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Abstract—DNS employs a variety of mechanisms to guarantee
availability, protect security, and enhance reliability. In this
paper, however, we reveal that these inherent beneficial mecha-
nisms, including timeout, query aggregation, and response fast-
returning, can be transformed into malicious attack vectors.
We propose a new practical and powerful pulsing DoS
attack, dubbed the DNSBoOMB attack. DNSBOMB exploits
multiple widely-implemented DNS mechanisms to accumulate
DNS queries that are sent at a low rate, amplify queries into
large-sized responses, and concentrate all DNS responses into
a short, high-volume periodic pulsing burst to simultaneously
overwhelm target systems. Through an extensive evaluation
on 10 mainstream DNS software, 46 public DNS services, and
around 1.8M open DNS resolvers, we demonstrate all DNS
resolvers could be exploited to conduct more practical-and-
powerful DNSBOMB attacks than previous pulsing DoS at-
tacks. Small-scale experiments show the peak pulse magnitude
can approach 8.7Gb/s and the bandwidth amplification factor
could exceed 20,000x. Our controlled attacks cause complete
packet loss or service degradation on both stateless and stateful
connections (TCP, UDP, and QUIC). In addition, we present
effective mitigation solutions with detailed evaluations. We
have responsibly reported our findings to all affected vendors,
and received acknowledgement from 24 of them, which are
patching their software using our solutions, such as BIND,
Unbound, PowerDNS, and Knot. 10 CVE-IDs are assigned.

1. Introduction

Denial-of-Service (DoS) attacks [19], prevalent in to-
day’s cyber landscape, act by overwhelming target systems
or networks and rendering them inaccessible to legitimate
users. These attacks have become an insidious threat, with
the potential to cripple vital online services and cause sub-
stantial financial and reputational damage [18]. Traditional
DoS attacks function by continuously flooding a target with
superfluous requests and exhausting the available resources.
In particular, they often employ reflectors and amplifiers,
such as DNS and NTP servers [21], [71]. Such classic hyper-
volumetric DoS attacks, however, are simple to detect due
to continual high volumes of traffic [34], [49].

To make DoS attacks more covert and effective, conse-
quently, Kuzmanovic and Knightly first proposed the Puls-
ing DoS (PDoS) attack in 2003 [50]. Unlike its continuous
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counterpart, a PDoS attack is characterized by intermittent
traffic bursts aimed at periodically overwhelming the target
and a low average traffic rate during the period. This pulsat-
ing approach is analogous to a pulse beat, which resonates
at the target’s weakest points, causing perturbations that can
lead to temporary or even permanent system failure. For
example, [50] exploits the weakness of the TCP congestion
control mechanism, causing packet loss on retransmission
and inducing a throughput of nearly zero. Due to the fact that
a PDoS attack only generates a series of low-rate sequential
packets, its pulsating “on and off” nature enables it to evade
detection and is more resource-efficient for the attackers.
Previous Study. After the emergence of the PDoS attack,
a number of research studies have been continually devoted
to the evolution of this technique through both theoretical
analysis and practical attacks (see Section 2). For theoretical
analysis, researchers have been implementing the PDoS at-
tack in various networks, such as wireless networks [35], IoT
protocols [82], etc., through analyzing specific attack mod-
els and simulating with fixed pulsing traffic. For instance,
Guirguis et al. [36] point out that any Internet end-systems
depending on adaptation mechanisms are vulnerable to the
PDoS attack. All of these works demonstrate that the PDoS
attack can effectively cause DoS or service degradation on
the target system. Regarding practical attacks, the security
community endeavors to construct practical pulsing traffic
using real-world infrastructures at a low sending rate. For
example, Rasti et al. [77] first introduce the temporal lensing
technique to concentrate DNS queries based on the path
latency. Guo et al. [39] further apply the same latency-based
method on CDN as the converging lenses. However, these
PDoS attacks either yield a small amplification factor (e.g.,
10 of [77]) or require a large pulse period (1,800s of [39]),
neither of which are practical and powerful enough to apply.
Key Observations. In this paper, we observe the capacity of
DNS resolvers to concentrate traffic has never been studied
in depth. Even though Rasti et al. [77] utilize DNS resolvers
to concentrate queries, the path latency limits the accumu-
lating time window to no more than 800ms. Besides, it is
challenging to tightly synchronize attack traffic from multi-
ple sources as a bursting pulse at target servers [47], [69].
We find that the inherent availability-guaranteeing, security-
protecting, and reliability-enhancing DNS mechanisms can
be exploited to accumulate, amplify, and concentrate attack
traffic with a much larger time window and less cost.
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Our Paper. Inspired by the aforementioned key observa-
tions, we propose a new practical-and-powerful-ever pulsing
DoS attack, dubbed the DNSBOMB attack (see Section 3).
With DNSBOMB, attackers could generate a high-volume
intermittent pulsing burst in a short period, which is pow-
erful enough to saturate the bandwidth of target networks.

DNSBOMB is made possible through exploiting both
DNS queries and responses based on three primary bene-
ficial DNS mechanisms [65], [66], which are widely im-
plemented to guarantee availability, protect security, and
enhance reliability (see Section 4). Specifically, first, we
employ the availability-guaranteeing DNS mechanism time-
out to ensure a long period for accumulating queries, e.g.,
between 1s and 15s, which is greater than the maximum path
latency. Second, by leveraging the security-protecting DNS
mechanism query aggregation on the same domain, we can
amplify a small-sized DNS query packet into a large-sized
response packet with minimal overload on attackers’ name-
server. Third, by delicately delaying the response, we are
able to manipulate resolvers to simultaneously return all re-
sponses to the spoofed source IP address with the reliability-
enhancing DNS mechanism response fast-returning. We also
provide a theoretical analysis of DNSBOMB to show which
metrics influence our attack. For example, a large accumu-
lating time window and a rapid response speed contribute
significantly to DNSBOMB. In addition, we introduce ad-
ditional DNSBOMB attack extensions to increase the at-
tack surface and the impact, e.g., exploiting IP fragmenta-
tion [23], [74] and coordinating multiple resolvers like [77].
Experiments and Results. To demonstrate the practical ex-
ploiting picture of DNSBOMB, we evaluate 10 mainstream
DNS software, 46 public DNS services, and around 1.8M
open DNS resolvers (see Section 5). We first calculate the
theoretical concentration efficiency, then we measure the
real attack impact with controlled experiments, and lastly
we present the result with detailed statistics and traffic trend
figures. (i) By testing locally-installed DNS software, we are
able to capture all of their attacking behaviors. (ii) For public
DNS services, we examine them with ethical considerations,
such as only sending 1,000 DNS queries. (iii) In order to
prevent actual exploitation, we only assess the attack metrics
of 1.8M open DNS resolvers, showing their potential power
of DNSBOMB. Overall, all resolvers could produce a larger
bandwidth amplification factor (BAF) than traditional DoS
attacks. The majority of them could result in a much larger
BAF than previous PDoS attacks. For example, the pulsing
traffic burst (BAF) is 2.9Gb/s (21,881x) for Unbound, while
for Yandex DNS it is 876.2Mb/s (10,834.0x).

Furthermore, we conduct controlled real-world experi-
ments to determine how DNSBOMB can DoS or degrade
services (see Section 6). Results indicate that DNSBOMB
can cause complete packet loss or significant latency for
both stateless and stateful services (UDP, TCP, and QUIC).

In conclusion, our experiments demonstrate that all DNS
resolvers can be exploited to conduct more practical-and-
powerful DNSBOMB attacks than previous PDoS attacks.
Mitigation and Disclosure. To defend against DNSBOMB,
we propose detailed mitigations based on best current prac-
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Figure 1. Concept of the Pulsing DoS Attack.

tices and assess them with comprehensive experiments (see
Section 7), such as reducing the timeout value or extending
the response-returning time. Results show our recommended
solutions can effectively eliminate the amplification effect.
For example, the BAF of Unbound is reduced by 99.9% to
20.2x. We have reported discovered findings to all affected
parties, including 10 DNS software and 46 public DNS
service vendors. We received responses from 39 vendors
and discussed mitigations with them, 24 of which have con-
firmed DNSBOMB, such as BIND, Unbound, PowerDNS,
and Knot. 10 CVE numbers have been assigned. We are still
awaiting responses from other vendors. We will also publish
our evaluation details on https://dnsbomb.net. In summary,
our paper calls for a rethinking of the state-of-the-art DNS
mechanisms and the mending of potential exploitation risks.
Contributions. We make the following contributions:

o Comprehensive Survey of Pulsing DoS Attacks. We pro-
vide an in-depth survey of prior PDoS attacks to show
the current state and aid in identifying new attacks.

o Novel Pulsing DoS Attacks. We propose a new practical
and powerful PDoS attack by transforming beneficial
DNS mechanisms into malicious attack vectors.

o Vulnerable Population and Real-world Evaluation. We
conduct extensive experiments to discover the vulner-
able resolver population and evaluate the real-world
attack impact (an over 20k BAF inducing packet loss).

o Detailed Mitigation and Responsible Disclosure. We
introduce detailed mitigation solutions with evaluation
experiments to show the defense effectiveness, and we
responsibly report our findings to affected vendors.

2. Current State of Pulsing DoS Attacks

The Pulsing DoS attack (PDoS) is a variant of conven-
tional DoS attacks, which aims to direct short and intermit-
tent bursts of high-volume traffic towards target systems like
subsequent and periodic pulses, leading to denial-of-service
(DoS) or reduction-of-quality (RoQ). As shown on the right
of Figure 1, the PDoS attack differs from traditional traffic
flooding attacks that send the attacking traffic continuously
by constructing the traffic pulse with a magnitude of M and
lasting a time window of W at a period of P.

The Shrew Attack. The PDoS attack was first proposed
in 2003 by Kuzmanovic and Knightly [50], named as the
shrew attack. The shrew attack attempts to cause packet
loss and then degrade the TCP connection by creating short
traffic bursts that repeat with a fixed, maliciously chosen,
and slow-timescale frequency. It exploits the weakness of
the TCP congestion control mechanism that operates on
two timescales [26], [72], [75], including Round-Trip Time
(RTT) and Retransmission Timeout (RTO). RTT is used
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to estimate the optimal amount of data that can be “in-
flight” in the network (i.e., data that has been sent but
not yet acknowledged) and adjust the sending rate (the
congestion window) in normal conditions. If packet loss
occurs, TCP will wait for a period of RTO after a packet is
resent until receiving a valid packet. Upon further loss, TCP
dynamically adjusts RTO based on RTT and its variation and
continues the retransmission strategy. If the total DoS traffic
during an RTT-length pulse is sufficient enough to induce
packet loss, the TCP flow will enter a timeout and resend a
packet RTO seconds later. Moreover, if the DoS pulse period
approximates the RTO, the TCP flow will continually incur
loss as it tries to exit the transmission state, fail to exit, and
obtain a nearly zero throughput. Therefore, TCP degradation
will occur. Besides, due to the low average traffic bandwidth,
such attacks are proved harder to detect than traditional
flooding attacks by high-bandwidth traffic analysis.

After PDoS was proposed, numerous studies have been
dedicated to investigating this topic. Based on their applica-
bility, we divide them into two categories: theoretical analy-
sis and practical attacks (left-side of Figure 1). Specifically,
we refer to all the low-rate DoS attacks as the PDoS attacks.

2.1. Theoretical Analysis with Model and Simula-
tion

To demonstrate the PDoS attack impact, Kuzmanovic
and Knightly [50] also utilized a combination of analytical
modeling, simulations, and Internet experiments to show that
their attack could throttle the TCP flows to a small fraction
while eluding detection. After that, numerous researchers
started to implement the PDoS attack in different networks
through analyzing specific attack models and simulating
with fixed, precise, and high-volume pulsing traffic.

