and UAF depends on
the write capability provided. We demonstrate with our re-
sults that the capability to overwrite as low as two bytes is
enough to pivot to a DF state. Examples include corrupting
a reference counter (as seen in CVE-2022-29582 and CVE-
2023-3609) or nullifying the two least significant bytes of a
pointer (like in CVE-2022-27666). For pivoting, SLUBStick
requires an exploitable object containing a data pointer or
reference counter at the overwrite point. The purely manual
identification of suitable objects is time-consuming due to the
extensive nature of the Linux kernel. For this reason, we uti-
lize CodeQL to assist in identifying suitable objects for OOB
and UAF write vulnerabilities, described in Appendix C.1.

Exploitability results. Table 3 shows the exploitability of

SLUBStick, showcasing its functionality across kernel heap
vulnerabilities and cache sizes. Specifically, we can free ob-
jects twice for the CVE2023-21400, CVE-2022-2588, and
CVE-2021-3492 vulnerabilities, allowing SLUBStick to ex-
ploit these vulnerabilities and directly escalate privileges.

Additionally, the CVE-2022-0995 vulnerability al-
lows overwriting out-of-bounds originating from the
watch_queue object. We exploit this write capability
to corrupt the reference counter of an anon_vma_name
object, both located within the same generic cache, i.e.,
kmalloc-96. With the corrupted reference, we create a
DF state of an anon_vma_name object, which enables the
execution of SLUBStick. For CVE-2022-27666, the OOB
allows overwriting memory adjacent to the page_frag
object (allocated from generic cache kmalloc-4096). We
perform a cross-cache overflow to zero the next pointer’s
two least significant bytes of a msg_msg object positioned on
the adjacent memory chunk. This allows us to free the next
twice so we can execute SLUBStick. As a third OOB write
vulnerability, CVE-2021-4157, we exploit the overwriting
capability within kmalloc-64 to tamper with the reference
counter kref of an eventfd_ctx object. As a result, we can
pivot this to a DF and perform SLUBStick.

Furthermore, the CVE-2022-29582 vulnerability allows a
file UAF, specifically using the file object after it has been
invalidly freed. By strategically pivoting this vulnerability
using cross-cache, we can reclaim the memory chunk for the
generic cache kmalloc-256. Subsequently, we reclaim the
invalidly freed file object to corrupt its reference counter.
This allows us to free the file a second time, creating a DF
state to run SLUBStick. Similarly, CVE-2023-3609 allows to
use a tc_u_hnode object after it has been freed. Reclaiming
the memory within the same generic cache and overwriting
the reference counter, we pivot this vulnerability to a DF
state of tc_u_hnode to perform SLUBStick. Lastly, the CVE-
2022-32250 vulnerability provides a write capability within
the generic cache kmalloc-64, which we use to corrupt a
data pointer within fdtable for a DF state.

8 Discussion

Impact on existing attacks. Our side-channel supported ap-
proach presented in Section 4 greatly enhances the reliability
of cross-cache attacks from generic caches and makes them
practical for exploitation. Thus, it amplifies the effectiveness
of exploitation methods employing cross-cache attacks.

For instance, DirtyCred [29] relies on the cross-cache ap-
proach to exploit DF vulnerabilities. This exploitation entails
pivoting DF vulnerabilities to trigger an invalid free on a
credential object. With our enhancement of the cross-cache
attack, DirtyCred’s success rate in pivoting DF vulnerabili-
ties from generic caches also significantly increases, making
DirtyCred an even more significant threat to kernel security.

Moreover, SLUBStick is more versatile than DirtyCred



as it does not rely on an invalid free on a credential object.
Instead, an invalid free operation on any object is sufficient.

Container escape. In addition to privilege escalation, our
research demonstrates that SLUBStick can directly enable
container escapes such as Docker. For containers permitting
FUSE, SLUBStick uses FUSE to extend the time window
in persistent code pattern 2 and the temporal pattern. For
(hardened) containers prohibiting FUSE, SLUBStick uses
persistent code pattern 1 or the slow page fault approach [20]
instead of FUSE. It then modifies kernel code accessible from
userspace via a syscall, i.e., sys_setresuid.

