
VU Research Portal

Uncovering New Classes of Kernel Vulnerabilities

Koschel, Jakob

2025

DOI (link to publisher)
10.5463/thesis.833

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Koschel, J. (2025). Uncovering New Classes of Kernel Vulnerabilities. [PhD-Thesis - Research and graduation
internal, Vrije Universiteit Amsterdam]. https://doi.org/10.5463/thesis.833

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 24. úno. 2025

https://doi.org/10.5463/thesis.833
https://research.vu.nl/en/publications/a151b620-403a-4c30-ae4b-019e398d11f5
https://doi.org/10.5463/thesis.833

VRIJE UNIVERSITEIT

UNCOVERING NEW CLASSES OF

KERNEL VULNERABILITIES

PH.D. THESIS

Jakob Koschel

The research reported in this dissertation was conducted at the Faculty of Science,

at the Department of Computer Science, of the Vrije Universiteit Amsterdam.

This work was supported by the Office of Naval Research (ONR) under awards

N00014-16-1-2261 and N00014-17-1-2788.

Copyright © 2024 by Jakob Koschel

Cover design by Daniel Bornmann & Lennard Makosch

VRIJE UNIVERSITEIT

UNCOVERING NEW CLASSES OF

KERNEL VULNERABILITIES

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor

aan de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus

prof.dr. J.J.G. Geurts,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de Faculteit der Bètawetenschappen

op donderdag 30 januari 2025 om 13.45 uur

in een bijeenkomst van de universiteit,

De Boelelaan 1105

door

Jakob Koschel

geboren te Aalen, Duitsland

promotor: prof.dr.ir. H.J. Bos

copromotor: dr. C. Giuffrida

promotiecommissie: dr. I. Malavolta

dr. S. Shinde

dr. O. Oleksenko

prof.dr. V. Moonsamy

prof.dr. T. Holz

Acknowledgements

My journey started with coming to Vrije Universiteit Amsterdam for my graduate

studies. Very fast after arriving, I decided to shift my focus from my original track

in Internet and Web Technology to Computer Security. All credit goes to Herbert

Bos for sharing his excitement for security and great teaching to motivate myself

and others to learn more about security. After my second year of graduate studies,

I had a great time working on research projects with Kaveh, Cristiano and Herbert

and my original goal of never doing a PhD turned out to be more than wrong. On one

of my last days before graduating, I was approached by all three individually, with

the same question: "So when are you starting your PhD?". Before even knowing

myself, it turns out they were all right, and their plan worked out. I am glad to have

gone on the path of pursuing my PhD and want to thank all of you for believing in

me.

Thank you, Herbert, for being such a great supervisor, sparking the joy of

security in the next generations of students, and always being there when support

was needed. I have learned a lot from you from the way to approach research to

becoming better in academic writing.

Cristianowas the bestmentor and copromotor I could have asked for. Thank you

for all the inspiration and infinite source of great, but often crazy, ideas. You were

always there, when I needed someone to discuss new ideas or good advice. I am

truly grateful for you, sharing your incredible systems knowledge, and motivating

myself in desperate times when I was close to dropping an almost finished project.

Unfortunately, Kaveh’s and my path didn’t overlap during my time as a PhD

student. However, I still want to thank you for all the time you took to discuss

projects and crazy ideas when I was still a master’s student. No matter what, you

were always in a good mood and pitching great ideas. While you, unfortunately, left

before I joined for my PhD, you were a big part of motivating myself to pursue my

PhD.

Next, I would like to thank my reading committee, Thorsten Holz, Ivano Mala-

volta, Veelasha Moonsamy, Oleksii Oleksenko and Shweta Shinde, for taking their

valuable time to review my thesis and their suggestions for improvement.

Brian, thank you for the great teamwork Kasper has been. We have both put

vii

ACKNOWLEDGEMENTS

sweat and tears into the project and I am grateful of the way it turned out. It was

essential to work on it together to stay motivated and find the best possible way

forward.

Beginning of 2023, Pietro Borrello joined VUSec for a few months and Cristiano

asked if he can pitch the project idea we just finalized to Pietro. I was sure nobody

would be crazy enough to pick that project out of all. Turns out luckily I was wrong

and Pietro was crazy enough. Thank you for doing the project together and being

such a very talented and creative teammate.

There are plenty more that make the VUSec group a great place to work and

laugh together. Thank you, Alvise, Alyssa, AndreaD.D., Andrea J., Andrei, Asia, Bala,

Ben, Dave, Elia, Emanuele, Enrico, Erik B., Erik vdK., Floris, Hany, Johannes, Koen,

Klaus, Manuel, Marius, Mathé, Pietro, Raphael, Robin, Saideh, Sander, Sebastian,

Taddeüs, Victor D., Victor vdV., and Mojca and Cynthia for shielding me from the

university’s bureaucracy.

I am grateful to Anil Kurmus for inviting me to join their systems security group

at IBM Research in Zurich for an internship. Thank you for all your support both

professionally and personally. You want out of your way helping me to have a great

time in Zurich, lending me an awesome vintage road bike, taking me on a "rafting"

tour on the river, and inviting me to a full day of board games with your friends.

Thank you, Andrea Mambretti, and Alessandro Sorniotti for a great time at IBM

Research.

Next, I am grateful to KP Singh for inviting me to intern with the kernel security

team at Google in Zurich. I know you were moving stones to make this possible,

which I deeply appreciate. I want to thank all the other members of the kernel

security team and additionally Alexandra Sandulescu, Eduardo A. Vela N, Jordy

Zomer, Matteo Rizzo, and Andy Nguyen.

Personally, I am grateful for all the friends that supported and distracted me dur-

ing my PhD journey. Thank you for the all the wonderful memories in Amsterdam:

Caro, David, Johnny, Linda, and Selam. Also thanks to Johannes for hosting me

in Zurich and the extended time in Los Angeles and Nico for the countless online

board game nights. Thanks to my friends Simon and Paul for the good moments

whenever we see each other. Caro, you were the best friend and flatmate I could

have imagined. Thank you for making our home such a great place. I want to extend

my gratitude to my parents, Gabi and Knut, thank you for supporting any choice I

made and having faith in me. Lastly, I would like to thank Hanna, for all her support

and pushing me to actually start this journey. Without your love and patience I

could not have done it. You mean everything to me.

Jakob Koschel

Amsterdam, The Netherlands, October 2024

Contents

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xii

Publications xv

1 Introduction 1
1.1 Kernel defenses . 2

1.2 Bug Discovery in the kernel . 3

1.3 Goals . 4

1.4 Contributions . 5

2 TagBleed: Breaking KASLR on the isolated kernel address space using tagged TLBs 7
2.1 Introduction . 8

2.2 Background . 9

2.3 Threat Model . 11

2.4 Attack Overview . 12

2.5 Reverse Engineering the TLB . 13

2.6 TagBleed . 15

2.6.1 Forcing Kernel Memory Access 15

2.6.2 Leaking Through Tagged TLB 15

2.6.3 Confused Deputy Attack with AnC 16

2.6.4 Derandomizing Kernel Modules 18

2.6.5 Derandomizing Physmap . 18

2.7 Evaluation . 18

2.7.1 Side channel by TLB set eviction 18

2.7.2 Side channel by cache line eviction 19

2.7.3 Combining the two side channels 20

2.7.4 Success rate . 21

ix

x CONTENTS

2.7.5 Attack time . 22

2.7.6 Noise . 22

2.7.7 Comparison against other KASLR attacks 23

2.8 Mitigations . 23

2.9 Related Work . 25

2.10 Conclusions . 27

3 Kasper: Scanning for Generalized Transient Execution Gadgets in the Linux Kernel 29
3.1 Introduction . 30

3.2 Background . 32

3.2.1 Speculative execution attacks and defenses 32

3.2.2 Gadget scanning . 34

3.3 Threat Model . 35

3.4 Problem Analysis . 35

3.5 Overview . 36

3.6 Speculative Emulation . 37

3.6.1 Transactions and rollbacks 38

3.6.2 Challenges unique to the kernel 39

3.7 Taint Policies . 40

3.7.1 Vulnerability detectors . 41

3.7.2 Injection policies . 42

3.7.3 Access policies . 43

3.7.4 Leakage policies . 45

3.8 Implementation . 46

3.9 Evaluation . 47

3.9.1 Comparison with previous solutions 47

3.9.2 Gadgets found in the kernel 50

3.10 Limitations . 50

3.11 Case Study . 51

3.11.1 List implementation of the kernel 52

3.11.2 A list_for_each_entry gadget in keyring.c 52

3.11.3 Exploitation . 53

3.12 Related Work . 54

3.13 Conclusion . 56

Appendix 3.A Coverage Evaluation . 56

3.A.1 Normal execution coverage 56

3.A.2 Speculative emulation coverage 57

Appendix 3.B Performance Evaluation 59

Appendix 3.C Large-Scale Exploitability Evaluation 60

Appendix 3.D Additional Case Study . 61

Appendix 3.E Developer Interface . 62

CONTENTS xi

4 uncontained: Uncovering Container Confusion in the Linux Kernel 65
4.1 Introduction . 66