Initial Stage of PDoS Attack Analysis. Guirguis et al. [36]
point out any Internet end-systems depending on adaptation
mechanisms are vulnerable to the RoQ attack and exemplify
it with a web server under an admission controller. Luo and
Chang further analyze the PDoS model [57] and optimize
the PDoS attack by maximizing the throughput degradation
and minimizing the risk of being detected with a family of
objective functions [58]. Ren et al. [78] present the PDoS
attack in the mobile ad hoc networks that results in great
jitter of goodput and delay. Macid-Ferndndez et al. [59],
[61] assess the iterative (application) server (e.g., an HTTP
server) scenario equipped with FIFO queues and identify
significant overload. Zhang et al. [96] study the effect of
PDoS attacks on disrupting BGP using fixed traffic pulses
(with a pulse magnitude of 185Mb/s and a pulse window
of 150ms). They show that BGP sessions are susceptible to
PDoS attacks and coordinated attacks can be launched with
arbitrarily low-rate individual attack flows.

Development of PDoS Attack Analysis. From 2007 to
2023, numbers of works continue to demonstrate the severe
impact of PDoS attacks (DoS or RoQ) on various network
scenarios, including dynamic load balancers [37], wireless
networks [16], [35], VoIP networks [85], shared links [87],
application servers [60], peer-to-peer networks [40], secure

channels [41], cloud data center networks [29], server-
side sockets [42], feedback-control based Internet ser-
vices [89], rate-limiting of Xen’s hypervisor [90], unsat-
urated systems [84], cloud auto-scaling mechanisms [10],
IoT protocols [82], SDN control channels [15], 4G/LTE
networks [28], residential networks [88], low earth orbit
satellite networks [30], PDoS-optimizing [94], and RPKI
systems [43]. However, they only provide model analysis
and experimental simulation instead of any practical attacks.

In conclusion, these works have proven any applications
or services containing adaptation or feedback-control mech-
anisms are susceptible to PDoS attacks. Our PDoS attack is
developed based on these works and does not involve model
analysis; however, we will present our real-world evaluation.

2.2. Practical Attacks using Real-world Infrastruc-
tures

Provided a comprehensive model analysis and simula-
tion of PDoS attacks, the security community attempts to
figure out how to construct practical PDoS attacks using
real-world infrastructures, i.e., generating multiple low-rate
traffic flows and simultaneously directing them towards the
target. According to the infrastructure employed by attack-
ers, there are two primary types of attacks: botnet-based and
reflector-based practical PDoS attacks.

Botnet-based PDoS Attacks. The straightforward method
to generate multiple attack traffic flows is leveraging a col-
lection of “bots” (machines) controlled by attackers. Then,
flows can be sent concurrently to the target server. Kang
et al. [46] use around thousands of PlanetLab nodes and
Looking Glass servers to represent 107 bots and concentrate
4Kb/s attack flows into 40Gb/s traffic to flood the specific
network link of target servers. They show that their attack
could persistently disconnect a target area and is difficult
to detect. Shan et al. [83] adopt a centralized strategy
with feedback control to coordinate and synchronize bots
in an attempt to cause the long-tail latency problem of the
target web application. The experiment with 10 machines
demonstrates their attacks can achieve the predefined goals.
Reflector-based PDoS Attacks. Real botnets are not easy to
obtain and using them would raise ethical concerns [2], [46];
therefore, researchers resort to open Internet reflectors, such
as DNS and CDN that contribute to numerous worldwide
servers (nodes), for delivering packets. Rasti et al. [77] first
introduce the temporal lensing technique that concentrates
a relatively low-bandwidth flood into a short and high-
bandwidth pulse. The key factor is utilizing the attack path
latency: by first sending packets with longer latencies, and
later sending packets with shorter latencies, attackers can
schedule different packets rendezvousing at the target server
simultaneously within a small pulse window. By leveraging
open DNS resolvers as reflectors [71], [81], they discover
path latencies from several milliseconds to 800ms for con-
centrating DNS query packets. In the end, they realize the
PDoS attack with a lensing bandwidth gain of around 10
between the pulse magnitude and attacker’s maximum send-
ing bandwidth. Bushart [11] further optimizes the temporal
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Figure 2. General DNS Resolution Process with Multiple DNS Roles.

lensing technique with DNS CNAME-chaining to increase
the amplification factor to 14. Recently, Guo et al. [39]
exploit CDN as a converging lens to concentrate low-rate
HTTP requests with varying latencies. They present real-
world experiments with an amplification factor of 1,527,
pulse bandwidth of 872Mb/s, and pulse period of 1,800s.

However, prior studies show it is challenging to tightly
synchronize attack traffic from different bots as a bursting
pulse at target servers [47], [69], which could reduce the
effectiveness of botnet-based PDoS attacks. State-of-the-art
reflector-based PDoS attacks either yield a small amplifica-
tion factor (14) or require a large pulse period (1,800s) that
has a negligible impact on normal traffic during that period.

In contrast, our practical PDoS attack, instead of ex-
ploiting the attack path latency, could be initiated with an
arbitrary pulse period ranging from thousands of millisec-
onds to any duration of time and can reach an amplification
factor greater than tens of thousands of times.

2.3. New Attack Surface in DNS Resolution

The Domain Name System (DNS) operates as a hierar-
chical and distributed database [65], whose task is mapping
human-friendly domain names to machine-understandable
IP addresses. The operational mechanics of DNS are built on
a client-server model, in which DNS clients initiate queries
for domain names and DNS servers return corresponding
responses, primarily over UDP [66]. Figure 2 illustrates the
general DNS resolution process with multiple DNS roles.

The process starts with a DNS client querying its pre-
configured DNS resolvers. Depending on resolution behav-
iors, there are two types of resolvers: a DNS forwarder
that forwards queries to its upstream resolvers, e.g., home
or Wi-Fi routers [17]; a recursive resolver, which performs
the iterative resolution process per se, such as Cloudflare’s
1.1.1.1 and Google’s 8.8.8.8. Specifically, the recursive
resolver proceeds with a series of queries to the Root (*.”),
Top-Level Domain (TLD), and Second-Level Domain (SLD)
authoritative nameservers to retrieve the final answer. The
returned responses are cached by all “querying roles”. Be-
sides, after sending out queries, resolvers will wait a timeout
window (e.g., 1s to 15s) for responses. Responses received
beyond this time window will be ignored.

Although DNS has been demonstrated to be exploitable
to DoS attacks, only the DNS queries or responses are
separately capitalized to establish traditional traffic ampli-
fication [71], [79] or concentrate pulsing traffic [11], [77].
We discover that the combination of the DNS queries and
responses opens long-overlooked attack surfaces to launch
new practical-and-powerful-ever PDoS attacks. Specifically,
currently prevalent DNS mechanisms provide sufficient time
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to accumulate DNS queries and enable the rapid packet
transmission to concentrate DNS responses with a low cost.

3. DNSBoMB Attack Overview

In this paper, we propose a new practical and powerful
DNS-based pulsing DoS attack, named as the DNSBOMB
attack. Rather than leveraging different query path latencies
of global DNS resolvers, DNSBOMB delicately combines
both DNS queries and responses with multiple operational
DNS resolution mechanisms and could achieve a bandwidth
amplification factor of over 20K. Inherently, we demonstrate
that the availability-guaranteeing, security-protecting, and
reliability-enhancing DNS mechanisms can be exploited to
accumulate, amplify, and concentrate attack traffic.

In this section, we first describe the threat model and
then introduce the basic workflow involved in constructing
DNSBOMB attacks, as well as vulnerable DNS mechanisms.
We leave more details and experiments in Section 4 and 5.

3.1. Threat Model

The DNSBOMB attack aims to generate short and pe-
riodic bursting pulse traffic towards the target server using
worldwide open DNS resolvers at a very low traffic cost.
The threat model is depicted in Figure 3. Similar to the
traditional DNS-based DoS attack, we assume the attacker
has the capability of IP spoofing. According to the latest
statistics (July 2023) from CAIDA [14], 19.7% of IPv4
ASes and 26.7% IPv6 ASes are identified as IP-spoofable.
Attackers could utilize any bulletproof hosting service [1]
within these ASes for source IP address spoofing. Besides,
the attacker needs to initiate DNS queries for his or her own
domain towards exploitable resolvers. Because we primarily
use open (public) resolvers as examples in this paper, attack-
ers can send packets directly to them from any location [81].
For resolvers within limited networks, such as private ISP or
enterprise networks, attackers can employ internal persons
or vantage points like Internet measurement platforms [80]
and proxy networks [63]. For the domain, the attacker can
purchase any one in the domain registration platform [31],
[67] and establish controlled nameservers for management,
which will be delicately utilized to conduct this attack.



For the target victims, any server or IP address could be
affected. Due to the infamous DNS-over-UDP mechanism,
attackers could impersonate any IP as the query’s source
address and direct the response to that IP. Besides, resolvers
exploited to return sizeable response traffic are impacted.

3.2. Attack Workflow

As illustrated in Figure 3, there are three critical steps to
construct the DNSBOMB attack: accumulating DNS queries
(step @), amplifying DNS queries into responses (step @),
and concentrating DNS responses to the target (step ®).

The core concept of the DNSBOMB attack is analogous
to Goku’s signature Kamehameha technique (a blast wave
attack) in the Dragon Ball series [27]. The Kamehameha is
formed when cupped hands are drawn to the user’s side to
gather energy (step @: Ka-me), and the energy is enhanced
into a large force ball between cupped hands (step @: Ha-
me). The hands are then thrust forward in order to release
a streaming, powerful beam of energy (step ®: HA!!!).

Similarly, DNSBOMB first accumulates sufficient DNS
queries to collect bomb energy (Ka-me), then amplifies each
query into a larger response for enhancing energy (Ha-me),
and finally concentrates those responses into a powerful
missile of energy directed at the target server (HA!!!).

Since the attacker can control the accumulating time to
collect enough traffic (bomb countdown) and cause concen-
trated traffic to explode like a bomb, we refer to our newly
proposed PDoS attack as the DNSBOMB attack.

@® Ka-me: Accumulating DNS Queries. The first phase is
accumulating as many DNS queries as possible at a very low
rate on the exploitable resolver before response returning
(step @). To achieve this goal, we employ the availability-
guaranteeing DNS mechanism timeout to ensure a long pe-
riod for sending queries. The timeout window, for instance,
can range from hundreds of milliseconds to tens of seconds,
allowing enough accumulating time. Furthermore, we will
show how the IP defragmentation timeout mechanism can
be integrated to increase the accumulating time.

@ Ha-me: Amplifying DNS Queries into Responses. The
second phase is to amplify a small DNS query packet into
a larger response packet (step @). To accomplish this, we
use our controlled domain (nameserver) and return large-
sized responses in accordance with the resolver’s capabil-
ity. Specifically, by exploiting the security-protecting DNS
mechanism query aggregation on the same domain name,
we can significantly reduce our nameserver’s overload from
receiving tens of thousands of accumulated queries to just a
few (or one) queries sent by resolvers. Besides, the name-
server only needs to return one response for the final query
to amplify all clients’ queries into large-sized responses.
® HA!!!: Concentrating DNS Responses. After accumu-
lating numerous queries and amplifying them into larger
responses, in the third phase, by delicately holding the
response until nearing timeout in our own nameserver (step
®), we can manipulate resolvers to simultaneously return
all responses corresponding to each query (step @). Specifi-
cally, because of the reliability-enhancing DNS mechanism
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Figure 4. DNS Resolution under the DNS Timeout Mechanism.

response fast-returning that the packet should be transmitted
as soon as possible, all responses will be concentrated and
then sent to the target server in a short amount of time,
producing a powerful pulsing DoS traffic.

4. Construction of DNSBOMB Attack

In this section, we will describe how to construct the
DNSBOMB attack exploiting DNS queries and responses
under three steps introduced in Section 3. By leveraging
three inherent DNS mechanisms, including timeout, query
aggregation, and response fast-returning, we demonstrate
that DNSBOMB could produce practical and powerful puls-
ing DoS traffic (such as over 8.7Gb/s) on target servers with
the low-rate attacker-side sending traffic (e.g., only hundreds
of Kb/s) and negligible nameserver overload (only observing
a few DNS queries and returning one DNS response). The
bandwidth amplification factor can be over 20k. Further-
more, we propose additional DNSBOMB attack extensions
to strengthen attack impacts and reduce attackers’ workload.