Noise. With SLUBStick, we present a reliable approach
for privilege escalation, leveraging a software timing side
channel on the SLUB’s object allocation. To maximize the
reliability of SLUBStick, we minimize noise as follows:

CPU migration, the process of moving a task to another
CPU, can introduce instabilities as both the slab and buddy
allocator maintain per-CPU lists. To mitigate migration and,
hence, increase reliability, SLUBStick may pin all running
processes used in exploitation to a single CPU. However, it is
not essential as illustrated in Table 1.

Due to the preemptive nature of the Linux kernel, preemp-
tion may occur during the timing measurement of a mea-
surement primitive, potentially corrupting the result. To limit
this noise source, SLUBStick performs timing measurements
and keeps track of the number of objects associated with the
current slab. If SLUBStick observes slow timing, indicating
the allocation of a new memory chunk, it validates this by
checking the object number of the current slab. This valida-
tion prevents misinterpretation of slow allocations, ensuring
that previous and current objects reside in the same slab.

Manual vs automated components. We use the Cod-
eQL [15] static analyzer to generate a list of possible objects
or primitives automatically. Through manual inspection, we
then refine this list by selecting suitable candidates. To pro-
vide a representation of the effectiveness of our automated
part, our evaluated kernel contains 66787 structures, where
our automated tool outputs 8601 potential as allocation and
memory write primitives. After manual inspection, we get
36 suitable structures for allocation primitives. For memory
write primitives, the tool outputs 2046 copy locations, where
manual inspection yields 15 memory write primitives. For
measurement primitives, the tool outputs 195 primitives, with
14 after inspection. Tables 6 to 9 show our findings. Further
details on this process are provided in Appendix C.

Cross version/architecture dependencies. Kernel ex-
ploitation often depends on the specific kernel version and
system architecture, as various exploitation techniques are
closely tied to these factors. For example, KASLR is bypassed
either with a read primitive [5] or a hardware side channel [3].
Read primitives are closely tied to specific kernel versions and
configurations, while hardware side channels depend on the
system architecture. Additionally, numerous exploits rely on
constructing ROP chains [48,54], which involves a detailed in-

spection of the kernel binary, a process connected with system
architecture, Linux kernel version, and configuration. SLUB-
Stick distinguishes itself by not relying on bypassing KASLR
or constructing a ROP chain, nor does it use architecture-
specific data. As a result, SLUBStick is resilient to variations
in kernel versions and architecture dependencies.

Kernel defenses. The last decade has seen a surge of pro-
posals to improve kernel security. We briefly discuss the de-
fenses, particularly considering SLUBStick.

KASLR is designed to enhance kernel security by ran-
domizing the memory layout, making it more challenging to
exploit vulnerabilities to perform Code Reuse Attacks (CRA)
and data-only attacks. To further complicate CRA, researchers
have introduced Control-Flow Integrity (CFI) [1], which has
been adapted to kernel software [10, 14, 32, 45]. CFI helps
ensure the integrity of the kernel control flow by restricting it
to an approximated control-flow graph. Moreover, the Linux
kernel has incorporated various hardening strategies to make
the allocator more resistant to memory corruption vulnerabili-
ties. These include slab list randomization, protection of slab
meta-data, and slab quarantine [39]. However, researchers
have identified bypassing attacks [26, 39, 53] for these hard-
ening strategies. Additionally, heap separation is a defense
integrated into the Linux kernel to separate caches containing
security-critical data, e.g., cred, or objects often used for ex-
ploitation [29, 40, 55], e.g., msg_msg. To further enhance the
separation of kernel objects, researchers [9] have proposed to
increase the separation granularity. This involves randomly
assigning each allocation site to one of these separated caches,
making heap spraying attacks more challenging. However,
SLUBStick leverages common code patterns, allowing it to
circumvent the separation attempt of generic caches. Going a
step further, our timing side channel on the allocator can even
be utilized to determine whether two allocation sites share
the same cache. In summary, the described countermeasures,
while valuable, appear ineffective in mitigating SLUBStick.