4.2 Background . 67

4.2.1 Type Confusion Bugs in C++... and in C 67

4.2.2 Sanitizers . 69

4.3 Container Confusion in the Linux Kernel 69

4.3.1 Security Implications . 69

4.3.2 Running Example . 70

4.3.3 Type Graph Complexity . 71

4.4 uncontained Overview . 72

4.5 Container Confusion Sanitizer . 73

4.5.1 Design . 74

4.5.2 Implementation . 77

4.5.3 Evaluation . 78

4.6 Retrospective Analysis and Bug Patterns 79

4.7 Static Analyzer . 83

4.7.1 Design . 83

4.7.2 Implementation . 86

4.7.3 Evaluation . 87

4.8 Discussion . 88

4.9 Related Work . 89

4.10 Conclusion . 90

Appendix 4.A Assigned CVEs . 91

Appendix 4.B LMbench Evaluation . 91

Appendix 4.C Static Analysis Rules . 91

5 Conclusion 95
5.1 Future directions . 96

6 Contributions to papers 99

References 101

Summary 115

List of Figures

2.1 High level overview of TagBleed . 12

2.2 TLB sets for 256 virtual consecutive huge pages 14

2.3 Overview of virtual address bits used by TLB indexing bits & KASLR

randomization . 16

2.4 Slowdown of an invalid system call when flushing TLB sets 19

2.5 Sliding signal using a kernel module . 20

2.6 System call slowdown evicting cache lines 21

2.7 EVICT+TIME side channel accessing a user-level huge page 22

2.8 EVICT+TIME side channel on the invalid system call 23

3.1 Essential steps in a Spectre attack . 31

3.2 Components of Kasper mapped to the essential steps of a Spectre attack 37

3.3 Overview of taint policies to detect gadgets 41

3.4 Workflow of Kasper . 46

3.5 Speculative type confusion for the find_keyring_by_name gadget . . . 54

3.6 Gadgets found by Kasper over time . 56

3.7 Kasper covered edges fuzzing with syzkaller 57

3.8 Calltraces for gadgets found with Kasper 60

3.9 Speculative lengths for gadgets found with Kasper 61

3.10 Screenshot of Kasper’s web interface 63

4.1 Type graph of container_of instances 73

4.2 uncontained’s redzone layout . 74

4.3 Distribution of container_of invocations 76

xii

List of Tables

2.1 KASLR entropy in Linux . 10

2.2 TLB architecture for Skylake architecture 15

2.3 Microarchitectures affected by TagBleed 18

2.4 KASLR attacks vs. defenses . 24

3.1 Overview of Spectre gadget primitives 32

3.2 Exploitability of Spectre variants . 36

3.3 Lines of code for Kasper . 47

3.4 Kocher’s Spectre samples detection by Kasper 48

3.5 Cache gadgets reported by Kasper running ls 49

3.6 Gadgets discovered by Kasper . 50

3.7 Causes for speculative rollbacks in Kasper 58

4.1 Reports found by uncontained’s static analyzer 87

4.2 CVEs found by uncontained . 91

4.3 LMbench results of uncontained . 92

4.4 Static analysis rules of uncontained . 93

xiii

Publications

This dissertation includes several research papers, as appeared in the following
conference proceedings. The text differs from the published versions in minor
editorial changes made to improve readability:

Jakob Koschel, Cristiano Giuffrida, Herbert Bos and Kaveh Razavi. TagBleed: Breaking
KASLR on the Isolated Kernel Address Space using Tagged TLBs. In Proceedings of
the Fifth IEEE European Symposium on Security and Privacy (EuroS&P ’20). September
7–11, 2020, all-digital.
[Appears in Chapter 2]

Jakob Koschel1, Brian Johannesmeyer1, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Kasper: Scanning for Generalized Transient Execution Gadgets in the
Linux Kernel. In Proceedings of the Twenty-Ninth Network and Distributed System
Security Symposium (NDSS ’22). April 24–28, 2022, San Diego, USA.
[Appears in Chapter 3]

Jakob Koschel1, Pietro Borrello1, Daniele Cono D’Elia, Herbert Bos, and Cristiano
Giuffrida. uncontained: Uncovering Container Confusion in the Linux Kernel. In
Proceedings of the Thirty-Second USENIX Security Symposium (USENIX ’23). August
9–11, 2023, Anaheim, USA.
[Appears in Chapter 4]

1Equal contribution shared first authors. Refer to Chapter 6 for contributions per author.

xv

In
tr
od

uc
tio

n

1 Introduction

In today’s world there is barely any computing without operating systems. Histori-
cally, electronic computers were developed in early 1940s. Back then, computers were
designed and used for dedicated mathematical computation tasks written directly in
machine language. Such programs were entered into the computer using punched paper
cards or tape, the user had full control over the machine and only one program ran at
a given time. A program either ran to completion or to failure, crashing the machine.
This overall resulted in the need for the first operating system created in the early 1950s
to submit batches of tasks and cleanup and transfer control to the next on completion.
With better hardware, in the late 1960s, the next generation of operating systems was
capable to perform multiple tasks simultaneously, implementing a fundamental task of
operating systems: scheduling tasks.

Modern computing came a long way in the last 60 years, from mainframes as big as
a room to personal computers in almost all electronic devices, interacting with a wide
variety of hardware, such as monitors, network, printers and other peripherals. With the
complexity of today’s world, the kernel of the operating system of personal computers
is responsible for managing and securing access to hardware and for isolating processes
while providing access to computation resources. In order to perform such tasks, the
operating system usually runs at a higher privilege level compared to normal user-space
programs and has full control of the CPU and memory. This makes the kernel a primary
target for attacks. Compromising the operating system breaks the isolation between
processes and allows an attacker to gain control of almost the entire system. Computers
are much more versatile nowadays, requiring drivers for all kind of peripherals, different
architectures and use cases such as mobile phones, desktop computers or servers. With
such complexity, modern kernels like the Linux kernel have grown to tens of millions
lines of code.

It goes without saying that software developers are not flawless, especially with
complex systems such as the kernel. It is therefore inevitable to have bugs in such large
code bases. Some of those bugs can be elevated into security vulnerabilities. Commonly
found software vulnerabilities in the kernel are buffer overflows, use-after-frees, race
conditions or uninitialized memory use [192]. Judging by the numbers of potential
vulnerabilities reported by syzbot [51], a continuous kernel fuzzer, the number of
known vulnerabilities is limited by our current detection capabilities, indicating the
actual number of undiscovered vulnerabilities is multiple orders of magnitudes larger.
The kernel, however, is not only susceptible to attacks using software vulnerabilities
but also those using hardware based vulnerabilities such as side-channel attacks. Such

1

2 CHAPTER 1. INTRODUCTION

side-channel vulnerabilities, demonstrated against crypto implementations as early as
1996 by Paul C. Kocher [96], allow an attacker to leak sensitive information by timing
cache accesses from a different security domain. The kernel has also been a target of
such side-channel vulnerabilities [59, 71], often to break the randomization of the kernel
location in virtual memory. In 2018, a new type of vulnerabilities demonstrated the
use of transient execution to leak sensitive information. While some vulnerabilities,
such as Meltdown [108] were mitigated in new hardware generations, others such as
Spectre [95] are fundamental to the way transient execution is implemented on modern
CPUs. In order to leak sensitive data, an attacker looks for vulnerable code gadgets,
similar to an attacker looking for software vulnerabilities.

Kernel exploits have demonstrated how to turn such hardware or software vulner-
abilities into privilege escalation or leaking sensitive kernel data. For instance, Dirty
COW (CVE-2016-5195), a local privilege escalation vulnerability in the Linux kernel,
existed for 10 years in the code base until it was fully fixed. It is a prime example of a
vulnerability that was used by attackers in the wild. Another use case of kernel exploits
is to remove software restrictions imposed by manufacturers. For example, iPhones run
the iOS operating system, which restricts the possibility to run your own software freely
on your device. Kernel exploits have gained a lot of publicity since it enables jailbreaking
such restricted devices by patching parts of the kernel. While personal machines remain
attractive targets, e.g., for ransomware attacks that encrypt the victim’s system until the
attacker receives a ransom payment, machines in the cloud also became an attractive
attack target. Anyone is able to execute untrusted code in the cloud, often on servers
co-scheduled with other customers’ processes [3]. Exploiting the kernel or hypervisor
managing the virtual machines, breaks the guaranteed isolation between customers. In
particular, hardware based side-channel attacks, such as Spectre, are dangerous in the
cloud, allowing an attacker to leak customer data through shared hardware resources.

1.1 Kernel defenses

With such high impact exploits, protecting the kernel became significantly more im-
portant in the last decades. Many defenses originally designed for user-space programs
made their way into the kernel. One such example is Kernel Address Space Randomiza-
tion (KASLR), randomizing the location of the kernel in virtual memory, requiring an
additional information disclosure step in most exploits. Kernel data is also mapped as
non-executable, to prevent easy ways to inject shellcode. Other mitigations are more
specific to the kernel such as Supervisor Mode Access Prevention (SMAP) and Super-
visor Mode Execution Prevention (SMEP) that protect against accessing or executing
user-space memory without explicit permission. With recent Intel hardware, the Linux
kernel supports hardware assisted control-flow integrity (CFI) with Intel CET, or even
fine-grained CFI with FineIBT. CFI helps to fend off return-oriented programming (ROP)
attacks. Similar to user-space heap mitigations, the kernel adapted similar approaches
to defend its heap. One such mitigation, SLAB_VIRTUAL, forces a virtual memory region
to be only used by one object type, to avoid type confusions caused by use-after-free
vulnerabilities.