4.1. Accumulating DNS Queries

We utilize the DNS timeout mechanism to accumulate
adequate DNS queries for DNSBOMB at a very low rate of
delivery, such as hundreds of Kb/s during several seconds.
In this part, we first explain the timeout mechanism, then
analyze the considerations, and lastly give a detailed method.
Analysis of DNS Timeout Mechanism. Given the stateless
nature of UDP [73], typically used by DNS, which lacks
inherent delivery promises or retransmission mechanisms,
DNS adopts a timeout mechanism to guarantee its availabil-
ity. The DNS timeout mechanism is an essential operational
component within DNS resolution functions [65], including
the query and response timeout in Figure 4(a). The query
timeout designates the maximum duration a resolver will
wait for a response from a DNS server before considering
the query as timed out. When a resolver sends a query to
a nameserver, it will set a timer, such as BIND’s default
800ms [9], and wait for the response. If the timer expires
without a response being received, the resolver may either
resend the query with an updated timer, possibly to a differ-
ent nameserver, or terminate the request altogether (depicted
in Figure 4(b)). Besides, a retransmission limit is typically
set to prevent incessant retries, such as the amount of 11
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Figure 5. DNS Resolution under Multiple Queries for the Same Domain.

for Unbound [91]. If the response timeout expires (e.g., 10s
for BIND [8]) and no response is received, the resolver will
return a ServFail error answer to the client (displayed in
Figure 4(c)). If there is no retry, the query and response
timeout are the same. In this paper, we regard the response
timeout as the default timeout value. This process effectively
addresses the risk of indefinite waiting caused by packet loss
in the network, ensuring the availability of the DNS system.

Unfortunately, this also opens a new attack surface to
construct the PDoS attack. Compared to the classic exploited
network path latency, which is at most around 800ms [77],
the DNS timeout mechanism provides a much larger window
for queries to accumulate, on the order of seconds like 10s.
Accumulating Considerations. When accumulating the
real DNS queries, we need to determine that how long the
timeout window is and how many queries (rate-limit) can
be held for a source IP address (the target server). For open
source DNS software, we can examine the official documen-
tation or source codes for these configuration values directly.
Regarding open DNS resolvers, we have to measure these
values beforehand, which will be shown in Section 5.
Accumulating DNS Queries Method. After identifying the
timeout and rate-limit values of resolvers, an attacker could
accumulate DNS queries towards them. To ensure that each
query reaches the resolution timeout limit, attackers employ
their own domains. Specifically, for each attack round, at-
tackers should utilize a random subdomain to circumvent
the effect of caching and guarantee that the query arrives
at the nameserver. On the controlled nameserver’s side, the
response can then be held until nearing timeout. During the
timeout window, sufficient DNS queries should be sent to
the resolver at a low rate, one-by-one, until reaching the
rate-limit. The sending rate is rate-limit/timeout queries per
second (QPS), which is usually hundreds of Kb/s.

4.2. Amplifying DNS Queries into Responses

We employ the DNS resolver and controlled nameserver
as reflectors to amplify small-sized queries (~100B) into
larger-sized responses (~4,096B) [71]. However, as shown
in Figure 5(a), if the resolver requests the nameserver each
time it receives a query (step @), the nameserver will be
overwhelmed with equal queries and responses (step @ ©).

## UDP Layer

;i Source Port; Destination Port: 53;
## DNS Layer

33 TXID; Flags: QR=0; RCODE: NoError
;3 QUESTION SECTION:

example.com. A

;3 ANSWER SECTION: NULL

i3 AUTHORITY SECTION: NULL

;3 ADDITIONAL SECTION: EDNSO=4,096
i3 DNS UDP MSG SIZE: ~100B

(a) Query with EDNSO0.

## UDP Layer

;3 Source Port: 53; Destination Port;
## DNS Layer

;; TXID; Flags: QR=I; RCODE: ServFail
33 QUESTION SECTION:

example.com. A

;i ANSWER SECTION: NULL

77 AUTHORITY SECTION: NULL

;3 ADDITIONAL SECTION: EDNSO=1,232
;3 DNS UDP MSG SIZE: ~100B

## UDP Layer

;i Source Port: 53; Destination Port;
## DNS Layer

33 TXID; Flags: QR=1; RCODE: NoError
;3 QUESTION SECTION:

example.com. A

;3 ANSWER SECTION: NULL

example.com. A XaXuXa
example.com. A X X.X.
example.com. A XaXuXa
example.com. A XaXaXal

33 AUTHORITY SECTION: NULL

;; ADDITIONAL SECTION: EDNSO=4,096
33 DNS UDP MSG SIZE: ~4,0968

(c) Response with EDNSO.

example.com. A XaXaXon
;3 AUTHORITY SECTION: NULL
33 ADDITIONAL SECTION: NULL
;3 DNS UDP MSG SIZE: <=512B

(b) servFail Response.

(d) Response without EDNSO.

Figure 6. DNS Query and Response Packet Examples. Red-signated Fields
will be Assigned Different Values Based on the Scenario.

Here, we show first how to use the DNS query aggrega-
tion mechanism to reduce nameserver overloading to only
a few DNS queries and one response, then how to enlarge
the response, and finally the practical amplifying method.
Analysis of DNS Query Aggregation Mechanism. The
DNS query aggregation mechanism was proposed in 2002
to mitigate the birthday attack’s effect on DNS servers [44],
[68]. The birthday attack is a type of cryptographic attack
that exploits the mathematics underlying the birthday prob-
lem in probability theory [86]. In the context of DNS, an
attacker sends a large number of queries with the same
domain in the hopes that one will match a malicious re-
sponse, leading to cache poisoning. As shown in Figure 5(a),
after receiving a query from the client, the resolver will
send a new request with different transaction IDs (TXIDs)
(step ®). In response to counteracting this attack, the DNS
query aggregation mechanism aggregates identical queries
received within a short time window into one single outgo-
ing query, thereby effectively reducing the attack surface.
As shown in Figure 5(b), since only one query is delivered
to the nameserver (step @), the chances of a TXID match-
ing one malicious response significantly decrease. It also
reduces network traffic and improves efficiency between the
resolver and nameserver. After obtaining a response from the
nameserver (step ©), the resolver will process all queries by
returning equal corresponding responses to the client.
Amplifying Considerations. According to RFC 1035 [66],
the maximum size of a DNS UDP packet has traditionally
been 512 bytes. Considering an average DNS query of 100
bytes, the amplification effect is minimal. To increase the
response size further, we leverage the extension mechanism
for DNS (EDNSO defined in RFC 6891 [22]), which allows
an extended size of up to 4,096 bytes. Similarly, before
amplifying, the attacker needs to determine the maximum
DNS UDP size enabled by exploited resolvers and then
returns responses of the matching size to them. In Section 5,
we will show that, although DNS Flag Day 2020 [24] and
resolvers recommend 1,232 bytes of packet size via the
EDNSO option, we can still force some resolvers to return a
4,096-byte response to clients by setting EDNSO to 4,096.
Amplifying DNS Queries into Responses Method. Here,
we use the EDNSO size of 4,096 as an example. As shown
in Figure 6(a), when accumulating DNS queries, we append
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Figure 7. DNS Response Returning Examples of Resolvers.

each with an EDNSO option and set its value to 4,096. Then
we return a response with as much data as needed to amplify
the packet to 4,096B. If the packet size exceeds the enabled
EDNSO size like 1,232B, the resolver will return a ServFail
response illustrated in Figure 6(b). Otherwise, the resolver
will return the entire 4,096-byte response in Figure 6(c) via
IP fragmentation to the client. For a query without EDNSO,
the response packet in Figure 6(d) is no larger than 512B.

4.3. Concentrating DNS Responses

The final stage is to concentrate all accumulated-and-
amplified DNS responses and direct them as a short pulsing
traffic to the target. This part will first describe how we
utilize the DNS response fast-returning mechanism to con-
centrate packets into a short pulse window (such as tens or
hundreds of milliseconds) and generate a traffic pulse of over
1Gb/s, followed by practical considerations and methods.
Analysis of DNS Response Fast-returning Mechanism.
The DNS response fast-returning mechanism is a strategy
employed by DNS resolvers in lieu of a standard DNS
mechanism to expedite the resolution process and enhance
reliability. Essentially, it requires the resolver to send back
the response to the client as soon as it receives a valid
response from the upstream servers. In this manner, the
resolver can significantly reduce the latency experienced by
the client. Since it is not an universally adopted standard, its
implementation may vary among different DNS implemen-
tations. Several resolvers may return the responses slowly,
as shown in Figure 7(a). Nonetheless, in Section 5, we will
demonstrate that the majority of DNS implementations [5],
[76] and services return hundreds of responses in just a few
milliseconds, such as 50ms in Figure 7(b). This enables the
attacker to concentrate maliciously crafted responses into a
traffic burst with a pulse window of tens of milliseconds.
Concentrating Considerations. To optimise the concentrat-
ing effect, the attacker needs to guarantee adequate numbers
of responses are returned simultaneously. First, when accu-
mulating queries, each query should be allocated a distinct
source port or TXID in order to be distinguished from
the others as shown in Figure 6(a). Then all of them will
receive a response. Second, the attacker should examine the
response-returning speed in advance and select the faster
ones. Finally, by forging the source IP address, the attacker
could direct all pulsing traffic to the target server.

Concentrating DNS Responses Method. When all queries
are accumulated and prepared to receive larger responses
with EDNSO, although the resolver will retry several times,
attackers only need to return one delicately crafted large-
sized response for the final query from the nameserver just
before the timeout. The response size should not exceed
the maximum packet size enabled by exploited resolvers.
Then, all responses will be transmitted quickly to the target
server, for example, which can produce powerful pulsing
DoS traffic with a pulse magnitude of more than 1Gb/s.

4.4. DNSBoMB Attack Metrics

In this part, we provide a theoretical analysis of the
DNSBOMB attack with the following annotations and equa-
tions to show which metrics have an impact on our attack.

The metrics for the attacker’s and nameserver’s side:

e Pys: # of accumulated DNS query packets.

o Sa: Packet size of accumulated DNS queries.

o Ty: Time used when accumulating queries.

o Pyg: # of DNS queries sent to the nameserver.

o Pyg: # of DNS responses returned by the nameserver.

The metrics for the victim’s side:

o Py: # of concentrated DNS response packets.
« Sy: Packet size of concentrated DNS responses.
o Ty: Time used to return concentrated responses.

The metrics of concentration efficiency:

o PCE (packet number concentration efficiency): %

o SCE (packet size concentration efficiency): g—;

o TCE (time concentration efficiency): %
P Sy Ty

o BCE (bandwidth concentration efficiency): p-* 5% 7+

BCE is also referred to BAF (bandwidth amplification
factor). As shown by these concentration efficiency metrics,
the more the concentrated DNS responses are (the larger the
response packet size and the shorter the concentration time),
the higher the concentration efficiency will be.

With regard to the nameserver, Py is at most the query
retry-limit value, same to Pyg. In practice, Pyg is typically
a small number, such as 10, and the attacker only needs to
return one response for the final retrying query (Pyg = 1),
which has negligible workload on the nameserver.

4.5. DNSBOMB Attack Extensions

Here, we propose additional DNSBOMB attack exten-
sions to further enlarge the attack surface, enhance the attack
effect, and reduce the attacker’s workload.