AUTOSLAB [28] is a defense provided by grsecurity via
paid subscription. Since AUTOSLAB separates allocator
caches based on their allocation types, it restricts that dif-
ferent allocation types share the same allocation cache. How-
ever, this granularity is still too coarse-grained, as, e.g., the
type char * is used by multiple allocation, measurement,
and memory write primitives. As a result, the allocation cache
with type char * is still exploitable with SLUBStick.

SLAB_VIRTUAL [42], which is currently under develop-
ment, is designed to mitigate cross-cache attacks by allocating
kernel objects via virtual addresses rather than direct physi-
cal memory. However, Torvalds and Molnar noted that it has
drawbacks like significant overhead and incompatibility with
DMA [42]. If merged, DMA-allocated memory will most
likely be excluded [42]. This leaves more than 350 allocation
sites unprotected, exploitable to obtain all necessary code
patterns (allocation, measurement, and memory write primi-
tives, such as sun8i_ce_aes_setkey, monwrite_new_hdr,



and sti_hqvdp_vtg_cb). Hence, SLUBStick can exploit a
vulnerability, e.g., CVE-2023-2194, of a DMA-allocated ob-
ject. Since DMA-allocated memory is mainly used in drivers,
known to be vulnerable [34], SLUBStick still poses a threat.

Lastly, prior academic works [11, 33, 41, 44] proposed de-
fenses to protect page tables to mitigate data-only attacks.

While existing defenses such as AUTOSLAB and
SLAB_VIRTUAL demonstrate promise in mitigating SLUB-
Stick, none provide comprehensive protection. This under-
scores the threat SLUBStick poses to kernel security.

Public exploits. Recently, multiple non-academic ex-
ploits have been proposed [2, 12, 13, 17, 19, 30, 47, 52].
Some [2, 17, 19, 47] leverage cross-cache attacks using the
dedicated file cache. In contrast, we focused on generic
caches, which are considerably more challenging to exploit.
This is primarily because generic caches have numerous allo-
cation sites, resulting in significant allocation noise. Specifi-
cally, while the dedicated file cache has one allocation site
(dup_f), generic caches have from 354 (kmalloc-4096) to
2250 (kmalloc-64) on systems like our evaluated Ubuntu.
Hence, we proposed our side-channel supported approach to
perform cross-cache attacks on generic caches reliably.

Two exploits, bad io_uring [30] and the exploit demon-
strated by Wu et al. [47], highlight the exploitation of cross-
cache attacks on older kernel versions (i.e., v5.10), targeting
Android devices. Bad io_uring leverages a cross-cache at-
tack to misuse pipe_buffer as an arbitrary read and write.
Wu et al. (concurrently to our work) demonstrated page-
table manipulation by misusing signalfd_ctx. Both ex-
ploits rely on stabilization objects in conjunction with multi-
ple retriggers of cross-cache reuse. Specifically, bad io_uring
utilized additional pipe_buffer objects for stabilization,
while Wu et al. relied on seq_operations. However, ker-
nel advances beyond v5.14 introduced heap separation (i.e.,
kmalloc-cg-*), rendering the reuse of these stabilization
objects ineffective for exploitation. Consequently, these ex-
ploitation strategies are thwarted by newer kernel versions. In
contrast, SLUBStick exploits more recent systems, including
v5.19 and v6.2, for a wide variety of heap vulnerabilities.

9 Conclusion

This paper presented SLUBStick, a novel kernel exploit tech-
nique that enables arbitrary memory read-and-write primitives
through a practical software cross-cache attack. For our cross-
cache attack, we used a software timing side channel on the
SLUB allocator, significantly enhancing the success rate for
frequently used generic caches to over 99 %. Moreover, us-
ing page-table manipulation, SLUBStick effectively converts
a limited kernel heap vulnerability into arbitrary read-and-
write capabilities. We demonstrated privilege escalation in
the Linux kernel using a synthetic vulnerability and 9 real-
world CVEs, showcasing its serious threat.
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Table 4: Detailed information of each generic cache, where ✶
denotes the number of slabs until the node partial slab list is
full, prompting to discard the slabs’ memory chunks.