Transient execution attacks [8, 22, 95, 99, 109, 118, 122, 142, 150, 174, 176, 177,
181, 191] require a completely different and unique defense strategy. Most of these
defenses [11, 90, 92, 100, 151, 168, 194, 197, 200] are specific for a subset of currently
known attacks. One of the first defenses is Kernel Page Table Isolation (originally
presented as KAISER [58] to protect the kernel against breaking KASLR with side-

1.2. BUG DISCOVERY IN THE KERNEL

In
tr
od

uc
tio

n

3

channel vulnerabilities). It isolates the kernel into its own address space, separate
from the address space of user-space processes and was originally deployed against
Meltdown. Since these attacks are fundamental to how the CPU operates, they could not
be fixed by hardware updates, in the form of microcode updates, requiring mitigation
in the kernel. Some attacks such as RIDL [181] or Retbleed [191] were mitigated by
flushing specific microarchitectural buffers and untraining certain branch predictors at
privilege boundaries. With microcode updates, CPU manufacturers allowed the kernel
to enable Indirect Branch Restricted Speculation (IBRS) to prevent lower privilege
branch predictions to influence the branch prediction state in the kernel. Other attacks
such as Spectre v1 [95] are fundamental to every conditional branch and can only be
mitigated on the spot by fencing detected gadgets with speculation barriers. Often
fixing transient execution attacks in the kernel is the last resort as it also comes with
insignificant performance impact [55], which results in many mitigations not being
deployed in practice until exploitation is demonstrated.

1.2 Bug Discovery in the kernel
Since many existing defenses are impractical for production systems due to the high
performance overhead, finding and fixing bugs remains an important task to protect
systems with insufficient mitigations. However, finding bugs in a code base such as the
Linux kernel with more than 30 million lines of code, is a challenge in its own. Such
large code bases with around 10,000 patches for each new version cannot rely on manual
efforts to find bugs. Such a massive and fast changing code base requires automated
bug discovery tools. The most trivial bugs can often be spotted with static analysis [18,
112, 146, 189], e.g. the format string bug. However, more complex, interprocedural or
temporal bugs are difficult to determine statically.

Fuzzing, an automated software testing technique, can often find such bugs by
feeding the program, in this case the kernel, with unexpected, pseudo-random input
to monitor crashes or possible memory corruptions. In recent years, multiple fuzzers
dedicated to finding bugs in the kernel were developed [52, 149]. These fuzzers however
focus on the most common and established bug types, such as architectural spatial
memory errors (e.g., out-of-bounds) and temporal errors (e.g., use-after-free). Fuzzers
facilitate sanitizers, runtime bug detectors, to spot specific bug types.

Specifically for the kernel, there is a range of such sanitizers. KASAN [98] focuses
on detecting out-of-bounds accesses, use-after-free bugs, and double (or invalid) free
operations. Other kernel sanitizers are KMSAN [139] detecting uninitialized memory
use, KCSAN [41] detecting data races, and UBSAN [114] to detect various types of
undefined behavior. While this covers the most basic types of software vulnerabilities,
more insidious software bugs or even hardware issues are currently undetected by
fuzzing.

Even with the available sanitizers, current efforts to fix reported bugs often fall
short and are lacking, resulting in many bugs discovered by fuzzers unpatched for a long
time [183]. But not only such simple bugs are worrying, what about new types of bugs,
currently not even considered by state-of-the-art fuzzers? Detecting hardware bugs,
in particular, is often done with manual inspection assisted by simple static analysis,
suffering from a high false positive rate [25].

4 CHAPTER 1. INTRODUCTION

1.3 Goals

In this dissertation, we demonstrate that it is not enough to focus on currently established
bug patterns, but repeatedly need to explore new classes of bugs in all possible areas
of systems security, ranging from side-channel attacks to new types of software-based
type-confusion bugs. Only by exploring such new angles of exploitation and including
them in bug detection systems, we can slowly turn the kernel, currently a pile of sand,
into a solid foundation for computing in modern systems.

We set the goal for this thesis to uncover new types of vulnerabilities for each of the
major class affecting the kernel: software bugs, side channels, and transient execution
vulnerabilities.

For side-channel vulnerabilities, research focuses on finding new means of leakage,
such as the often used branch prediction present in modern CPUs [95] or one of the
various other prediction buffers like the Return Stack Buffer (RSB) [191]. With this
thesis, we explore the possibility to revisit existing side-channels and if a combination of
those can find a new application to attack e.g., the kernel. AnC [54], for example, used
caching of page tables during a page table walk to break ASLR in user space. In order to
make this effective, the attacker required a large range of virtual contiguous memory,
difficult to archive targeting the randomization of the kernel text mapping. Our goal
is to find a combination with another side-channel to remove such requirements and
make it applicable against the kernel. We believe such combinations create a new type
of vulnerability that on its own were not possible in the scenario of a user attacking the
kernel.

On the transient execution vulnerabilities front, many new types of vulnerabilities
were presented in recent years. Some of them, such as Spectre v1, are impossible to
mitigate entirely without suffering a big performance impact. Instead, they are only
risky in very specific code patterns, often called gadgets. Identifying gadgets in large
code bases such as the Linux kernel is far from trivial. Manual and static analysis is both
error-prone and suffers from a large amount of false positives. This thesis aims to find
gadgets in the Linux kernel and improve on accuracy in gadget finding and generalize
different transient execution vulnerabilities to easily extend the scanner with newly
discovered vulnerabilities.

On the software bug front, the security community currently focuses on the most
obvious bug types. Originally, this included buffer overflows and use-after-free bugs,
detected by KASAN. Later the search was expanded to prominent issues in the kernel
such as uses of uninitialized values (KMSAN) and detecting data races (KCSAN).
While this covers a majority of bugs in the kernel, it is also a vicious circle since their
prevalence is also highly accelerated with better detectors. We want to explore new bug
patterns that are currently not covered by existing automatic detection tools and build
new detectors. One such issue we analyzed are type confusion bugs, unique to large C
code bases such as the Linux kernel, that were previously overlooked. We discover and
pinpoint these specific patterns to build a sanitizer to detect them with continuous
fuzzing.

State-of-the-art fuzzers only focus on well-known bug types and still find too many bugs
to fix. Therefore, rather than building secure systems on a solid foundation, we build our
solutions on a pile of sand. In order to provide secure systems we need to continuously
improve kernel security to strengthen the foundation into something solid enough for
the software stack to rely on. Since our understanding of both traditional software and
recent microarchitectural attack vectors is based on recent developments in OS structure

1.4. CONTRIBUTIONS

In
tr
od

uc
tio

n

5

and attack mitigation efforts, we ask whether our understanding is sufficiently complete
to serve as a foundation for secure systems. More precisely, we ask whether the kernel
is sufficiently protected against new combinations of side channels, and whether our
mental model of transient execution attacks and traditional software errors such as
type confusions are comprehensive enough or can still be bypassed using new types of
attacks that fall outside our current attackers’ model.

1.4 Contributions
This dissertation makes several contributions, with results published in refereed confer-
ences (Page xv). We performed minor editorial changes to improve readability. The
remainder is organized as follows:

In Chapter 2 we present TagBleed, a new way to leak secret kernel information
using a side-channel attack despite deployed mitigations. We demonstrate that the
addition of a new hardware feature to make kernel mitigations more performant, creates
a new attack surface leaking the randomized memory location of the kernel. TagBleed
combines two individual side channels to demonstrate a successful attack against the
Linux kernel. Chapter 2 appeared in Proceedings of the Fifth IEEE European Symposium
on Security and Privacy (EuroS&P ’20).

In Chapter 3 we present Kasper, a scanner for transient execution gadgets in the
kernel. The kernel was sparsely mitigated against such transient execution attacks. The
previous efforts required manual inspection, difficult for a complex and large scale
codebase like the kernel. Kasper automates the process to find possible code gadgets in
the kernel that can be utilized in transient execution attacks. Additionally, Kasper is
able to scan for new types of transient execution gadgets, missed by previous mitigation
efforts. Chapter 3 appeared in Proceedings of the Twenty-Ninth Network and Distributed
System Security Symposium (NDSS ’22).

In Chapter 4we present uncontained, finding so-called container confusion bugs in
the kernel. This new type of type confusion bug is caused by the way the programming
language C mimics object-oriented programming features. Many of the discovered bugs
were missed by the state-of-the-art memory error detectors. Chapter 4 appeared in
Proceedings of the Thirty-Second USENIX Security Symposium (USENIX ’23).

We conclude in Chapter 5 by summarizing our key results, and look at future
directions for new combinations of side channels, transient execution gadget searching,
and more generic type confusion detection for C.

Chapter 6 presents the individual author contributions for all included papers.

Ta
gB

le
ed2 TagBleed:

Breaking KASLR on the
isolated kernel address
space using tagged TLBs

Kernel Address Space Layout Randomization (KASLR) has been repeatedly targeted by
side-channel attacks that exploit a typical unified user/kernel address space organization
to disclose randomized kernel addresses. The community has responded with kernel
address space isolation techniques that separate user and kernel address spaces (and
associated resources) to eradicate all existing side-channel attacks.

In this chapter, we show that kernel address space isolation is insufficient to harden
KASLR against practical side-channel attacks on modern tagged TLB architectures.
While tagged TLBs have been praised for optimizing the performance of kernel address
space isolation, we show that they also silently break its original security guarantees
and open up opportunities for new derandomization attacks. As a concrete demon-
stration, we present TagBleed, a new side-channel attack that abuses tagged TLBs and
residual translation information to break KASLR even in the face of state-of-the-art
mitigations. TagBleed is practical and shows that implementing secure address space
isolation requires deep partitioning of microarchitectural resources and a more generous
performance budget than previously assumed.