Exploiting a DNS Forwarder. In Figure 3, we only show
how to exploit a recursive resolver to construct DNSBOMB.
However, a DNS forwarder is vulnerable to DNSBOMB as
well. We can regard the forwarder as the ingress while its
upstream server as the egress [81] and use the smaller rate-
limit, max-packet-size, and timeout values between them to
conduct our attack similar to that of the recursive resolver.
Increasing the DNS Query Accumulating Time with
IP Fragmentation. Although the DNS timeout mechanism



Figure 8. DNS Resolution under the DNS Timeout and IP Defragmentation
Timeout Mechanism.

has provided sufficient time, such as 10s, to accumulate
queries, we find the IP defragmentation timeout can further
prolong this time window. IP fragmentation is used to divide
packets into smaller fragments for transmission [23], [74].
Each fragment of the original packet carries an IPID field
and a MF flag to indicate more fragments or not. Received
fragments are stored in the kernel’s defragmentation buffer
for a timeout pending reassembly. For example, Linux’s
default defragmentation timeout for IPv4 is 30s and for IPv6
is 60s [56]. The maximum number of fragments that can
be held in Linux’s reassembly buffer is 64 for IPv4, while
unlimited for IPv6. As shown in Figure 8, we can split
a query packet into two fragments: fragment; containing
the majority of the packet and fragment, with left 8-byte
payload (because the fragment data payload must be at
least 8 bytes long [23], [74]). All the fragment, packets
are sent to the resolver during the defragmentation timeout,
while the fragment, packets are delivered within the DNS
timeout before the defragmentation timeout. When a DNS
query is reassembled, resolvers will request the nameserver.
The nameserver returns the response until nearing timeout,
assuring a large accumulating time window (30s or 60s).
Attacking the Shared Link prior to the Target Server. As
shown in Section 4.1, resolvers employ a rate limit strategy
for each IP address. For example, the default rate-limit for
Google Public DNS is 1,500 QPS [33]. To circumvent this
limit, attackers could spoof multiple IP addresses that share
the same upstream router node (link) and concentrate all the
rate-limit-pack of responses to that shared link like [46].
Specifically, for each IP address, due to rate-limiting, the
resolver can only return a maximum of rate-limit responses.
If the rate-limit value is small, the attack traffic might be
minimal. However, if the attacker spoofs multiple source IP
addresses sharing a same upper link, all these limited attack
traffic could be concentrated to that link simultaneously, thus
overwhelming that link and all downstream servers.
Coordinating Multiple DNS Resolvers. Although a single
resolver can generate a large pulsing traffic of hundreds or
thousands of Mb/s, an attacker could also utilize multiple
resolvers to further enhance the DNSBOMB attack like prior
PDoS attacks [77]. To coordinate all single-pulsing traffic
into a larger one, attackers must measure the network path
latency in advance and make them arrive at the target simul-
taneously [69]. Specifically, to measure the latency between
the target and resolver, we can use the King method [38] that
could approximate the latency between arbitrary Internet
hosts. However, we acknowledge that time synchronization
makes it difficult to coordinate multiple resolvers [69]. In
addition, by exploiting resolvers one by one or employing

a small accumulating window, such as 50ms, the attacker
can manipulate them to produce continuous DoS traffic that
arrives sequentially, similar to traditional DoS attacks [79].

5. Vulnerable Resolver Population

In this section, we attempt to demonstrate the practical
exploiting effect of DNSBOMB by assessing 10 mainstream
DNS software, 46 public DNS services, and 1.8M open
DNS resolvers. Based on the construction steps in Section 4,
we first examine their attack factors, including rate-limit,
timeout, query count, default EDNSO, maximum DNS packet
size w/o EDNSO options, and /k-response-returning time, to
calculate the theoretical concentration efficiency. Then we
conduct real experiments to measure their practical attack
impacts with ethical considerations. In the end, we show that
all resolvers can produce a larger BAF than traditional DoS
attacks. In addition, the majority of them could cause a much
larger BAF than prior PDoS attacks, such as Unbound’s
pulsing traffic of 2.9Gb/s and BAF of 21,881x.
Experiment Design. To investigate these factors, we first in-
spect their official documentations and websites and source
code, for publicly available information. Then we perform
“blackbox-testing” by registering our own domain and con-
figuring a nameserver to return delicately crafted responses.
For example, when testing the timeout and packet size, we
hold the response for several seconds or reply with responses
of different size to determine whether we can receive a valid
response. The query count can be obtained by collecting the
request sent to our nameserver. For the left factors like rate-
limit, EDNSO, and response-returning time, we can analyze
them by capturing the traffic on the client side. Finally, we
launch small-scale experiments to assess their attack effects
in controlled environments. According to Google’s query
rate-limit of 1,500 [33], we select 1,000 as the number of
queries to reduce the overload on resolvers and targets.

5.1. DNS Software

DNS Software List. We select 10 mainstream DNS software
that are also used by previous work [52], [54], [55], [93],
[95], as shown in Table 1, two of which are DNS forwarders,
including Dnsmasq and CoreDNS.

Experiment Setup. We install their latest versions on ma-
chines running Ubuntu 22.04 or Windows Server 2022,
respectively, and use another Ubuntu 22.04 host as the client
to send queries. The forwarder’s upstream server is pointed
directly to our nameserver, while all the other software run
in the recursive mode. All machines are linked to a local
network with a 10Gb/s network bandwidth.

Theoretical Analysis. After investigation and experiments,
we list the results of tested factors in Table 1. Specifically,
software other than BIND, PowerDNS, MaraDNS, and Dns-
masq enables a rate-limit of over 3k pps. All the timeout
values are above 1.5s, which is significantly greater than
the network path latency of 800ms and provides sufficient
time for accumulating queries. BIND and Unbound even
have a default timeout of 10s. The query count is below 10,



TABLE 1. DNS RESOLUTION MECHANISMS RELATED TO DNSBOMB AND THEORETICAL ANALYSIS OF 10 DNS SOFTWARE.

DNS Software ||  Accumulating || Amplifying || Concentrating || Theoretical Analysis
| || Rate- | Time- || Query | EDNSO | Max. Size (B) || Returning || |
Brand Version —_— PCE* SCE> TCE® BCE
| || limit #) | out(s) || @" | B | O.E! W.EZX|| Time (ms)® || |
BIND 9.18.20 130 10 6 1,232 512 1,232 8 Ix 12.3x  1,000x | 12,320.0x
Unbound 1.19.0 20k 10 9 1,232 512 4,096 10 Ix 41.0x 1,000x | 40,960.0x
PowerDNS 5.0.0 500 1.5 1 512 512 1,232 20 Ix  12.3x 75x 924.0x
Knot 5.7.0 30k 2 4 1,232 512 1,232 58.7 Ix 123x  34.1x 419.8x
Microsoft 2022 30k 5 1 4,000 512 4,000 128 Ix 40.0x  39.1x 1,562.5x
Technitium 11.0.2 30k 4 3 1,232 512 4,096 36.5 Ix 41.0x 109.6x | 4,488.8x
Simple DNS+ | 9.1.116 3k 1.5 3 1,280 512 1,280 240 Ix  12.8x 6.3x 80.0x
MaraDNS 3.5.0036 7 6 6 - 512 512 0.5 Ix  5.1x 600x | 3,072.0x
Dnsmasq 2.89 150 oo’ 1 4,096 | 2,300 4,096 0.5 Ix 41.0x 1,000x | 40,960.0x
CoreDNS 1.10.1 3k 6 2 4,096 512 4,096 140 Ix 41.0x  429x 1,755.4x
I: Max. DNS packet size enabled for queries without EDNS0. 2: Max. DNS packet size enabled for queries with EDNS0=4,096.
3: Response returning time for 1,000 packets. *: Number of reply/Number of query. *: Maximum DNS packet size/100.
6: Timeout/Response-returning-time (Time less than 10ms is considered as 10ms). ’: Unlimited (Treated as 10s).
*: The number of queries sent to the nameserver if not receiving responses during the timeout window.
TABLE 2. DNSBOMB EXPERIMENT RESULTS OF 10 DNS SOFTWARE T 92| 5 3 2900
USING 1,000 DNS QUERIES. :; == 630 :;; e A
I Practical Attack Bandwidth £ ok e
0 2,000 4,000 6,000 8,000 10,000 0 2,000 40%}0 6,000 8,000 10,000
Software Attacker- | Victim- | Nameserver- rmem) fimem
side side side BAF (a) BIND. (b) Unbound.
3 230.4Mbls g 925AMbIs {5 e
BIND 140.6Kb/s | 92.5Mb/s 155.5Kb/s 673.9x < = s/l | B3 = Ve s
Unbound || 140.6Kb/s |  2.9Gb/s |  140.6Kb/s | 21,881.1x I £ B0
PowerDNS || 562.5Kb/s | 230.4Mb/s 70.3Kb/s | 419.5x A L & 2rskvs | o
Knot 421.9Kb/s | 925.4Mb/s 70.3Kb/s | 2,246.3x o e ST ey M
Microsoft 210.9Kb/s | 274.5Mb/s 70.3Kb/s | 1,332.4x () PowerDNS. (d) Knot.
Technitium 210.9Kb/s | 720.9Mb/s 140.6Kb/s | 3,499.8x R
Simple DNS+ || 562.5Kb/s | 36.4Mb/s | 1,167.4Kb/s" 66.3x == v « == v
MaraDNS 140.6Kb/s 2.5Mb/s 123.4Kb/s 18.5x iz “49‘)'8*/E
Dnsmasq 140.6Kb/s | 458.9Mb/s 210.9Kb/s | 3,341.8x 2 2105k
CoreDNS || 140.6Kb/s | 447.5Mb/s | 468.0Kb/s"| 3,258.4x B C e M
1. The query sending time and response packet size are set to the (e) Microsoft. (f) Technitium.
maximum values listed in Table 1. G 6AMDSs T PR =y
2. The nameserver’s receiving bandwidth is < attacker-side’s since iz = iz = e
resolvers retry < 10 times except for * (no query aggregation). 5% s 22 L6k
& 562.5Kb/s |y — k|

3. The nameserver’s sending bandwidth can be negligible since it only
needs to return one response for the final query.

indicating that these resolvers, despite receiving thousands
of queries on a same domain name, request the nameserver
for responses no more than 10 times due to query aggrega-
tion. This substantially reduces the nameserver’s workload.
Simple DNS+ and CoreDNS do not employ the query aggre-
gation mechanism. Although the default packet size is 512B,
with the EDNS0=4,096 option, the packet size can be 1,232
or even 4,096 bytes (such as Unbound and Technitium),
which violates the DNS Flag Day 2020 [24]. Besides, all
software can send 1k responses within 250ms or even 50ms
like Unbound and Knot. In conclusion, theoretically, nearly
all software could produce powerful DNSBOMB attacks
with a BAF in the thousands or even tens of thousands.

Practical Attacks. The practical attack bandwidth results
are listed in Table 2. All BAF numbers are greater than
the traditional packet size-based amplification attacks (SCE),
demonstrating the effectiveness of response concentrating.
The attacker-side bandwidth (that we use a 10ms time win-
dow to calculate the network bandwidth) is only hundreds
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Figure 9. DNSBoOMB Experiment Network Bandwidth of 10 DNS Soft-
ware using 1,000 DNS Queries.
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of Kb/s, while the victim-side bandwidth is nearly hundreds
of Mb/s or even several Gb/s. The nameserver’s bandwidth
is negligible because: (i) due to query aggregation, only
less than 10 queries are sent to it; (ii) it only needs to
return one response for the final query that triggers the
resolver to return thousands of responses to the target server
simultaneously (explained in Section 4.2 and 4.3).
Notably, the practical BAF listed in Table 2 is less
than the theoretical BCE shown in Table 1. As analyzed in
Section 4.4, BAF (BCE) is equal to PCE « SCE « TCE. Any
factors that potentially decrease PCE, SCE, or TCE could
influence the attack result. When calculating the theoretical



TABLE 3. DNSBOMB EXPERIMENT RESULTS OF UNBOUND WITH
DIFFERENT TIMEOUT USING 1,000 DNS QUERIES.

I Practical Attack Bandwidth

Timeout (s)

|| Attacker-side | Victim-side | BAF
1 843.8Kb/s 2.8Gb/s 3,480.9x
2 421.9Kb/s 7,354.0x
3 11,313.9x
4
5 2.6Gb/s 12,716.8x
6-10

The response packet size is set to 4,096B.

TABLE 4. DNSBOMB EXPERIMENT BANDWIDTH (GB/S) OF
UNBOUND WITH DIFFERENT NUMBER OF INSTANCES AND QUERIES.

#of | # of DNS Queries
Unbound H 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
1 30 30 29 37 35 26 21 22 34
2 32 S 29 4.4 160
3 4.7 39 32
4 e - R 45 52
5 28 3.7 45 48 38 45 46 36 27 33
6 _ 26_ 4.6
7 4.4 22 27 19 2.9 23 2.3
8 32 33 21 2.3
9 50 4.4 25 2.5 27 25 46 331 5.0
10 25 23 34 33 40 32 32 33

The response packet size is set to 4,096B, while the timeout to 10s.