Generic Cache Memory Chunk Number of Number of Node Partial Slab
Pages Objects List Capacity✶

kmalloc-8 4096 1 512 6
kmalloc-16 4096 1 256 6
kmalloc-32 4096 1 128 6
kmalloc-64 4096 1 64 8
kmalloc-96 4096 1 42 12
kmalloc-128 4096 1 32 8
kmalloc-192 4096 1 21 12
kmalloc-256 4096 1 16 7
kmalloc-512 8192 2 16 6
kmalloc-1024 16384 4 16 6
kmalloc-2048 32768 8 16 6
kmalloc-4096 32768 8 8 6

A Generic Cache Information

To trigger the recycling process reliably, we provide insights
(see Table 4) into how a generic cache manages memory
chunks and stores available objects. Generic caches from
kmalloc-8 to kmalloc-256 use one page per slab, with the
slab storing 512 to 16 objects per memory chunk. Caches
larger than kmalloc-256 use multiple pages per slab, storing
between 16 and 8 objects per chunk. The Node Partial Slab
List Capacity column indicates when the SLUB allocator
releases the chunks of the slabs, e.g., for kmalloc-256, if
this cache reaches 6 free slabs, the SLUB allocator prompts
the buddy allocator to discard and recycle the slab’s chunks.
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Table 5: Measured timing in timestamps for fast ① and slow ⑤
allocation (see Figure 2) using the measurement primitive
add_key with an invalid _descr argument.

Generic Cache Fast Allocation ① Slow Allocation ⑤

kmalloc-8 1086 ± 53 > 4401
kmalloc-16 1114 ± 69 > 3224
kmalloc-32 1133 ± 58 > 2510
kmalloc-64 1130 ± 69 > 2468
kmalloc-96 1117 ± 44 > 2169
kmalloc-128 1250 ± 126 > 2470
kmalloc-192 1197 ± 86 > 2121
kmalloc-256 1359 ± 34 > 2439
kmalloc-512 1685 ± 84 > 3759
kmalloc-1024 1601 ± 30 > 3589
kmalloc-2048 1561 ± 23 > 3415
kmalloc-4096 1925 ± 33 > 3758

1 typedef struct { size_t uaddr, size; } msg_t;
2 void *obj;
3 long rd_ioctl(struct file *_, unsigned num, size_t param) {
4 msg_t msg;
5 copy_from_user(&msg, param, sizeof(msg_t));
6 switch (num) {
7 case ALLOC:
8 obj = kmalloc(msg->size);
9 return 0;

10 case FREE:
11 kfree(obj);
12 return 0;
13 case READ:
14 copy_to_user(msg->uaddr, obj, msg->size);
15 return 0;
16 default:
17 return -1;
18 }
19 }

Listing 6: Read device driver rdd, supporting an allocation
(ALLOC), deallocation (FREE), and read (READ).

B Timings of Measurement Primitives

We perform experiments to verify that the slow allocation
time ⑤ is higher than the fast allocation time ① (see Figure 2).
We use add_key as the measurement primitive with an invalid
_descr argument to fulfill the constraints described in Sec-
tion 4.1, while others (e.g., mount with an invalid dev_name
address) yield similar results. Our experimental environment
is Ubuntu 22.04 LTS with a Linux kernel v6.2, running on a
machine with Intel i7-1260P and 48 GB RAM. We allocate
16384 objects as a warm-up to ensure that the measured tim-
ing of the subsequent allocations is either from the CPU free
list ① or from a new memory chunk using the buddy alloca-
tor ⑤. We then perform 4096 allocations and distinguish them
between Fast and Slow Allocation. As shown in Table 5, the
results demonstrate a notable timing difference between these
allocation paths, with an average fast allocation from 1086 to
1925 timestamps and a minimum slow allocation from 4401
to 3758.