7

8 CHAPTER 2. TAGBLEED

2.1 Introduction

Kernel-level Address Space Randomization (KASLR) is a first line of defense against
adversaries that aim to exploit software vulnerabilities in the kernel for escalating their
privilege. While KASLR raises the bar for attackers, previous work has shown many
different possibilities for side-channel attacks that can easily bypass KASLR [44, 59, 71,
81]. These attacks exploit the unified kernel and user address spaces that is exposed
through various microarchitectural resources.

To stop these attacks, recent mitigations propose separating kernel and user address
spaces on these microarchitectural resources [47, 58]. While secure, these mitigations
would be expensive without tagged Translation Lookaside Buffer (TLB) available on all
modern Intel processors. Tagging the TLB significantly reduces the overhead of these
mitigations by avoiding TLB flushes on every privilege switchwhich is nownecessary. As
a result, taggedTLB is praised for enabling deployment of suchmitigations in practice [58,
169]. After the public disclosure of speculative execution attacks [94, 109, 176, 181], major
operating systems such as Linux andWindows turned these mitigations on-by-default.

In this chapter, we show that while separating kernel and user address spaces miti-
gates some of the speculative execution attacks, they do not fulfill their original goal
of protecting against side-channel attacks on KASLR. Ironically, tagged TLB, the opti-
mization that makes separating kernel and user address spaces efficient, re-enables the
sharing of the TLB entries across kernel and user address spaces. Our proof-of-concept
exploit, TagBleed, uses the new leakage introduced by this sharing to fully break KASLR
in spite of these deployed mitigations.

KASLRAttacks&Defenses Existing side-channel attacks against KASLR [44, 59, 71, 81]
target shared microarchitectural resources to derive information about secret locations
in the virtual address space where kernel memory resides. These attacks are possible due
to unified kernel and user address spaces supported by the CPU for reasons of efficiency.
For instance, a unified virtual address space between a user process and the kernel
allows the user process to measure timing differences of a triggered CPU exception
when accessing a kernel address to determine whether that address is mapped, breaking
KASLR [71, 81]. Similar attacks are also possible without even triggering an exception:
by measuring the execution time of the prefetch instruction for kernel addresses one
can probe the existence of address translation data structures in the CPU’s translation
caches [59]. This unification of address spaces even extends to microarchitectural
resources such as the Branch Target Buffer (BTB), making it possible for attackers to
find out the virtual address space of branch targets in the kernel from user space [44].

To mitigate this class of attacks, recent proposals advocate for isolation of the kernel
address space. This can be enforced by explicitly flushing microarchitectural resources
such as the BTB on privilege switches [47] (or implicitly flushing them with hardware
mitigations such as eIBRS [73]) and placing the kernel memory on a separate address
space [47, 58]. This stops the attackers’ ability for probing the existence of kernel
addresses from a user process. On every privilege switch (e.g., due to a system call)
the address space translation structures cached by the CPU in the TLB (or translation
caches [180]) need to be flushed because of a different kernel address space. The TLB
in recent Intel processors improves the performance of these mitigations with tagging.
Every entry is tagged with the address space identifier and as a result, it is no longer
necessary to flush the (tagged) TLB on every privilege switch. Due to the improved
performance, tagged TLBs have been praised for making these mitigations practical for
deployment [58].

2.2. BACKGROUND

Ta
gB

le
ed

9

TagBleed Unfortunately, a tagged TLB is not a panacea and the gain in performance
comes at a significant security cost. Tagging implicitly re-enables the sharing of the
TLB between different address spaces. This allows an attacker to probe addressing
information in the TLB left by kernel execution. As we will show, the leakage surface
of tagged TLB is limited compared to known attacks against KASLR [44, 59, 71, 81].
Nevertheless, we show that this leakage is enough to fully derandomize KASLR when
used in combination with a secondary side-channel attack that uses the kernel as a
confused deputy [64] to leak additional information about its address space. Mounting
these attacks is not trivial since kernel memory is mapped with huge and super pages
(i.e., 2MB and 1GB) and (tagged) TLBs use previously-unexplored hashing functions
for storing the translation information for these pages. Our proof-of-concept exploit,
TagBleed, uses the informationwe obtained through reverse engineering to breakKASLR
in under one second using the aforementioned attacks despite all existing state-of-the-art
mitigations.

Contributions In summary, our contributions are:

• We highlight the security implications of tagging (previously-untagged) cache
components for the first time. While tagging components improves performance,
they can come at a security cost.

• We present an extended analysis of the architecture of the TLB in modern proces-
sors. Expanding on the existing knowledge of the TLB for normal pages [53], we
reverse engineered the TLB architecture for both 2MB huge pages and 1GB super
pages used when mapping kernel entries.

• The design and implementation of our practical attack, TagBleed, which deran-
domizes KASLR on a recent Linux system with current defense mechanisms
deployed in under one second. TagBleed targets tagged TLB in combination with
a confused deputy attack to fully break KASLR.

2.2 Background

Virtual Memory In modern operating systems, each process has access to a private
virtual address space and operates solely on virtual addresses. The translation to the
actual physical addresses is the responsibility of the MMU (Memory Management Unit)
which walks the multi-level page table structures that contain the virtual-to-physical
mappings for each address space, as well as permission flags (such as the supervisor bit
that indicates a page can be accessed from user space). Since these address translations
are expensive and happen at eachmemory access, theMMUutilizes the TLB (Translation
lookaside buffer) to cache the last few lookups—speeding up subsequent accesses to the
same page by orders of magnitude.

In the operating systems with unified kernel and user address spaces that were
popular until very recently, the kernel did not have an address space of its own, but
rather shared the page tables of the running user process and relied on the supervisor
bit to protect its pages from illegitimate accesses from the user process. As neither the
address space (page tables) nor the content of the TLB needed to change on kernel
boundary crossings, such an optimized memory organization was very efficient. The
optimization is especially effective on processors without tagged TLBs, since they must
perform a full TLB flush on every address space switch [55].

10 CHAPTER 2. TAGBLEED

address range entropy possible slots alignment

kernel image
0xffffffff81000000 -
0xffffffffbe000000 9 488 2MB

kernel module
0xffffffffc0001000 -
0xffffffffc0400000 10 1024 4KB

page_offset_base,
vmalloc_base,
vmemmap_base

0xffff888000000000 -
0xfffffe0000000000 15* 25600* 1GB

* depends on amount of physical memory and
CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING configuration.

Table 2.1: KASLR entropy in Linux 4.19.4 for the kernel image, kernel modules and page_offset,
vmmalloc and vmemmap. The number of possible slots for the kernel image are dependent on
the size of the kernel image. The entropy and end address for page_offset depends on whether
five page table levels are supported and how much physical memory is available.

As a result of a barrage of side-channel attacks [59, 71, 81, 109] that all abused the
unified address space, modern operating systems recently abandoned it altogether and
now provide the kernel with its own, completely separate address space. On Linux, this
is known as KPTI (Kernel Page Table Isolation) [33], while Windows refers to it as KVA
(Kernel Virtual Address) Shadow [84]. Fortunately, while the separation of address
spaces is still quite expensive on older processors because of the TLB flushes, newer
CPUs offer tagged TLBs where each entry contains an identifier (or “tag”) of the address
that owns it. For instance, Intel’s x86_64 processors have supported tags in the form
of 12-bit PCIDs (Process Context Identifiers) since the SandyBridge architecture [75].
When performing a lookup in the TLB, the entry’s tag must match that of the currently
active address space. Thus, flushes are no longer needed, as there is never any confusion
about the validity of a TLB entry—greatly improving performance.

Address Space Layout Randomization To prevent attackers from locating suitable
targets to divert a program’s control flow in the presence of a vulnerability, all major
operating systems today support Address Space Layout Randomization (ASLR). ASLR
randomizes the locations of the code, heap and stack in memory and forms an effective
first line of defense against memory error attacks. The kernel variant of ASLR, known
as KASLR, is deployed on all major operating systems. This requires attackers to first
break KASLR as a crucial step in kernel exploitation.

KASLR randomizes the location of the kernel and drivers running in kernel space
either at boot time or at driver load time. Since brute forcing the randomization in the
kernel is typically not an option due to the high rate of kernel panics, the randomization
entropy in the kernel can be lower than in user processes. For instance, at the time
of writing, the entropy for the kernel image in Linux is 9 bits, while the entropy for
user-space code is as high as 30 bits [120].

More specifically, KASLR in Linux randomizes different kernel regions differently.
At boot time the kernel image is unpacked and relocated to a random location. Regions
for the identity map, vmalloc and vmemmap are randomized separately. Finally, kernel
modules are randomized the first time a module is loaded. As shown in Table 2.1, the
kernel image has 9 bits of entropy, and kernel modules have 10 bits. Identity map,
vmalloc and vmemmap are randomized with a shared entropy depending on the size of
physical memory.

2.3. THREAT MODEL

Ta
gB

le
ed

11

TLB Tagging Switching address spaces on processors prior to TLB tagging is a costly
operation due to the invalidation of all entries. Therefore, tagging TLB entries with
an identifier for its current address spaces was introduced as an optimization. Intel
processors use the first 12 bits of the CR3 register to store a so called PCID (process-
context identifier) [75]. Entries in the TLB will only be taken into account if the current
PCID in CR3 matches the PCID of the entry. This makes context switching more
performant, since the TLB does not require any flushing.