BAF, we assume that (i) each query gains its corresponding
response (PCE); (ii) every returned response is amplified
to its maximum enabled size (SCE); (iii) all the responses
are transmitted to the target within a short period (TCE).
Then all efficiency values can reach the number in Table 1,
which induces a large theoretical BAF. However, in practical
experiments, software show different behaviors that reduce
the efficiency values. For example, Dnsmasq restricts the
number of acceptable queries, while Simple DNS+ returns
responses slowly. Thus, since we send too many queries that
are impacted by these settings, the practical BAF is small.
In detail, Unbound shows the highest BAF of 21,881.1x
and largest pulse magnitude of 2.9Gb/s (the attacker-side
and nameserver-side bandwidth is only /40.6Kb/s) because
it has the superior attack factors. As shown in Figure 9,
all of the attacking traffic is concentrated into a bursting
pulse with a window of 10-50ms, other than Simple DNS+
(400ms). Since the rate-limits for PowerDNS, MaraDNS,
and Dnsmasq are 500, 7, and 150, respectively, they will
promptly return ServFail responses to the client if the
query limit is exceeded (because we send 1,000 queries).
Experiments with Different Timeouts and Query Num-
bers. In actual attacks, attackers can only manipulate the
timeout and query number values since the other factors
are determined by exploited resolvers. Here, we evaluate
the effect of the timeout and query number on DNSBOMB
with Unbound. As listed in Table 3, when the other factors
are fixed, the larger the timeout is, the higher the BAF will
be until all queries are distributed to each 10ms timeframe.
Besides, as more queries are accumulated, the victim-side
bandwidth will increase (displayed in Table 4). However,

Attacker [N Victim
2.9Gb/s

Network
Bandwidih (log;)

140.6Kb/s
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Figure 10. DNSBoOMB Experiment Network Bandwidth of Unbound
during 10m using 1,000 DNS Queries.

generally, the increasing trend stops at 6k-8k because Un-
bound cannot concentrate more responses into the same
pulse window, inducing continuous pulses like Figure 9(g).
Experiments with Multiple Resolvers. In Section 4.5,
as one of our attack extensions, we propose coordinating
multiple resolvers to conduct DNSBOMB. Here, we use 1-
10 Unbound instances to demonstrate the result. As listed
in Table 4, we could generate a 8.7Gb/s pulse with three
instances that is three times that of a single instance. As the
number of instances increases, the concentrating bandwidth
will expand in a non-linear fashion. Our attack bandwidth,
however, never exceeds 10Gb/s. We speculate the reason is
that we utilize Docker to deploy 10-instances on a machine
due to the lack of multiple physical machines to run this test.
All these instances are constrained by our machine’s limited
hardware resources and the 10Gb/s network connection.

Long-term Experiments. To evaluate the attack stability,
we run DNSBOMB against Unbound for 10m and sample
packets using Wireshark [92] to depict the traffic Figure 10.
For each attack round, we utilize a random subdomain to
circumvent caching. Results show that DNSBOMB is quite
stable and generates a 2.9Gb/s pulse every 10s, as predicted.
Very few pulses fall short of 2.9Gb/s due to packet loss.

5.2. Public DNS Services

Public DNS Service List. According to the usage statistics
from APNIC [4], we collect 46 widely-used public DNS ser-
vices and their IP examples in Table 9 (Appendix A), 13 of
which have IPv6 addresses, e.g., AdGuard and CloudFlare.
Experiment Setup. We use the same Ubuntu 22.04 host
from the software experiment with public IPv4 and IPv6
addresses and a 1Gb/s network bandwidth to examine the
attack factors and impact of these 46 public DNS services.
Theoretical Analysis. The testing results are listed in Ta-
ble 9 (Appendix A). 36 public DNS services permit a rate-
limit of over 1k pps, such as CloudFlare and OpenDNS.
Several services’ rate-limits are low for IPv4 but high for
IPv6, such as AdGuard DNS, which is 100 for IPv4 but
2.7k for IPv6. Similarly, all timeouts are greater than 1.5s,
with 20 over 5s (e.g., Level3 DNS) and 9 above 10s (e.g.,
Quad101 DNS). The average timeout is 5s. The query count
of all services, except for OneDNS (18), is less than 10, with
a mean of 4. Rather than 114, Baidu, and DNSPod DNS,
all services support packet size greater than 1,232B, and
24 even allow responses of 4,096B-size. Additionally, only
AdGuard, Ali, and CFIEC DNS return 1k responses within
hundreds of milliseconds, whereas the others send them in



TABLE 5. DNSBoOMB EXPERIMENT RESULTS OF 46 PUBLIC DNS
SERVICES USING 1,000 DNS QUERIES.

I Practical Attack Bandwidth

Vendor Attacker- | Victim- |Nameserver-
. . . BAF
side side side

114DNS 92.2Kb/s| 28.7Mb/s 234.4Kb/s{  319.3x
360 Secure DNS 269.5Kb/s | 379.2Mb/s 269.5Kb/s | 1,440.0x
AdGuard DNS 91.4Kb/s| 57.4Mb/s 175.5Kb/s{  643.2x
AdGuard DNS” 393.8Kb/s | 699.5Mb/s 756.2Kb/s1 1,819.0x
AhaDNS 92.2Kb/s| 25.7Mb/s 92.2Kb/s 285.2x
Akamai Vantio DNS 429.7Kb/s| 16.0Mb/s 218.0Kb/s 38.1x
Ali DNS 548.4Kb/s | 162.4Mb/s 302.3Kb/s 303.2x
Alternate DNS 82.8Kb/s| 3.2Mb/s 262.5Kb/s 39.7x
Baidu DNS 362.5Kb/s| 3.2Mb/s 135.9Kb/s 9.0x
CenturyLink DNS 182.8Kb/s| 36.9Mb/s 135.9Kb/s 206.9x
CFIEC Public DNS*|| 406.2Kb/s |351.3Mb/s 394.5Kb/s 885.6x
CIRA Shield DNS 264.8Kb/s | 904.9Mb/s 165.6Kb/s | 3,498.8x
Cisco OpenDNS 264.8Kb/s | 562.6Mb/s 529.7Kb/s{ 2,175.1x
CleanBrowsing 353.1Kb/s | 154.5Mb/s 218.0Kb/s 448.2x
CleanBrowsing” 935.2Kb/s | 105.6Mb/s 282.0Kb/s 115.7x
CloudFlare DNS 706.2Kb/s | 884.5Mb/s 441.4Kb/s| 1,282.5x
CNNIC sDNS 1,005.5Kb/s | 156.6Mb/s 225.8Kb/s 159.5x
Comodo Secure 984.4Kb/s | 795.6Mb/s 482.8Kb/s 827.7x
ControlD DNS 296.9Kb/s | 44.7Mb/s 216.4Kb/s 154.2x
CZ.NIC ODVR 248.4Kb/s| 15.9Mb/s 519.5Kb/s 65.4x
DNS for Family 1,331.2Kb/s | 144.4Mb/s | 1,331.2Kb/s 111.6x
DNS Forge 745.3Kb/s | 155.5Mb/s 745.3Kb/s 213.7x
DNS.SB 745.3Kb/s| 40.8Mb/s 296.9Kb/s 56.1x
DNS.WATCH 248.4Kb/s | 638.6Mb/s 540.6Kb/s1 2,632.1x
DNSlify DNS 662.5Kb/s| 35.0Mb/s 292.2Kb/s 54.1x
DNSPod Public DNS|| 331.2Kb/s |398.3Mb/s 274.2Kb/s| 1,231.1x
Dyn DNS 362.5Kb/s | 383.1Mb/s 271.9Kb/s| 1,082.2x
FDN DNS 414.1Kb/s | 166.9Mb/s 310.9Kb/s 412.7x
Google DNS 557.8Kb/s| 32.1Mb/s| 1,740.8Kb/s 58.9x
G-Core DNS 828.1Kb/s | 117.6Mb/s 181.2Kb/s 145.4x
HE DNS 745.3Kb/s| 39.9Mb/s 218.0Kb/s 54.8x
Level3 DNS 579.7Kb/s | 772.2Mb/s 283.6Kb/s| 1,364.1x
LibreDNS 910.9Kb/s| 31.1Mb/s 218.0Kb/s 35.0x
Neustar UltraDNS 248.4Kb/s | 261.1Mb/s 689.1Kb/s 1,076.1x
NextDNS 414.1Kb/s | 401.1Mb/s 689.1Kb/s1  992.0x
Norton ConnectSafe 248.4Kb/s | 256.8Mb/s 248.4Kb/s| 1,058.6x
OneDNS 82.0Kb/s| 24.3Mb/s 264.8Kb/s1  303.1x
OpenNIC DNS 165.6Kb/s| 97.2Mb/s 262.5Kb/s1  600.9x
Quad101 DNS 82.8Kb/s| 76.8Mb/s 309.4Kb/s{  949.5x
Quad9 DNS 331.2Kb/s| 71.9Mb/s 619.5Kb/s1  222.3x
SafeDNS 257.8Kb/s| 86.4Mb/s 590.6Kb/s{  343.1x
SafeSurfer DNS 662.5Kb/s| 19.4Mb/s 331.2Kb/s 30.0x
SkyDNS 257.8Kb/s | 118.4Mb/s 687.5Kb/s{  470.2x
Strongarm DNS 165.6Kb/s| 4.9Mb/s 218.0Kb/s7 30.0x

Tiarap Public DNS
Verisign Public DNS
xTom DNS
Yandex DNS

82.8Kb/s | 569.1Mb/s
248.4Kb/s | 329.4Mb/s
662.5Kb/s | 18.5Mb/s 320.3Kb/s 28.5x
82.8Kb/s | 876.2Mb/s 536.7Kb/s110,834.0x

1. The query sending time and response packet size are set to the maximum
values listed in Table 9. *: Via IPv6. Ordered by the alphabet of vendors.
2. The nameserver’s receiving bandwidth is < attacker-side’s since re-
solvers retry < 20 times except for * (many backend IPs for load balancing).
3. The nameserver’s sending bandwidth can be negligible since it only needs to return
one response for the final query.

155.5Kb/s1 7,037.5x
459.4Kb/s1 1,357.6x

tens of milliseconds. Based on these factors, all services are
exploitable to conduct powerful DNSBOMB attacks.

Practical Attacks. We perform small-scale experiments to
assess the actual attack effect of 46 public DNS service
listed in Table 5. The average attacker-side bandwidth is
only 426.4Kb/s, while the victim-side bandwidth is in the
hundreds of Mb/s (25 services). For example, CIRA Shield,

TABLE 6. DNSBOMB EXPERIMENT RESULTS OF 13 PUBLIC DNS
SERVICES WITH DEFRAGMENTATION TIMEOUT VIA IPV6.

I Practical Attack Bandwidth

I Attacker-side loe e oy ]
Victim-side' BAF
|| Original |With Frag. | |

Vendor

AdGuard DNS 393.8Kb/s  262.5Kb/s| 491.0Mb/s | 1,915.2x
CFIEC Public DNS 406.2Kb/s  293.0Kb/s 3.9Mb/s 13.7x
CleanBrowsing 935.2Kb/s  535.9Kb/s| 43.4Mb/s 83.0x
CloudFlare DNS 831.2Kb/s  481.2Kb/s| 630.8Mb/s | 1,342.3x
ControlD DNS 296.9Kb/s  262.5Kb/s| 41.5Mb/s| 161.8x
DNS for Family 1,566.8Kb/s  645.3Kb/s| 16.7Mb/s 26.6x
DNS Forge 877.2Kb/s  590.6Kb/s| 53.3Mb/s 92.4x
DNS.SB 877.2Kb/s  535.9Kb/s| 46.4Mb/s 88.7x
DNS.WATCH 292.4Kb/s  262.5Kb/s| 126.2Mb/s| 492.2x
FDN DNS 487.4Kb/s  317.2Kb/s| 39.3Mb/s| 126.8x
G-Core DNS 974.7Kb/s  481.2Kb/s| 107.6Mb/s| 229.0x
HE DNS 877.2Kb/s  535.9Kb/s| 94.8Mb/s| 181.1x
SafeDNS 303.4Kb/s  259.4Kb/s| 190.3Mb/s| 751.2x
Average Bandwidth || 701.5Kb/s 420.2Kb/s|  40% Reduced

The query sending time and response packet size are set to the maximum
values listed in Table 9. *: Via IPv6. Ordered by the alphabet of vendors.