Table 6: Allocation primitives allocating a single fixed-size
object during the syscall, with ✶ new objects identified.

Generic Cache Object Constraints
pci_filp_private✶

kmalloc-8
signalfd_ctx
afs_file✶

kmalloc-16
aa_revision✶
vmci_host_dev✶
seq_operations cg cache
coda_file_info✶

kmalloc-32

shm_file_data
snd_info_private_data✶

kmalloc-64
snd_ctl_file✶
subprocess_info
watch_queuekmalloc-96
vfio_container✶

kmalloc-128 dlm_user_proc✶
loopback_pcm✶
snd_timer_user✶kmalloc-192
pp_struct✶
vhci_data✶
snd_compr_file✶kmalloc-256
msg_queue cg cache
tls_context

kmalloc-512
mousedev_client✶ input group
pipe_buffer
tty_struct
sock
xfrm_policy

kmalloc-1024

nouveau_cli✶
super_block

kmalloc-2048
perf_event✶ SELinux disabled

kmalloc-4096 net_device

Table 7: Allocation primitives allocating a single variable-size
object during the syscall, with ✶ new objects identified.

Elastic Object Generic Caches Constraints
user_key_payload kmalloc-[32,32767) only 200 allocation
anon_vma_name✶ kmalloc-[8,96)
msg_msg kmalloc-[64,4096) cg cache
msg_msgseg kmalloc-[8,4096) cg cache
drm_property_blob kmalloc-[96,INT_MAX)
key.description kmalloc-[8,4096)

C Systematic Analysis Detailed

In this section, we present our systematic analysis in more de-
tail. Our principal approach is first to identify a list of possible
objects or primitives using the CodeQL [15] static analyzer.
We then use these results to manually identify suitable re-
sults or discard those results that violate the constraints of
the respective primitive. For each primitive, our systematic
analysis results in a comprehensive list of suitable objects and
functions, demonstrating the effectiveness of our approach.

CodeQL aims to find code patterns that cause vulnera-
bilities in software. At its core, it creates a database where
essential meta-information about the examined software is
stored. With this database, CodeQL uses queries as input
to analyze the software and interpret the query results. We
retrofit CodeQL to find allocation and measurement primi-
tives (see Section 4.1). We also use CodeQL to find suitable
victim objects for UAF and OOB write vulnerabilities (see
Section 5.1) and suitable code patterns to exploit for an MWP



Table 8: Measurement primitives, where ✶ denotes allocation via the separated kmalloc-cg-* caches and ✩ denotes depending
allocation size whether msg_msg/msg_msgseg is allocated.

Syscall File Argument Allocation Size Condition
add_key security/keys/keyctl.c _descr [1,4096) *(char *)_descr = ’.’
request_key security/keys/keyctl.c _descr [1,4096) _callout_info bad address
keyctl$KEYCTL_JOIN_SESSION_KEYRING security/keys/keyctl.c arg2 [1,4096) *(char *)arg2 = ’.’
keyctl$KEYCTL_SEARCH security/keys/keyctl.c arg4 [1,4096) arg2 invalid keyid
keyctl$KEYCTL_PKEY_QUERY security/keys/keyctl.c arg5 [1,4096) arg2 invalid keyid
mount fs/namespace.c type [1,4096) dev_name bad address
fsopen fs/fsopen.c _fs_name [1,4096) _fs_name not existing
fsl_hv_ioctl$FSL_HV_IOCTL_SETPROP drivers/virt/fsl_hypervisor.c *(size_t *)arg [1,4096) *((size_t *)arg+1) bad address
perf_ioctl$PERF_EVENT_IOC_SET_FILTER kernel/events/core.c arg [1,4096) !has_addr_filter(event)
joydev_ioctl_common$JSIOCSAXMAP drivers/input/joydev.c argp [64,UINT64_MAX) *(char *)argp > 0x3f
fsconfig$FSCONFIG_SET_FD fs/fsopen.c _key [1,256) fget(aux) not existing
prctl$PR_SET_VMA$PR_SET_VMA_ANON_NAME kernel/sys.c arg5 [1,80) *(char *)arg5 = 1
io_uring_register$IORING_REGISTER_RESTRICTIONS fs/io_uring.c arg [16,UINT32_MAX) *(short *)arg = 5
msgsnd$alloc_msg✶ ipc/msgutil.c len [64/8✩,4096) mtext bad address