Cache Attacks On address lookups, the TLB caches virtual to physical memory trans-
lations and as a shared resource between processes running on the same core, clearly
introduces a side-channel risk that was exploited in the TLBleed attack by Gras et al. [53].
However, the TLB is just one of many shared resources that have been used for side-
channel attacks. Modern Intel CPUs have multiple levels of caches to speed up memory
accesses. Specifically, each core has its own L1 and L2 caches and shares the last level
cache (LLC) with the other cores. Since attacker and victim don’t even need to run on
the same core, the LLC is a particularly interesting target for a side-channel attack [61,
111, 129, 173, 195]. Attackers can simply populate cache sets and then measure whether
the victim process evicts their data. With this information the attacker can infer that
the victim used addresses that map to the same cache set and researchers have shown
that this is enough to leak sensitive information such as cryptographic keys [1, 12, 15,
137, 163].

AnC The AnC [54] attack measures the timing of accesses performed by the MMU
during virtual address translation to break ASLR from within the browser. Whenever
an address translation is not cached in the TLB, the MMU does a page table walk. It
reads offsets within the multi-level page tables in order to first dereference the next
page table and then the address of the physical page. In order to speed up expensive
page table walks, accessed parts of the page tables are cached within the CPU’s data
caches. This makes consecutive translations faster even if the MMU has to do a page
table walk. Inevitably, caching parts of the page table leaves traces in the CPU cache
depending on the translated virtual address. By partially flushing the data caches, AnC
can measure which cache lines within the page table pages have been used during a
translation. This information already significantly compromises the ASLR entropy. To
fully break ASLR, AnC needs to find out which page table entries within the target cache
lines are accesses by the MMU. This is achieved by accessing a large virtual contiguous
buffer, and observing the transitions between activated cache lines, known as sliding.
The demonstrated attack requires large accessible virtually consecutive buffers (e.g.,
8GB). While this is possible in the browsers, it becomes challenging when applied to
the kernel.

2.3 Threat Model
We assume an attacker that can execute unprivileged code on the target system with a
kernel that is hardened with all common mitigations, including KASLR and DEP [121].
For the hardware, we assume a modern processor with a tagged TLB. In this chapter we
focus on Intel processors with PCID-based TLB tagging, ARM and AMD however also
provides a similar feature through ASIDs. The attacker aims to elevate privileges to ring
0 by exploiting a memory corruption vulnerability in the kernel or a kernel module. To
do so, the attacker first needs to break KASLR. In general, breaking KASLR is possible

12 CHAPTER 2. TAGBLEED

Execution Unit

Load/Store Unit
Virtual

Address

MMU

TLB CR3

Level 4 Level 3 Level 2 Level 1

L3 Cache

DRAM

Figure 2.1: High level overview: On a memory access the MMU will translate a virtual address to
a physical address using the page table structures. The result of the translation will be cached in
the TLB and parts of the page tables in the L3 cache (LLC). By observing the state of the TLB and
LLC we locate the position of kernel translations in the cache. Because the position is
dependent on the translated virtual address we can successfully derandomize KASLR.

via a software-based information disclosure vulnerability or a side-channel attack. We
assume that the kernel does not contain a known information disclosure vulnerability
and that powerful mitigations against side-channel attacks on KASLR are turned on [47,
58]. The attacker’s aim is to bypass these mitigations and successfully break KASLR
with a side-channel attack. In this chapter, we mostly focus on the Linux kernel, but the
techniques we develop will likely be applicable in other kernels as well.

2.4 Attack Overview

Existing side-channel attacks on KASLR rely on the kernel being mapped in the same
address space as the user process [59, 71, 81]. Specifically, these attacks can detect
whether the kernel is mapped at a given address without the permission to access that
address. By removing the kernel from the user address space and moving it to its own
memory space these side channels are no longer possible [47, 58]. As kernel address
space isolation ensures that kernel memory is only mapped while executing in kernel
space, an attacker needs to perform a confused deputy attack [64] on the kernel, tricking
it into performing the attack on itself.

Unfortunately for the attacker, the confused deputy attack is not possible with any
of the existing techniques. For instance, the TSX attack [81] would require the kernel to
access a user-controlled pointer in a hardware transaction. However, since the Linux
kernel does not use transactions, this is not a feasible attack vector. The same is true
for the prefetch instruction [59], while triggering invalid kernel page faults when
performing the attacks described by Hund et al. [71] would crash the kernel. Therefore,

2.5. REVERSE ENGINEERING THE TLB

Ta
gB

le
ed

13

our confused deputy attack should find other mechanisms. The simplest operation that
we can force a kernel to perform an access to its own memory. Memory accesses occur
on every single instruction as the processor loads text and often data from memory. An
important research question is whether it is possible to break KASLR using uncontrolled
valid memory accesses performed by the kernel—and as we will see, the answer is yes.

Figure 2.1 shows how the information that the kernel maintains for address transla-
tion leaves traces in various caches when performing amemory access. On eachmemory
access, the MMU performs a virtual to physical address translation, first consulting the
TLB to see whether the result is already cached there. If the translation is not in the
TLB, the MMU performs a page table walk to translate the virtual address into a physical
one. Accessing page table entries in the page table results in caching parts of the page
table in the CPU’s data caches. Bits of the virtual address determine the set in the TLB
and which part of the page table is being cached.

Ironically, the introduction of tagged TLBs, so important for the performance of
systems with an isolated kernel address space, undermines the very isolation it should be
helping, since it is now possible for a user process to probe TLB sets in its own address
space to detect kernel activity in these same sets. Moreover, the sets in which there
is activity reveal information about the virtual address of kernel memory. However,
breaking KASLR by observing such TLB activations presents several challenges:

C1 Since the kernel is mapped using huge or super pages, we need to understand the
TLB architecture for these page types and their addressing function. The TLB
architecture for 4KB pages has only recently been reverse engineered by Gras et
al. [53], but the TLB behavior for larger pages remains entirely unknown.

C2 Given the small number of TLB sets, the partial information retrieved from a
tagged TLB is unlikely to be sufficient to fully derandomize KASLR. We therefore
need an auxiliary side channel to combine it with the side channel over tagged
TLB. This raises the challenge of combining these side channels.

C3 Timing a kernel memory access in a confused deputy-style attack requires forcing
the kernel to perform a certain operation on behalf of a user process (e.g., a system
call). Compared to existing attacks that simply time a single memory access by
itself, the system call introduces significant additional noise. Building a practical
side-channel attack in such a setting is challenging.

We first address C1 by reverse engineering the TLB architecture for huge and super
pages in Section 2.5. In Section 2.6, we then show how an EVICT+TIME attack on a
tagged TLB combined with a constrained variant of the AnC attack [54] allows breaking
KASLR (addressing C2). We further show how selective TLB flushing, made possible
through our reverse engineering efforts, can significantly reduce noise to make our
attack practical (addressing C3).

2.5 Reverse Engineering the TLB

For the TLBleed attack [53], the authors present their efforts in reverse engineer-
ing the TLB architecture to understand how virtual addresses map to different sets
in the TLB. They use Intel Performance Counters (PMCs) to gather fine-grained in-
formation about TLB misses and their level. Intel provides performance events like
dtlb_load_misses.stlb_hit and dtlb_load_misses.miss_causes_a_walk which al-
low differentiating between a L2 sTLB hit and a miss.

14 CHAPTER 2. TAGBLEED

0 32 64 96 12
8

TLB set

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

co
ns

ec
ut

iv
e

hu
ge

 p
ag

es

Figure 2.2: The graph shows the TLB set for 256 virtual consecutive huge pages starting at
address 0x6ffe00000000. The hash function for huge pages is linear, given by the 7 bits after
the page offset.

With their findings they define the L1 TLB as linearly-mapped TLBs. This describes
the hash function determining the TLB set of a virtual address. In a linearly-mapped
TLB the hash function is given by tlb_set(va) = pageva mod s. A TLBs architecture is
defined by its sets s, ways w and its hash function tlb_set(va). The L2 sTLB however is a
complex-mapped TLB in recent Intel architectures. This means the hash function is not
linear. In the Skylake sTLB, for example, the hash function is given by a XOR-7 function
which xors bits 19 to 13 with the bits 26 to 20 of the virtual address.

We first tested whether we can evict a TLB entry for a huge page (i.e., 2MB) by
flushing the whole TLB with 4KB pages. Using performance counters we verified that
we were able to evict the TLB entry of the 2MB page from the L1 dTLB and the L2 sTLB.
We conclude from this that both L1 dTLB and L2 sTLB are shared between 4KB and
2MB pages. This information already gives us the set and ways for the L2 sTLB since it
is the same for normal pages. Contradictory to the information from cpuid, the L1 dTLB
(2MB pages) on Skylake therefore has 64 entries with 16 sets and 4 ways instead of the
stated 32 entries and is shared with the L1 dTLB for 4KB page translations. Based on our
findings the dTLB for 2MB pages, as well as the sTLB for 1GB pages are linearly mapped
with the bits after the page offset. We, however, still need to reverse engineer the hash
function that determines in which of the 128 sTLB sets a huge page is put in. We know
that the sTLB is shared with 4KB pages where, on Skylake, the set is determined by a
complex XOR-7 hash function. To observe the addressing function for 2MB pages we
evict one set in the sTLB at a time using 4KB pages. That allows us to observe which TLB
set the huge page is mapped to. Figure 2.2 presents our results on Skylake for measuring
the TLB set for 2MB pages. Based on our measurements, the sTLB set for 2MB huge
pages is determined by bits 27 to 21 of the virtual address (VA[27:21]). Contradictory to
the complex XOR-7 hash function for 4KB pages, for 2MB pages it is only addressed

2.6. TAGBLEED

Ta
gB

le
ed

15

Page size L1 dTLB L2 sTLB

sets ways indexing shared sets ways indexing shared

4KB [53] 16 4 VA[15:12] ✓ 128 12 XOR7(VA[25:12]) ✓
2MB 16 4 VA[24:21] ✓ 128 12 VA[27:21] ✓

1GB - 4 -* ✗ 4 4 VA[31:30] ✗

* fully associative

Table 2.2: TLB architecture for Skylake architecture based on our reverse engineering efforts.
The indexing column determines the bits used for the linear indexing function. Only the sTLB
for 4 KB pages is indexed with the complex XOR7 indexing function.

with a linear addressing function. An overview of our findings on the TLB architecture
is summarized in Table Table 2.2.