CloudFlare, and Yandex DNS generate a near 900Mb/s DoS
pulse. Because our public network link is only 1Gb/s, we be-
lieve the actual pulse magnitude can be greater. 14 services
have a BAF greater than 1k, outperforming the state-of-the-
art PDoS attack [39] with the same 10s timeout. Specifically,
Yandex DNS supports a BAF of 10,834x. As shown in Fig-
ure 13 (Appendix A), these services concentrate responses
into a well-established bursting pulse, which demonstrates
the universal applicability of DNSBOMB. Several services’
BAF is low because they restrict exploited factors. We will
discuss this in Section 7.2 and present mitigation solutions.
Experiments with IP Fragmentation. We introduce meth-
ods in Section 4.5 to extend the query accumulating time
by leveraging IP fragmentation. Here, we present our ex-
periment results. Before evaluation, we identify the IP de-
fragmentation timeout and fragment number of 46 public
DNS services. We find 10 services do not permit querying
with fragments, such as Google and OpenDNS. Other 4
services alter Linux’s default timeout to either 1s or 2s,
including CloudFlare, SkyDNS, Strongarm, and Alternate
DNS. Since IPv4’s fragment number is only 64, we then se-
lect 13 IPv6-enabled services from the remaining 32 services
for testing. Results in Table 6 show that IP fragmentation
reduces the average attack-side bandwidth (420.2Kb/s) by
40% compared to the original (710.5Kb/s). We also set the
IPv4 fragment number to 2,048 on a Linux machine running
Unbound and do the same experiments, which reduces the
bandwidth from /40.6Kb/s to 110.9Kb/s by 21%.

5.3. Open DNS Resolvers

Open Resolver List. To obtain the latest resolver list [81],
we scan the entire IPv4 network space for UDP port 53
using our own domain and maintain IPs returning correct
answers. On July 5, 2023, we discovered over 1.8M open
DNS resolvers with XMap [53] (listed in Table 7). GeoLite2



TABLE 7. OPEN RESOLVER LIST AND IDENTIFIED SOFTWARE.

Type || Open Resolvers
Total || Scanning on 07/05/2023 | 1,801,275 | 100.0%
Total 517,075 28.7%
Microsoft 143,928 8.0%
Dnsmasq 96,331 5.3%
Software BIND 44,016 2.4%
Identified Unbound 15,645 0.9%
PowerDNS 6,367 0.4%
Simple DNS+ 166 0.0%
Knot 2 0.0%
Others 210,619 11.7%
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Figure 11. The Distribution of Open DNS Resolver Measurement Results
of DNSBOMB Attack Factors.

DB [62] indicates they belong to 227 regions and 24,795
ASes, which is sufficient proof of the vulnerable population.
Measurements. Due to ethical considerations, we only at-
tempt to measure all attack factors of these open resolvers,
instead of conducting real attack experiments like evaluating
DNS software. With our own domain and nameserver, we
can determine the values of attack factors. Specifically, we
just identify a relative upper threshold for these factors,
including 1,200 (rate-limit), 10s (timeout), 60s (IP defrag-
mentation timeout), and 2,048 (IP fragment number), to
reduce the workload. Besides, for the reason of simplicity,
we regard the default EDNSO packet size (indicated in
the response’s additional section like Figure 6(c)) as the
maximum UDP packet size, although the actual value may
be higher by setting the query’s EDNSO to a larger one.
Furthermore, to identify the software version, we em-
ploy the widely-adopted version.bind query (returning
software version information) [6] and fpdns tool (a DNS
software fingerprinting tool) [25]. In the end, we show prac-
tical exploiting impacts based on software testing results.

Results. The distribution of DNSBOMB attack factor mea-
surement results is illustrated in Figure 11. Figure 11(a)
shows that more than 50% of resolvers enable a rate-limit
of at least 1,000, and over 80% have a rate-limit above 200.
Attackers could coordinate multiple resolvers to circumvent
the rate limit. Over 80% of resolvers have a >1s timeout
(Figure 11(b)), which is greater than all previously exploited
network path latencies (e.g., 800ms [77]). As displayed in
Figure 11(c), the default EDNSO packet size for nearly all
resolvers is 512 bytes, of which 60% are larger than 1,232B
and 20% are larger than 4,096B. Around 95% of resolvers
transmit fewer than 20 retransmission requests to our own
nameserver (Figure 11(d)), reducing the cost for attackers.
As depicted in Figure 11(e), 70% can yield 1k responses to
clients within 100ms. Regarding IP defragmentation factors,
10% and 30% of resolvers modify the default timeout and
fragment number values, which could amplify the accumu-
lating effect. In conclusion, all resolvers can be exploited
to conduct more practical and powerful DNSBOMB attacks
than previous PDoS attacks discussed in Section 2, since the
accumulating time is at least the path latency.
Additionally, we identify the software version of 28.7%
of 1.8M open resolvers listed in Table 7, including Microsoft
DNS (143,928), Dnsmasq (96,331), and Unbound (15,645).
For example, according to our tests in Section 5.1, each of
the 15,645 resolvers running Unbound could independently
generate the 2.9Gb/s DNSBOMB pulse traffic. By combin-
ing them, the pulse magnitude can be increased or the pulse
window can be extended, inducing ongoing DoS traffic.

6. Real-world Evaluation of DNSBOMB Attack

In this section, we conduct controlled real-world exper-
iments to evaluate how the DNSBOMB attack DoS target
servers or degrade the RoQ of services. First, we measure
the network bandwidth occupation of DNSBOMB, then use
it to attack three types of servers, including a DNS resolver
and HTTP/2- and HTTP/3-based websites. Results in Fig-
ure 12 show effective attack impacts that cause packet loss
or significant latency for both stateless and stateful services.
Experiment Setup. We use two Unbound instances to gen-
erate combined pulsing traffic and deploy three servers with
a DNS resolver and HTTP/2- and HTTP/3-based websites,
respectively. All the services run on machines using Ubuntu
Server 22.04 and featuring an 8-core, 2.1GHz CPU, 8GB
RAM, and 1Gb/s network bandwidth. Then, we undertake
the DNSBOMB attack from another machine by sending
10k queries, spoofing the IP address of these servers, and
returning 4,096B-responses with a 10s timeout on the local
nameserver’s side. For the normal client DNS query and
HTTP request, we set their client-side timeout to 1s.

6.1. Testing Network Bandwidth Occupation

To test network bandwidth occupation, we employ the
iPerf3 tool [45] that is designed for active measurements of
the maximum achievable bandwidth. The minimum testing
interval for it, as specified by the -i option, is 0.1s.
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Figure 12. DNSBOMB Attack Results on Different Servers. The Client
Query or Request Timeout is Set to Is.

As represented in Figure 12(a), the normal bandwidth
decreases from 958.8Mb/s to 0.0b/s when the pulsing traffic
arrives at the 10s and lasts for about 50ms, which demon-
strates the actual network bandwidth DoS impact.

6.2. Attacking a DNS Resolver

We configure a DNS recursive resolver using Unbound
to assess the effectiveness of DNSBOMB against stateless
UDP transmissions. We send queries to UDP port 53 (under
attack) every 10ms for random domains with the Golang
DNS library [64] and record the query latency.

Results in Figure 12(b) indicate that the usual query
latency ranges from 50 to 250ms and does not exceed
750ms. Under the DNSBOMB attack, however, the client
can never receive a valid response (1s latency). This means
that the query packet was lost due to DNSBOMB and the
resolver could never see it. We confirmed this by inspecting
captured traffic that lacked a response packet.

6.3. Attacking an HTTP/2-based Website

Apart from stateless connections, we attack stateful TCP
services with DNSBOMB. We set up an Apache server [3]
hosting an HTTP/2-based website. Every 10ms we use the
Golang HTTP library [32] to send HTTP requests to TCP
port 80 (under attack) via IP and save the request latency.

Figure 12(c) displays that the normal HTTP request time
cost is only less than 3ms. Once the DNSBOMB pulsing
traffic arrives, the request response from TCP port 80 (under
attack) is returned at a cost of over 750ms or is lost entirely.
The TCP-based HTTP service is severely degraded.

6.4. Attacking an HTTP/3-based Website

In addition, we attempt to evaluate the impact of DNS-
BOMB on a newly-emerged HTTP/3 standard based on
QUIC [20]. HTTP/3 or QUIC is designed to decrease the
effects of packet loss. We deploy an HTTP/3-based website
with Caddy Server [12] that enables HTTP/3 and register
a domain to set up the HTTP/3 config with Caddy’s self-
signed certificate [13]. Every 10ms we use the Golang HTTP
library to send HTTP request to UDP port 443 (under attack)
via registered domain and save the request latency.

As illustrated in Figure 12(d), when the pulsing traffic
occurs, the request response increases by 2,000% from 2ms
to 41ms. Compared with the TCP-based HTTP service,
the QUIC-based HTTP service is partially degraded due to
QUIC’s improved retransmission mechanism. Specifically,
QUIC’s efficient per-packet retransmission mechanism, its
ability to multiplex without head-of-line blocking, and its
agile connection migration contribute to greater resilience
against packet loss and network congestion [20].

7. Discussion and Mitigation

In this section, we first describe how we address ethical
considerations, then propose detailed mitigation solutions to
defend against DNSBOMB with evaluation experiments, and
lastly report our responsible disclosure results.

7.1. Ethical Considerations

We adhere to Menlo Report’s ethical principles [48] and
best network measurement practices [70] for carrying out
our evaluation experiments. First, we install all 10 analyzed
DNS software on our own local machines and evaluate their
amplification factors via a local network link. Second, for
46 public DNS services, we test them only several times
and restrict the number of queries below their rate-limits
to safely perform our tests. For example, we only send 1K
queries to resolvers whose rate-limit is over 150K. Third,
with regard to active measurements, such as scanning DNS
resolvers and probing their attack factors, we rigorously
limit the scanning rate to 5,000 pps to reduce the pressure
on target networks and perform random-enumerating scans
with our own domains. We just identify a relative upper
threshold for these factors and never attempt to reach their
limits. Besides, we configure the PTR record and a website
to show our research objective, and no opt-out request has
been received. Finally, we report our findings to all relevant
vendors for disclosure purposes. Notably, Akamai reached
out and wanted us to test their DNS services (see below).

7.2. Mitigation Solutions

The DNSBOMB attack is made possible by the inherent
DNS resolution mechanisms for guaranteeing availability,
protecting security, and enhancing reliability, instead of
a classic vulnerability. Therefore, to mitigate DNSBOMB,
vendors have to compromise by reducing resolution perfor-
mance and standardize their implementations. According to
our software analysis and best configuration practices [7],
[33], we provide the following mitigation solutions. (i) The
timeout should be reduced to a modest value like 1.8s
recommended by RFC 8767 [51]. (ii) The rate-limit should
also be restricted to a small value such as AdGuard’s 100.
(iii) The EDNSO packet size should be standardized to
1,232B [24]. (iv) As shown in Figure 13, the most crucial
response time can be in accordance with the timeout, e.g.,
Akamai and SafeSurfer DNS. For instance, if the response to



TABLE 8. DNSBoOMB EXPERIMENT RESULTS OF 10 DNS SOFTWARE UNDER DIFFERENT MITIGATION SOLUTIONS.