Table 9: Code patterns allowing for an MWP, where ✶ denotes
the same function for allocation and triggering the MWP of
the persistent object, and ✩ and ✢ denote distinct function
for allocation and triggering the MWP.

Function Type Size Constraints
ipmi_open✩/ipmi_ioctl✢ P1 8
do_signalfd4✶ P1 8
joydev_ioctl✶ P1 5680
replace_user_tlv P2 [1,131072)
atmel_ioctl P2 [1,32) CAP_NET_ADMIN
netlink_sendmsg P2 [1,INT_MAX)
tun_sendmsg P2 [1,INT_MAX)
tap_sendmsg P2 [1,INT_MAX)
mount T [1,4096)
key_ctl_key_verfify T [1,256)
mtdchar_writeoob T [1,4096)
mmc_blk_ioctl_copy_from_user T 96
ptp_ioctl T 1216
__cld_pipe_inprogress_downcall T [1,65536)
__bpf_copy_key T [1,512) bpf as unprivileged

P1/2: Persistent code pattern 1/2 T: Temporal code pattern.

(see Section 5.2).

C.1 Finding Suitable Objects to Pivot UAF and
OOB Writes

To find suitable objects for pivoting UAF and OOB vulnerabil-
ities with an overwriting capability, we need a victim object
with a pointer to a dynamically allocated object or a refer-
ence counter at the location of the overwriting location. In
the example of CVE-2022-32250, the UAF write vulnerabil-
ity provides overwriting at offset 0x18 for objects allocated
from the generic cache kmalloc-64. With these constraints,
we use a CodeQL query to help find dynamically allocated
objects with either a pointer or reference counter at an off-
set of 0x18. We find the fdtable object that satisfies these
constraints with the pointer open_fds at an offset 0x18.

Our query takes the overwrite offset and object size as
input and returns all matching objects available in the Linux
kernel with default kernel configurations. From these possible
objects, we manually identify a suitable object accessible
from userspace as an unprivileged user, e.g., the fdtable for

the CVE-2022-32250 vulnerability.

C.2 Finding Allocation Primitives
For allocation primitives, our CodeQL query identifies every
persistent object allocation code location grouped by object
size. From this list, we manually filter out those inaccessible
from userspace as unprivileged users. The result is a list of
fixed and variable-size objects, shown in Tables 6 and 7.

C.3 Finding Measurement Primitives
For measurement primitives, any code snippet that copies
user data into a dynamically allocated buffer and then per-
forms validation checks can be leveraged. This includes ker-
nel functions that use strndup_user, memdup_user and
memdup_user_nul. Therefore, we use a CodeQl query to
obtain all the code locations where these functions are called.
Next, we manually validate, e.g., by running test programs
to execute the syscall that executes the function found, that
these code locations are accessible from userspace as an un-
privileged user. In the example of the add_key syscall, we
execute this syscall with a _desc where the first byte is a ’.’.
All other conditions with additional information to execute
the measuring primitives can be found in Table 8.

C.4 Finding Memory Write Primitives
For memory write primitives, our queries obtained all code
locations that execute copy_from_user. With all these lo-
cations, we search for our three distinct code patterns, i.e.,
persistent code patterns 1 and 2, and temporal code pat-
terns. We then filter out those that violate constraints, e.g.,
timed_alloc shown in Listing 2. As a result, we obtain
functions that can be used as MWP, shown in Table 9.
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