2.6 TagBleed
In this section, we discuss the building blocks of our TagBleed attack. We first discuss
howwe can force the kernel to access its virtual memory to start off our confused deputy
attack. We then describe how we utilized the knowledge we gained through our reverse
engineering for leaking kernel virtual address information through the tagged TLB and
to reduce noise during the attack. After that, we discuss how we utilized a constrained
version of the AnC attack to break the remaining residual (2 bits) of entropy for the
kernel text. We further extend our attack to derandomize the location of kernel modules
and data.

2.6.1 Forcing Kernel Memory Access
Measuring the latency of a single memory translation in the kernel is challenging from
user space. It is simply not possible to start the timer before that specific translation and
stop it straight afterwards. We need to start the timer prior to entering the kernel and
stop it once returned to user space. Measuring the entire length of the kernel operation
introduces additional noise caused by other instructions being executed. System calls
are an easy way for a user process to communicate with the kernel. To minimize noise
of other code executed during the system call, we took the shortest possible system
call by providing an invalid system call number. Early in the system call handler the
kernel will look for a system call with the provided number and abort because of the
invalid argument. With calling such an invalid system call, we minimize the time spent
in the kernel, minimizing the amount of unrelated instructions being executed within
the timing window. We note that the SYSCALL instruction is also considerably faster
than INT 0x80, in order to shorten the execution path.

2.6.2 Leaking Through Tagged TLB
As mentioned in Section 2.2, KASLR support in Linux aligns the kernel text to 2MB
and randomizes bit 21 to 29 of the virtual address, in other words, the slot in second
page table level (i.e., PTL2) as shown in Figure 2.3. We craft an EVICT+TIME attack,
evicting one TLB set at a time and timing a target (kernel) memory access. If the TLB

16 CHAPTER 2. TAGBLEED

1111	1111	1 111	1111	10

Page Table Level 2

4KB	aligned

Page Offset

47 39 38 30 29 21 20

47 39 38 30

25

20

PTO	(6	bit)

29 24

Page Table Level 1

Page Offset

12 11

12

11

KASLR11	1111	1	0

TLB	Set	(14	bit)

PTO	(6	bit)

15

1111	1111	1 111	1111	10

Page Table Level 4

2MB	aligned

Page Offset

KASLR

47 39 38 30 29 21 20

47 39 38 30

27 21

20

PTO	(6	bit)

TLB	Set	(7	bit)
Page Table Level 3Page Table Level 4

29 24

Page Offset

Kernel modules

Kernel image

Page Table Level 3 Page Table Level 2

Page Table Level 4

Page Table Level 4 Page Table Level 3

Page Table Level 3

Figure 2.3: For the kernel image the whole second page table level (PTL) is randomized by
KASLR. Using TLB sets we are able to randomize the lower 7 bits. Combining it with page table
offset (PTO) information, which derandomizes the higher 6 bits, we can successfully break
KASLR. For kernel modules PTL1 and the lowest bit of PTL2 are randomized. Using the TLB set,
given by the XOR-7 hash function, together with the offset within the page table is enough to
derandomize those 10 bits of entropy.

set with the desired entry is evicted, the MMU is forced to perform a page table walk. A
page table walk is considerably slower than just using the cached translation from the
TLB. Note that due to KPTI the TLB would be flushed entirely on a context switch if
no TLB tagging would be in-place. With the tagged TLB, we now have the capability to
selectively evict parts of the TLB and observe the effects across context switches. As
already presented, the L2 sTLB set for huge pages is determined by VA[27:21], which
allows derandomizing the lower 7 bits of the second page table level. The last 2 bits
of PTL2, which remain unknown, are derandomized by combining this attack with
information obtained through page table walker discussed in the next section.

Reducing noise Selectively flushing one TLB set at a time also reduces the noise. Not
evicting the entire TLB massively reduces the amount of unwanted page table walks
which create a large amount of false positives.

2.6.3 Confused Deputy Attack with AnC
The AnC attack on the MMU can break ASLR when the attacker can freely slide in the
virtual address space [54]. AnC relies on the MMU caching parts of the page table
page on a page table walk. Depending on the virtual address, different parts of the
page table end up being cached in the LLC. Using EVICT+TIME, AnC locates the cache
lines containing the accessed page table entries by the MMU. However, this will not
reveal the complete virtual address since multiple 8-byte page table entries are stored in

2.6. TAGBLEED

Ta
gB

le
ed

17

for each tlb_set do
for each cache_line do

evict_l1_tlb()
evict_l2_tlb_set(tlb_set)
evict_cache_line(page_table_cache_line)
past← rdtscp()
syscall
now ← rdtscp()
timing[tlb_set][cache_line]← now − past

end for
end for

Listing 1: Timing a system call by only evicting one TLB set and one page table cache line at a
time.

the same 64-byte cache line. AnC addressed this problem by accessing large virtually
contiguous memory addresses, i.e., sliding. Accessing subsequent virtual addresses
cause subsequent cache lines to be accessed by the MMU. The point at which a new
cache line is accessed reveals the offset of page table entries in a cache line – fully
derandomizing ASLR. While powerful, it is not trivial to apply the AnC attack to the
kernel due to two reasons. First, we cannot make the kernel slide its address space, and
second, each step of the AnC attack causes up to four cache line activations due to four
levels of the page table, introducing false positives. We present a variant of this attack
integrated into our tagged TLB side channel to leak the remaining 2 bits of entropy and
making TagBleed more noise-resistant.

Sliding As shown in Figure 2.3, the residual 2-bits of entropy left from our TLB attack
are not related to the offset of page table entries within the cache lines. This means
that we do not need to perform sliding to retrieve these two bits. As a result, a single
memory access by the kernel is enough to break KASLR when combining these two side
channels.

Other PTLs In order to speed up page table walks Intel not only caches complete
virtual to physical translations in the TLB, but also partial translations in its translation
caches [180]. These caches allow the MMU to skip page levels during the translation.
We make use these translation caches to force the MMU to skip page tables that are not
interesting for KASLR (see Figure 2.3). This allows us to avoid noise caused by other
page table levels.

Combining the side channels Listing 1 shows the high level operation of TagBleed
when combining the tagged TLB and AnC attacks. We generate a two-dimensional
matrix with all combinations of evicting one TLB set and one cache line. Then we use a
simple script to identify the best candidate. We first identify the best candidate for the
TLB set. Since this derandomizes the lower 7 bits of PTL2, only the 2 highest bits are
missing. Therefore, we only need to choose between 4 possible cache lines. Since the
AnC attack gives us the upper 6 bits of PTL2, we can use the upper 4 bits of the best
candidate from the previous step as a noise filter when selecting the final candidate.

18 CHAPTER 2. TAGBLEED

Vendor Microarchitecture CPU model Year TLB tagging

Intel Haswell i7-4650U 2013 PCID
Intel Skylake i7-6700K 2015 PCID

Table 2.3: Microarchitectures used in evaluation.

2.6.4 Derandomizing Kernel Modules
Kernel modules are loaded with an offset randomized by KASLR when the first module
is loaded in the system. In order to observe the signal, we need to force an access to
a memory location within the kernel module. We achieve this by performing an ioctl
call to a loaded kernel module. Kernel modules are mapped with 4KB pages, contrary
to 2MB pages used for the kernel image. Therefore, as shown in Listing 1, bits 12 to
21 of the virtual address are randomized, since kernel modules are not 2MB, but 4KB
aligned. This slightly changes our approach since the TLB indexing function for 4KB
pages is different than for 2MB pages. For example, on Skylake the TLB set for 4KB
pages is determined by an XOR of bits 12 to 18 with the bits 19 to 25 of the virtual address.
Hence, using TLB sets alone we cannot break any KASLR bits. The AnC attack, however,
provides us with bit 15-20 through the offset of the activated PTL1 cacheline. Bits 19
and 20 allow us to find bits 12 and 13 as well, since bits 19 and 20 are XORed with bits
12 and 13 in the TLB’s XOR-7 pattern [53]. The remaining entropy will be a single bit,
since we cannot break KASLR at bit 14 and 21 while we know their XOR value.

2.6.5 Derandomizing Physmap
Derandomizing physmap is challenging because it is 1GB aligned and randomized in
PTL3 and PTL4. The TLB indexing function for 2MB pages does not use those upper
bits. Most of the physmap, however, is mapped with 1GB pages with a separate TLB
with its own indexing function. But since the sTLB for 1GB pages only has 4 sets, we can
only use it to derandomize the lower 2 bits of PTL3. To derandomize the rest, we can
make use of AnC to derandomize the higher 6 bits of both PTL3 and PTL4 reducing the
entropy by another 10 bits. This still leaves us 4 bits of entropy (16 possible locations).