\ Base' \ Timeout? | Rate-limit® | Pkt. Size* | Res. Time® | AlIS
Software
|| BAF % | BAF % | BAF % | BAF % | BAF % | BAF %
BIND 673.9x | 100.0% 18.2% 200.0% [ 673.9x 100.0% 2.0% 7.0%
Unbound 100.0% 11.0% | 4,5256x  20.7% | 44005x  20.1% 0.2% 0.1%
PowerDNS 100.0% 42.6% 269.9% | 237.6x  56.6% | 257.8x  61.4% 4.8%
Knot 100.0% 545% | 1347.8x  60.0% 100.0% 1.8% 0.6%
Microsoft 1,332.4x | 100.0% 21.1% 198.9% 52.6% 3.4% 1.5%
Technitium 3,499.8x | 100.0% 81.9% 129.3% 128.4% 13.4% 2.1%
Simple DNS+ 66.3x  100.0% 93.0% 1094.8% 97.7x  147.3% 26.3% 30.5%
MaraDNS 18.5x  100.0% 16.7% 200.0% 18.5x  100.0% 18.5x  100.0% | 18.5x  100.0%
Dnsmasq 100.0% 18.7% 136.1% | 1,0335%| 30.9% | 2,7280x| 81.6% 0.6%
CoreDNS 100.0% 16.1% 1347% | 821.8x  252% 4.9% - 0.6%

I: Base Experiment. 2: Timeout to Is. 3: Rate-limit to 100. 4: Packet Size to 1,232. 3: Response-Returning Time to Timeout. °: All Restrictions Set.

a query costs 5s, resolvers can delay 5s and then return the
response to clients. Furthermore, we discover some sophisti-
cated defensive strategies through testing. (v) Google limits
the total amount of traffic sent to the same IP within the
timeout (Figure 13(ac)), whose bandwidth does not increase
as other factors are raised. (vi) Ali, DNS.SB, FDN, and
xTom DNS will return ServFail responses in advance if
receiving more queries while no response from nameservers.

To demonstrate the effect of our recommended mitiga-
tion solutions, we conduct 6 local experiments with different
restrictions, including the base (no restrictions with 1,000
queries as before), timeout set to s, rate-limit set to 100,
packet size set to 1,232B, response-returning time set to
timeout, and all restrictions set. Results in Table 8 indicate
that the response time restriction has the best defensive
effect, since it is the key to concentrating responses. For
example, the BAF of Unbound shrinks from 21,881.1x to
merely 20.2x (0.1% remaining). In contrast, the rate-limit
restriction is the worst, as some software’s rate-limit, such as
BIND, is initially low. Additionally, the timeout and packet
size restrictions can reduce BAF to some degree.

7.3. Responsible Disclosure

Considering the ethical policy, we have responsibly in-
formed affected parties about DNSBOMB and our findings,
including 10 DNS software and 46 public DNS service
vendors. We have so far received responses from 39 vendors
and discussed mitigations with them, 24 of which confirmed
DNSBOMB. They will have months to fix it. 10 CVE num-
bers were assigned to Technitium, Dnsmasq, and CoreDNS
(see https://dnsbomb.net). We are still awaiting responses
from other vendors. We summarize their responses below.

o BIND confirmed DNSBOMB and is coordinating with
other vendors and us in a private DNS-OARC channel.
« Unbound planned to address DNSBOMB by limiting
the timeout and number of waiting replies per IP (drop-
ping queries if too many unanswered ones received).
« PowerDNS acknowledged the DNSBOMB issue and
has been pondering internal mitigations in the resolver.
« Knot works a rate-limiting design to fix DNSBOMB.
o Technitium, Dnsmasq, and CoreDNS acknowledged
DNSBOMB and reduced their default EDNSO size to
1,232B. They are discussing other mitigations with us.

o 114DNS and 360DNS confirmed DNSBoOMB, thanked
our innovative research, and evaluated mitigations.

« Akamai Vantio DNS adopts a slow response-returning
policy for identical queries and achieves good protec-
tion. We tested their services after they reached out.

o CZ.NIC ODVR used Knot, while DNS.SB and xTom
DNS adopted PowerDNS. They are waiting for patches.

« OneDNS has arranged relevant mitigation measures by
reducing the query rate limit and adopting a firewall.

o Quad9 DNS considered DNSBOMB as a very inter-
esting attack and is discussing mitigations with us.

» SafeDNS was very interested in collaborating with us
and wanted to schedule a further discussion.

« AdGuard DNS, Ali DNS, Baidu DNS, ByteDance
DNS, CFIEC Public DNS, ControlD DNS, Dyn DNS,
and Yandex DNS are now evaluating or implementing
our recommended mitigations after discussing with us.

8. Conclusion

We present DNSBOMB, a novel pulsing DoS attack that
exploits DNS mechanisms, transforming low-rate queries
into large-sized, concentrated response bursts that can over-
whelm target systems. Our small-scale evaluation shows that
DNSBOMB surpasses previous PDoS attacks, with a peak
pulse magnitude of 8.7Gb/s and a bandwidth amplification
factor over 20,000. DNSBOMB leads to complete packet
loss or service degradation in our controlled experiments.
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Appendix A.
Experiments of Public DNS Services.

Table 9 lists 46 widely-used, evaluated public DNS ser-

vices, as well as identified DNSBOMB attack factor results
and theoretical analysis.

Figure 13 shows the practical attack bandwidth results

of 46 public DNS services.
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TABLE 9. DNS RESOLUTION MECHANISMS RELATED TO DNSBOMB AND THEORETICAL ANALYSIS OF 46 PUBLIC DNS SERVICES.

Public DNS Service

| Accumulating ||

Amplifying

|| Concentrating||

Theoretical Analysis

P || Rate- | Time-||Query|EDNSO|Max. Size (B)|| Returning || |
Vendor P E— PCE*SCE> TCE® £ BCE
Example |[limit @#)|out (s)|| #" | (B) |O.E! W.EZ2|| Time (ms)® ||

114DNS 114.114.114.114 198 10 5] 512 s12 523 5 Ix  5.2x 1,000.0x| 5,230.0x
360 Secure DNS 101.226.4.6 150k+ 6 4| 2,048 512 2,048 30 Ix 20.5x 200.0x| 4,096.0x
AdGuard DNS 94.140.14.14 100 4 4 0| 512 1,463 100 Ix 14.6x 40.0x| 585.2x
AdGuard DNS 2a10:50c0::ad 1:ff 2.7k 4 4 0| 512 4,096 100 Ix 41.0x  40.0x| 1,638.4x
Akamai Vantio DNS 23.56.160.142 10k+ 3 4 512 512 4,084 50 Ix 40.8x  60.0x| 2,450.4x
AhaDNS 5.2.75.75 11 30 1| 1,472 512 4,096 1 Ix 41.0x 1,100.0x|45,056.0x
Ali DNS 223.5.5.5 50k+| 2.5 4/ 1,408 512 1,396 100 Ix 14.0x 25.0x| 349.0x
Alternate DNS 76.76.19.19 35 10 8| 4,006 512 4,096 50 Ix 41.0x 200.0x| 8,192.0x
Baidu DNS 180.76.76.76 50k+ 4 3 -| 495 495 20 Ix 5.0x 200.0x| 990.0x
CenturyLink DNS 205.171.3.66 2.5k 10 6| 1232 512 1,232 20 Ix 12.3x 500.0x| 6,160.0x
CFIEC Public DNS 240C::6644 20k+| 3.5 6| 1,408 489 4,084 100 Ix 40.8x  35.0x| 1,429.4x
CIRA Shield DNS 149.112.121.10 50k+ 5 4| 512 512 4,096 37 Ix 41.0x 135.1x| 5,535.1x
Cisco OpenDNS 208.67.222.222 25k 6 8| 4,096 512 1421 40 Ix 14.2x 150.0x| 2,131.5x
CleanBrowsing 185.228.168.10 400 1.5 1 512| 512 1,232 30 Ix 123x  50.0x| 616.0x
CleanBrowsing 2a0d:2200:1:: 15k+| 1.5 1| 512] 512 1,232 60 Ix 123x  25.0x| 308.0x
CloudFlare DNS 1.1.1.1 50k+ 2 2| 1,232 512 1,452 15 Ix 14.5x  133.3x| 1,936.0x
CloudFlare DNS 2606:4700:4700::1111 50k+ 2 2| 1,232 512 1,232 15 Ix 12.3x 133.3x| 1,642.7x
CNNIC sDNS 1.2.4.8 10k+| 1.5 10| 4,096| 512 1,467 45 Ix 14.7x  333x| 489.0x
Comodo Secure 8.26.56.10 20k+ 1 1| 4,096 512 4,096 50 Ix 41.0x 20.0x| 819.2x
ControlD DNS 76.76.2.5 15k+| 4.5 2| 512(1,232 1,232 20 Ix 12.3x  225.0x| 2,772.0x
ControlD DNS 2606:1a40::5 15k+| 4.5 2| 51201,232 1,232 20 Ix 12.3x 225.0x| 2,772.0x
CZ.NIC ODVR 193.17.47.1 1200 1.5 2| 1,232 512 1,232 50 Ix 12.3x  30.0x| 369.6x
DNS for Family 94.130.180.225 Sk+ 1 1| 512] 512 4,09 50 Ix 41.0x 20.0x| 819.2x
DNS for Family 2a01:4f8:1c0c:40db:: 1 Sk+ 1 1 512| 512 4,096 50 Ix 41.0x 20.0x| 819.2x
DNS Forge 176.9.93.198 k| 1.7 1| 4,096 501 1,243 50 Ix 124x  34.0x| 422.6x
DNS Forge 2a01:4f8:151:34aa::198 1k 1.7 1| 4,096| 501 1,243 50 1x 12.4x 34.0x 422.6x
DNS.SB 185.222.222.222 50k+| 1.5 1| 512] 512 1,232 35 Ix 123x  429x| 528.0x
DNS.SB 2a09:: 50k+| 1.5 1 512| 512 1,232 35 Ix 12.3x  429x| 528.0x
DNS.WATCH 84.200.69.80 Sk+ 5 8| 4,096 512 4,096 60 Ix 41.0x  83.3x| 3,413.3x
DNS.WATCH 2001:1608:10:25::1c04:b12f Sk+ 5 8| 4,006 512 4,096 60 Ix 41.0x  83.3x| 3,413.3x
DNSlify DNS 185.235.81.1 15k+| 1.5 2| 512 512 1,232 50 Ix 123x  30.0x| 369.6x
DNSPod Public DNS+ 119.28.28.28 50k+ 4 10| 4,096 485 496 20 Ix 5.0x 200.0x| 992.0x
Dyn DNS 216.146.35.35 600 3 8| 1,372 501 1,467 20 Ix 14.7x 150.0x| 2,200.5x
FDN DNS 80.67.169.12 10k+ 3 1| 1,232 512 4,096 25 Ix 41.0x 120.0x| 4,915.2x
FDN DNS 2001:910:800::40 10k+ 3 1| 1,232] 512 4,09 25 Ix 41.0x 120.0x| 4,9152x
Google DNS 8.8.8.8 500 1 1 512| 512 4,096 50 Ix 41.0x 20.0x| 819.2x
G-Core DNS 95.85.95.85 Ik+| LS5 2| 512 512 1,232 50 Ix 123x  30.0x| 369.6x
G-Core DNS 2a03:90c0:999d:: 1 Ik+| L5 2| 512 512 1,232 50 Ix 12.3x  30.0x| 369.6x
HE DNS 74.82.42.42 k| 15 1| 512] 512 1,232 40 Ix 123x  37.5x| 462.0x
HE DNS 2001:470:20::2 1.5k| 15 1 512| 512 1,232 40 Ix 12.3x  37.5x| 462.0x
Level3 DNS 422.1 3.5k 6 8| 4,096 512 4,096 50 Ix 41.0x 120.0x| 4,9152x
LibreDNS 88.198.92.222 10k+| 1.5 1 512| 512 1,232 20 Ix 12.3x  75.0x| 924.0x
Neustar UltraDNS 156.154.70.1 20k+ 5 7| 4,096 512 4,096 50 Ix 41.0x 100.0x| 4,096.0x
NextDNS 45.90.30.118 2.5k 3 4| 1232 512 5912 20 Ix 59.1x 150.0x| 8,868.0x
Norton ConnectSafe 199.85.126.10 20k+ 5 1| 4,096 512 4,096 20 Ix 41.0x 250.0x|10,240.0x
OneDNS 52.80.66.66 540 10 18] 1,232| 512 1,232 50 Ix 12.3x 200.0x| 2,464.0x
OpenNIC DNS 103.1.206.179 15k+ 10 9| 1232 512 1,232 50 Ix 12.3x  200.0x| 2,464.0x
Quad101 DNS 101.101.101.101 220 10 9| 1232 512 1,232 20 Ix 12.3x 500.0x| 6,160.0x
Quad9 DNS 9.9.9.9 Sk+ 3 2| 1,232 512 1,232 20 Ix 12.3x 150.0x| 1,848.0x
SafeDNS 195.46.39.39 15k+ 5 7| 1,232 512 4,096 50 Ix 41.0x 100.0x| 4,096.0x
SafeDNS 2001:67¢:2778::3939 15k+ 5 7| 1232 512 4,096 50 Ix 41.0x 100.0x| 4,096.0x
SafeSurfer DNS 104.197.28.121 3k+ 2 2| 512 512 1,232 20 Ix 12.3x  100.0x| 1,232.0x
SkyDNS 193.58.251.251 15k+ 5 2| 1,232 312 4,084 50 Ix 40.8x 100.0x| 4,084.0x
Strongarm DNS 52.3.100.184 150, 1.5 1 512| 512 1,232 30 Ix 123x  50.0x| 616.0x
Tiarap Public DNS 174.138.21.128 500 20 1| 1,232] 512 4,096 50 Ix 41.0x 400.0x|16,384.0x
Verisign Public DNS 64.6.65.6 10k+ 5 7| 4,096 512 4,096 20 Ix 41.0x 250.0x|10,240.0x
xTom DNS 185.184.222.222 10k+| 1.5 1| 512] 512 1,232 20 Ix 123x  75.0x| 924.0x
Yandex DNS 77.88.8.1 2.5k 20 8| 4,006 512 4,096 50 Ix 41.0x 400.0x|16,384.0x

: Max. DNS packet size enabled for clients without EDNS0. 2: Max. DNS packet size enabled for clients with EDNS0=4,096.
: Response returning time for 1,000 packets. *: Number of reply/Number of query. 3: Maximum DNS packet size/100.