2.7 Evaluation

We evaluated TagBleed on a machine running Ubuntu 18.04 LTS (Linux kernel v4.19.4)
with an Intel Core i7-4650U @1.70 GHz (Haswell) and 8GB of RAM. In order to ensure
portability across different architectures, we confirmed our evaluation results on another
workstation running Ubuntu 18.04.1 LTS (Linux kernel v4.15.0) with an Intel Core i7-
6700K @4.00 GHz (Skylake) and 16GB of RAM. This also allowed us to confirm that
a range of different TLB architectures is susceptible to our TagBleed attack. Table 2.3
details the CPUs and microarchitectures considered in our evaluation. In our evaluation,
we targeted the derandomization of KASLR for the kernel image.

2.7.1 Side channel by TLB set eviction
We first evaluated our assumption on whether the partial TLB set eviction from user
space can influence the MMU’s virtual-to-physical memory address translation. Without

2.7. EVALUATION

Ta
gB

le
ed

19

0 16 32 48 64 80 96 112 128
L2 sTLB set

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

Ro
un

d

645

660

675

690

705

Figure 2.4: We can clearly see that evicting some TLB sets will slow down the time of an invalid
system call. This can only happen when the (tagged) TLB is not fully flushed as the kernel
switches address spaces with KPTI enabled.

KPTI, the (unified user/kernel) address space is not switched on kernel entry, so no
TLB flushing is performed. With KPTI, however, the kernel updates the CR3 register to
switch to the separate kernel address space. This operation does flush the TLB on legacy
architectures, hindering our partial TLB set eviction strategy. However, on modern
tagged TLB architectures, tagged entries are no longer flushed at mode switching time,
and we should be able to surgically trigger a page table walk only when evicting the
correct TLB set.

Figure 2.4 validates our assumption, depicting the impact of evicting different TLB
sets on the execution time of a dummy (i.e., invalid) syscall. Note that using an invalid
syscall, that is a syscall with an invalid syscall number, is a convenient way to trigger
short-lived kernel activity, but using any other short-lived syscall (e.g., reboot without
root privileges) would also serve our purposes.

As Figure 2.4 shows, the execution time increases only when evicting specific TLB
sets (revealing the virtual memory activity of the syscall). The signal persists if we
disable KPTI, since the address space is not changed on a context switch, keeping the
current state of the TLB. KPTI on a legacy TLB architecture without a tagged TLB
requires a full TLB flush on a context switch. This clears the state of the TLB cache and
therefore stops TagBleed, but it comes at a high performance cost for each user to kernel
transition.

2.7.2 Side channel by cache line eviction
Our second assumption is that we can observe the cache lines being accessed during
a kernel page table walk. In order to test this assumption, we built a kernel module to
perform an AnC-style cache attack to monitor the page table walks performed by the

20 CHAPTER 2. TAGBLEED

0 8 16 24 32 40 48 56 64
Cache line offset in page table

0

100

200

300

400

500

Co
ns

ec
ut

iv
e

pa
ge

s

1050

1200

1350

1500

1650

Figure 2.5: Although more noisy than a same-process page table walk signal, the sliding is still
visible when timing the execution of an ioctl syscall to our kernel module. The offset within
the buffer, which the kernel module accesses, is passed as an ioctl argument.

MMU. The kernel module gives us the ability to access a given offset within a kernel
buffer to perform sliding on the virtual address space and make the signal more visible.
By accessing virtually contiguous pages, which we define as sliding, the cache line of
the page table entry will also be incremented. We then time the execution of an ioctl
syscall that causes the kernel module to access a byte at a given offset. Figure 2.5 validates
our assumption, depicting the signal for 512 contiguous virtual memory pages measured
by timing the execution of the ioctl syscall.

However, when we repeat the experiment with an invalid syscall and without our
kernelmodule (and thereforewithout sliding), the signal becomes very noisy, as depicted
in Figure 2.6. This shows that, due to the entire cache activity of the kernel being
impacted by cache evictions, without detecting the jump in between cache lines and
absent other side channels, it is challenging to detect if an eviction induced a cache miss
during a page table walk or in other kernel operations.

2.7.3 Combining the two side channels

Next, we combine the two side channels used by TagBleed to 1) derandomize all the
required bits of entropy and 2) combine the available information for better TLB set
and cache line detection. We first showcase our TagBleed attack sensing the second
page table level for a huge page access in user space. This scenario demonstrates our
attack in a low-noise scenario due to the ability to carefully time a single user-level
memory access. Next, we show that TagBleed’s signal is still detectable when measuring
it through kernel activity triggered by a system call.

Figure 2.7 depicts the signal for our combined EVICT+TIME attack on user-level
huge page access. As shown in the figure, the attack yields a fast access for all TLB sets

2.7. EVALUATION

Ta
gB

le
ed

21

Figure 2.6: Cache evictions can slow down syscall execution in many unpredictable ways. As
shown in the figure, not one but many different cache lines introduce cache misses in kernel
execution even for an invalid syscall. The graph was created with the kernel target page being
mapped using the sixth cache line, whose signal does not even stand out compared to other
cache lines.

except the one triggering a page table walk. If, for that TLB set, we also evict the cache
line of the second-level page table entry, the page table walk (and ultimately the access)
is even slower. To only analyze the signal for the second-level page table, we keep the
higher levels cached in the page table caches.

Figure 2.8 presents the same experiment but operated on an invalid syscall—a more
useful but also more noisy scenario. As expected, the kernel activity yields several
other memory access and results in several other cache misses. Nonetheless, we can
identify the correct TLB set for kernel pages by finding the TLB sets that consistently
keep getting evicted for all the cache lines. Another strategy to find the correct TLB set
is finding several TLB sets close to each other. This requires accesses within different
parts of the kernel image in consecutive TLB sets. However, the most reliable way to
determine the correct TLB set is verifying if one of the four possible cache lines is
considerably slower than the other cache lines.

2.7.4 Success rate

In order to evaluate the success rate of TagBleed, we ran 50 trials, restarting the system
each time to trigger a rerandomization with KASLR. For each trial, we performed a total
of 20 runs to minimize the risk of temporary noise. In 47 of 50 trials, we are able to
recover the correct location of the kernel. In three other trials, we could not reliably
disambiguate two cache lines. This translates to a 94% success rate while reducing the
KASLR entropy down to 1 bit in the other cases.

22 CHAPTER 2. TAGBLEED

0 8 16 24 32 40 48 56 64
Cache line offset in page table

0

16

32

48

64

80

96

112

128

L2
 sT

LB
 se

t

130

135

140

145

150

Figure 2.7: A combined EVICT+TIME attack on a user-level huge page access. Only when
evicting the TLB set 55, the MMU performs an expensive page table walk. Moreover, when
evicting cache line 54, the page table entries need to be loaded from memory which slows
down the page table walk.

2.7.5 Attack time
Our TagBleed attack can be run in less than a second with satisfying results. Nonetheless,
timing is usually not critical when building kernel exploits in a local exploitation scenario,
where the attacker has already been granted (or achieved) unprivileged code execution.
By default, we therefore increase the number of rounds to 10 for each TLB set to reduce
the amount of false positives. This still allows us to run the attack in less 3 seconds
including the time to run our solver script.

2.7.6 Noise
For the purpose of noise reduction, TagBleed combines two different side channels.
Figure 2.6 shows that, without combining multiple side channels, TagBleed cannot
easily battle spatial noise. For increased reliability against temporal noise, we repeat
our measurements in several rounds. Temporal noise is especially critical when timing
system calls. The kernel can potentially reschedule other processes after the system
call instead of rescheduling the attacker-controlled process. By repeating the evictions
in several rounds, we make sure that temporal noise does not negatively affect the
measurements. As we lower the number of rounds below the default value of 10, we
quickly observed degradation of the success rate due to temporal noise. As we increase
the number of rounds above 10, we observed minor improvements to the previously
reported success rate. Overall, we believe 10 is a good choice even for relatively noisy
environments.

To assess noise in a realistic use case, we ran the experimentwith additionalworkload
on an Ubuntu Desktop with an open browser, running a YouTube video, and several

2.8. MITIGATIONS

Ta
gB

le
ed

23

0 8 16 24 32 40 48 56 64
Cache line offset in page table

0

16

32

48

64

80

96

112

128

L2
 sT

LB
 se

t

650

675

700

725

750

Figure 2.8: A combined EVICT+TIME attack on an invalid syscall. Based on our solver, we can
see a signal for the TLB sets 25 and 27. These TLB sets have been selected based on their high
slowdown for the last cacheline relative to all other cache lines. When testing for the four
possible cache lines 3, 19, 35, 51 we can identify cache line 19 as the one containing the page
table entries. Cache line 19 has been selected because it’s not slow across all TLB sets but
distinctively in TLB set 25 and 27.

applications running such as an email client. We could not measure any effect that
suggests TagBleed is affected by such noise. The attack is also not required to run longer
compared to the experiment without additional workload.

2.7.7 Comparison against other KASLR attacks

In Table 2.4, we compare our attackwith existing attacks when considering existing state-
of-the-art mitigations. TagBleed compromises KASLR regardless of either mitigation
since it relies only on the shared tagged TLB and CPU data caches rather than shared
branch state or shared address space. We verified our attack TagBleed against the latest
Linux kernel with KPTI, which is based on the KAISER patches. All other existing
attacks are mitigated by LAZARUS. Since TagBleed does not rely on a unified address
space or the BTB, it is not mitigated by LAZARUS. Furthermore, KAISER protects against
all existing attacks except BTB-based attacks (although the latter can be also mitigated
using complementary mitigations such as eIBRS [73]).