: Timeout/Response-returning-time (Time less than 10ms is considered as 10ms). Ordered by the alphabet of vendors.

: The number of queries sent to the nameserver if not receiving responses during the timeout window.



G 2BIMYS [ e
) 5 Vi
B
£2
i 319.3x
H
& 92.2Kbls
0 2000 4000 6000 8000 10,000
Time (ms)
(a) 114DNS.
:’71 25.7Mbls 3 Antacker
<2 o v
EE]
3 285.2x
Z3
g
& 922Kb/s{ qoanagann
0 5000 10,000 15000 20,000 25,000
Time (ms)
(e) AhaDNS.
g 3OS haer
=& &2 viam
EE
5';
“ 5 362.5Kbls
& i
0 2,000 4,000
Time (ms)
(i) Baidu DNS.
SO
2L &8 Viim
£z
£
2 264.8Kbls
-]
0 2,000 4,000
Time (ms)
(m) Cisco OpenDNS.
3 156.6Mbis
P
23
5 100s.5Kbss
0 2000 4000 6000 8,000
Time (ms)
(q) CNNIC sDNS.
G MO T
%< B2 Vieim
EE]
] E 111.6x
H
& 1.3Mbss
0 250 500 750 1,000 1250
Time (ms)
(u) DNS for Family.
g IO e
2
2z
E 662.5Kbls
2
1,000
Time (ms)
(y) DNSlify DNS.
G 32 IMOS T er .
g . I
PE) @ Viim i
S= It
3 58.9x/ il
2z It
2 557.8Kbls i
Bl W i E_ [
0 200 400 600 800 1000
Time (ms)
(ac) Google DNS.
ERELLA ==yree
" = viam
2z
2 910.9Kbls
-]
0 500 1000 1,500 2,000
Time (ms)
(ag) LibreDNS.
A T e
) £ Vieim
]
3 303.1x
2%
H
2 82.0Kbis
0 2000 4000 6000 8000 10,000
Time (ms)
(ak) OneDNS.
3 soams T
=& &2 Viam
EE 343.1x
22
B 257.8Kbls
-]
0 1,000 2000 3000 4,000 5000
Time (ms)
(ao) SafeDNS.
T 569.IMb/s {5 o
<2 &5 viem
55
Z3 7,037.5
2z
z%
Z
& 82.8Kbis
0 5000 10000 15000 20,000
Time (ms)

(as) Tiarap Public DNS.

57.4Mb/s

§3T92MYS T paker 3 s
LZ = v LS =
55 Sz
B £3 643.2x ‘
ZZ z é 1

2 269.5Kb/ i

3 : 2 91.4Kbls il ilin

0 2000 4000 6000 0 1,000 2,000 3,000 4000 5000
Time (ms) Time (ms)
(b) 360 Secure DNS. (c) Adguard DNS.

S 160MbS T s g 1624MYS T e f
££ &3 Viewm ££ 5 Vieam |
£z B )
53 sorks 5z |
22 4297Kbis 33 |

] 2 548.4Kbls T o i

-] & N0 0 R G I

0 1,000 2000 3,000 0 500 1,000 1,500 2,000
Time (ms) Time (ms)
(f) Akamai Vantio DNS. (g) Ali DNS.

R r= G351 IMS e
22 &3 Vieim 22 BB Victim
5= [

X 206.9x 5]
23 23
5 1828Kbls & 4062Kbls
2000 4000 6000 8000 10,000 0 1000 2000 3,000
Time (ms) Time (ms)
(j) CenturyLink DNS. (k) CFIEC Public DNS.

B 154 MO T pnier 3 105.6MbIs T peier
L} =5 v L2 5 v
= 3=
B 448.2x £3
22 2%

& 353.1Kbs £ 935.2Kbs

0 500 1000 1,500 0 500 1000 100
Time (ms) Time (ms)
(n) CleanBrowsing DNS. (0) CleanBrowsing DNS via IPv6.

G795 OMUS T e CRALL ==y
PES P = e

z
“ é “ 5 296.9Kbls

& 984.4Kb/s " e —— o &

0 250 500 750 1,000 0 2000 4000 6,000
Time (ms) Time (ms)
(r) Comodo Secure DNS. (s) ControlD DNS.

s [ R e
LS =3 veam PE| Ve
2% 22 745.3Kbis

& 745.3Kbls -]

0 500 1000 1300 2000
Time (ms)
(v) DNS Forge. (w) DNS.SB.

T 3983MbS T 5 s B I83AMYS T
<& 5 Vieum <L 5 Vieum
£ £
£3 12311 EE 1,082.2x
23 2

£ 331.2Kbis & 362.5Kbls

0 1000 2000 3,00 0 1,000 2,000 3,000
Time (ms) Time (ms)
(z) DNSPod Public DNS+. (aa) Dyn DNS.

PR =y 3 39IMYS T pser
££ &5 Vieim #E Viim
B 145.4x B
23 £% 54.8x
“ 5 828.1Kbls ]

& || & 7as3kvs - "

0 500 1000 1,500 0 500 1000 1,500 2000
Time (ms) Time (ms)
(ad) G-Core DNS. (ae) HE DNS.

B 26LIMYS {5 e G AOLIMbS T
<2 = P =
2z 2

g 2 414.1KbSs

2 248.4Kbls & |

0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000
Time (ms) Time (ms)
(ah) Neustar UltraDNS. (ai) NextDNS.

T OIS T e 3 768Mbls =
L = L2 2
B P
53 5% 949.5x
“ 2 Lesokos *3

& 105 2 828Kbls

0 2000 4000 6000 8000 10,000 2000 4000 6000 8000 10,000
Time (ms) Time (ms)
(al) OpenNIC DNS. (am) Quad101 DNS.

S 194MYS T per g IBAMYS T
P PES = v
£3 £3
2 £ 662.5Kb/s 2z

] | & 257.8Kbis

0 1000 2,000 3,000 0 1,000 2,000 3000 4000 5000
Time (ms) Time (ms)
(ap) SafeSurfer DNS. (aq) SkyDNS.

3 3294Mbs T o T I8SMbS T v
o B Vietim o BB Victim
e EE]
x| 3
£§ 2% 662.5Kb/s il i

£ 248.4Kb5s H | il

0 1,000 2,000 3,000 4000 5000 0 1000 2000 3,000
Time (ms) Time (ms)

(at) Verisign Public DNS.

(au) xTom DNS.

* g
i3
22
Z
-] k| 1]
0 2,000 4,000 6,000
Time (ms)
(d) Adguard DNS via IPv6.
S 3IMYS T e
oS 55 Vieim
B
cs
5% 39.7x
“2
& 82.8Kbls
0 2000 4000 6000 8000 10,000
Time (ms)
(h) Alternate DNS.
g 904IMIS {7 e
P & Vem
23 3.498.8x
#2
£ 264.8Kbls
0 1,000 2000 3000 4000 5000
Time (ms)
(1) CIRA Shield DNS.
G 884SMOS T er
ox) &% Vi
HE 1282.5x
S
z3
£ 706.2Kbls
0 1000 2,000 3,000
Time (ms)
(p) CloudFlare DNS.
ERECYIS
22 2 Vi
EF
£3 65.4x
H
Z%
5 248.4Kbis
0 500 1,000 1500 2,000
Time (ms)
(t) CZ.NIC ODVR.
FRE L =y
L) &S vieim
g g 2,632.1x
z3
2 248.4Kbis
-]
0 2,000 4,000 6,000
Time (ms)
(x) DNS.WATCH.
B 1669Mb/S {5 e
o) & vien
2% 4127x
23
2 414.1Kbss
-]
0 1000 2000 3,000
Time (ms)
(ab) FDN DNS.
B T22MYS S
o) & vien
25 1364.1x
52
z5
£ 579.7Kbis
0 1000 2000 3,000
Time (ms)
(af) Level3 DNS.
FER Oy
o =3 viam
P
2 248.4Kbls
=]
0 1,000 2000 3000 4000 5000
Time (ms)
(aj) Norton ConnectSafe.
g 7MY T
) &3 Ve
£s
A /|l
2 331.2Kb/s iy ff
K ol
0 1000 2000 3000 4,000
Time (ms)
(an) Quad9 DNS.
T MO her
#E =2 viem
iz
2
ZE 165.6Kb/s
-]
1,500
(ar) Strongarm DNS.
5 ST62MOS e
22 &4 Vicim
5
E f: 10,834.0x|
3z
z35
Z
2 82.8Kb/s
0 5000 10000 15000 20,000
Time (ms)

(av) Yandex DNS.

Figure 13. DNSBOMB Experiment Network Bandwidth of 46 DNS Public Services using 1,000 DNS Queries.



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper explores a novel attack, termed DNSBomb,
which leverages the security and reliability features of DNS,
including query-response timeouts, query aggregation, and
response fast-returning. By combining these features, an at-
tacker can orchestrate a pulsing Denial of Service (PDoS) at-
tack. The attack strategy involves IP-spoofing multiple DNS
queries to a domain controlled by the attacker, then with-
holding responses to aggregate multiple replies. DNSBomb
aims to overwhelm victims with periodic bursts of amplified
traffic that are challenging to detect. The DNSBomb attack
is demonstrated through experiments conducted on 10 DNS
software, 46 public DNS services, and 1.8 million open DNS
resolvers.

B.2. Scientific Contributions

o Identifies an Impactful Vulnerability
o Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) This paper introduces a novel vulnerability and attack
approach that could open the door to a fresh line of
PDoS attack work. DNSBomb leverages established,
widely-adopted DNS security, reliability, and avail-
ability mechanisms to execute pulsating DoS attacks
capable of substantially amplifying victim traffic.

2) The paper contains the authors have conducted a com-
prehensive evaluation of the attack. The evaluation
is well-designed and covers various aspects, includ-
ing different DNS software, public DNS services, and
open DNS resolvers. It also explores theoretical versus
practical attack scenarios and controlled versus real-
world settings. The results of the evaluation effectively
validate the practicality and potency of the attack.

3) The paper provides several mitigation strategies, and
evaluates numerically the potential of those mitigations
to resolve the issue.

B.4. Noteworthy Concerns

1) The reviewers note that the difference between theoret-
ical and practical amplification results in Section 5.1 is
significant. The authors have provided a satisfactory
discussion behind the reason for these differences, but
not all cases have been considered in detail individually.

2) The reviewers note that the effectiveness of the attack
extensions may be dependent on how well multiple
resolvers can be coordinated.
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