2.8 Mitigations

We distinguish between defenses specific for the TLB side channels, defenses targeting
cache side channels, and generic mitigations that target the timing primitives.

24 CHAPTER 2. TAGBLEED

KAISER [58] LAZARUS [47] time

Double PF [71] ✗ ✗ < 1 min
prefetch [59] ✗ ✗ 12 s
TSX [81] ✗ ✗ 0.2 s
BTB [44] ✓ ✗ 60ms
TagBleed ✓ ✓ < 1 s

Table 2.4: KASLR attacks vs. defenses.

Stopping TLB side-channel attacks Completely removing the TLB side channels re-
quires all shared state to be removed. There are two ways to do so: spatial and temporal
partitioning.

Spatial partitioning removes the side channel by isolating user processes from the
TLB sets associated with the kernel. With current architectures this is not practically
possible, since a partitioned TLB makes it extremely hard to guarantee contiguous
virtual memory. Changing the TLB indexing function in future architectures could
work, although hardware changes are expensive, and it is not unlikely that doing so will
introduce performance degradation. After all, the current function is specifically chosen
for performance.

Instead of spatial partitioning, it is also possible to kill the side channel by partitioning
the TLB in time—by performing a full TLB flush upon crossing security boundaries.
Disabling TLB tagging/PCIDs to flush the TLB completely effectively mitigates our
attack but at the cost of high performance overhead for all implementations of kernel
address space isolation.

Stopping LLC side-channel attacks As temporal partitioning of the last level cache,
although possible in theory, is not a feasible solution for obvious performance reasons,
we consider only spatial isolation.

Cache coloring divides pages between kernel and user process in such a way that
they do not share cache sets. Doing so will stop leaking through the LLC, but is far
from trivial [172], has serious performance implications for both user processes and the
kernel [91, 157], and needs to account for all memory used on behalf of the user process.
Moreover, LLCs are not the only side-channel option for the determined attacker.

Instead of caching the content of the page table in the LLC, future processor gen-
erations could put it in a dedicated, isolated page table cache. Clearly, such a solution
requires expensive hardware changes. Also, that page table cache would have to be
designed carefully, lest it opens up a new potential side channel (e.g., if it is shared
between user processes and kernel).

Stopping general kernel timing attacks At heart, our attack is possible because at-
tackers can measure subtle timing differences in system call execution. Removing this
ability would also stop the attack. To do so, we identify three approaches: detection of
timing attacks, constant time system calls, and timer crippling.

HexPads [135] has shown that, in principle, performance counters can be used to
detect ongoing side-channel attacks. However, it is hard to guarantee full mitigation
and detection also introduces the risk of false positives and false negatives. While at
first sight it may also seem possible to introduce a defense in the kernel to detect a
high rate of failed system calls, say, such a solution would be naive. First, it is hard to
be sure if the failed calls are really due to a side-channel attack. Second, attackers can

2.9. RELATED WORK

Ta
gB

le
ed

25

easily make their attack more silent by extending its time and running it from separate
processes. In order to mitigate the ability to time invalid system call the kernel could
enforce a constant execution time for invalid system calls. Doing so would not influence
performance during normal use, since invalid system call number are not typically used
by normal applications. However, this is also not very effective because we could just
find a short valid system call as an alternative to an invalid system call. The alternative,
making all system calls constant time is not a practical solution. The most obvious
mitigation is to cripple the timers, for instance by removing the availability of high
resolution timers such as rdtsc. Again, this solution is not realistic since high resolution
timers are vital to many applications. Moreover, crafting ad-hoc high-accuracy timers,
e.g., using concurrent threads is always possible.

In summary, mitigating side channels for every single memory access is challenging
and/or expensive. The simplest and most practical mitigation may be to simply use the
higher bits of the virtual address for the operating system’s implementation of KASLR.
Since our attack fully derandomizes PTL2, extending the randomized bits into PTL3
could work as a possible mitigation, even though moving the location of the Linux kernel
may (and probably will) introduce unforeseen performance issues. We point out that
with our technique we would still be able to derandomize PTL2 which removes those
bits from the actual entropy of both KASLR and user-space ASLR.

2.9 Related Work

Derandomizing (K)ASLR Derandomizing ASLR has been an active research topic as a
fundamental primitive for code reuse attacks [145]. The simplest way to break ASLR is
to leak code or data pointers with memory disclosure vulnerabilities [36, 159]. However,
side-channel attacks showed that even without disclosures it is possible to derandomize
the address space layout. These side-channel attacks use techniques such as control flow
timing [43, 153], memory deduplication [9, 16], or CPU caches [44, 54, 59, 71, 81].

Hund et al. [71] showed three different scenarios for breaking KASLR by perfoming
timing attacks on CPU caches and the TLB. Yang et al. [81] used Intel TSX to suppress
exceptions that normally happen on faulty memory accesses. Since no page fault is
raised but the transaction aborts and returns directly back to the user, the difference
between invalid permissions or amissingmapping is measurable. Grus et al. [59] showed
that the execution time of the prefetch instructions can be used to detect the existence
of virtual mappings in the kernel region. Evtyushkin et al. [44] demonstrated that the
BTB (Branch target buffer) leaks bits to break current KASLR implementations in Linux.
Finally, in 2018 Meltdown [109] used a speculative execution vulnerability in Intel CPUs
to read the entire virtual and physical address space. This of course also breaks both
ASLR and KASLR.

Most of the presented KASLR attacks suggested better isolation between kernel and
user space as a defense. The attacks are possible because the kernel is mapped into each
user process address space. Gruss et al. [58] presented KAISER as a kernel page table
isolation (now implemented as KPTI in Linux) with low performance impact. With
KPTI the whole kernel is no longer mapped into each user address space which defends
successfully against the presented attacks except Evtyushkin et al.’s BTB attack [45],
which instead is mitigated by explicitly (as done by LAZARUS [47]) or implicitly (as
done by eIBRS [73]) flushing the BTB on privilege switches. eIBRS [73] can additionally
prevent cross-thread BTB attacks if SMT is enabled.

26 CHAPTER 2. TAGBLEED

Hardware timing side channels Physical shared resource may easily give rise to side
channels. For instance, as early as 1996 when Kocher [96] presented his timing side
channel on crypto primitives, Kelsey et al. [89] mentioned the idea of using the cache
hit ratio as a side channel on large S-box ciphers to break cryptographic keys. This
theoretical idea was formalized by Page [131] in 2002. Just one year later the first
successful cache-based attack against DES was presented by Tsunoo et al. [175].

EVICT+TIME [129, 173] attacks can only observe a single cache set per measurement
and have been used to recover AES keys from the victim’s process. Concurrently, two
other papers presented cache attacks to leak cryptographic keys. Bernstein used a similar
method to EVICT+TIME to break AES, which required reference measurements for
a known key in an identical configuration to the victims [12]. The second paper, by
Percival [137] presented a cache-based attack on RSA with SMT.

Meanwhile, the PRIME+PROBE [111, 129] and FLUSH+RELOAD [61, 195] attacks
are able to observe the state of the whole cache which makes them popular due to
its faster bandwidth compared to EVICT+TIME. PRIME+PROBE was utilized by sev-
eral researchers to leak private keys [78, 199], keystrokes [144] and to read informa-
tion from other processes or VMs on the same machine from JavaScript [128]. The
FLUSH+RELOAD attack requires page sharing with the victim, for example by some
sort of memory deduplication. However, it is more fine-grained than PRIME+PROBE
by measuring the exact cache line. Memory deduplication was deployed in most major
operating systems which resulted in several FLUSH+RELOAD based attacks exploiting
shared memory [4, 79, 80, 198]. Several others used the CPU cache to extract private
keys from AES implementations [1, 15, 163]. All previous attacks focused on reading
secret information across boundaries, either from other processes or other VMs running
on the same physical machine. Gras et al. [54] broke ASLRwithin the JavaScript sandbox
with an EVICT+TIME technique.

However, not onlyCPUcaches are an attractive target for side channels. TLBleed [53]
showed that the TLB can also be used to leak sensitive information with all CPU cache
defenses deployed. The BTB (Branch Target Buffer) has also been shown to leak sensitive
information through side-channel attacks [44]. Pessl et al. [138] presented DRAMA a
cross-CPU side-channel attack exploiting the DRAM row buffer.

SGX enclave attacks with TLB as an attack vector Previous work has shown that
the TLB is shared between the SGX enclave and the process it is running in [186].
Since they run in the same address space this means classic TLB attacks apply on SGX
environment [53], similarly to breaking KASLR without KPTI enabled. Therefore,
tagged TLBs do not enable new leakage in such a case, but can be interesting if the
address space is isolated like with AMD SEV [87].

Defenses against timing side channels on CPU caches As CPU caches became a
target for side-channel attacks, several defenses were proposed. All defenses focus on
scenarios where several untrusted entities share hardware (e.g., multiple tenants in the
cloud). Cache isolation is intended to protect a tenant against an attacker running on the
same physical machine [17, 57, 91, 110, 143, 157, 162, 202]. Some of the existing defenses
focus on isolating critical code sections and disallow leaking information through the
cache while executing in isolation [17, 57, 157]. Others protect areas in memory from
leaking information to the cache [91, 110]. Some claim to provide full isolation between
untrusted VMs running on a multi-tenant system [143, 162, 202]. None of these defenses

2.10. CONCLUSIONS

Ta
gB

le
ed

27

isolate the kernel against the user or fully defeat CPU cache side channels. Especially
traces left in the cache by the MMU, not by the user itself, will not be affected by any
of these defenses. We rely on information in the cache that is cached on every single
address translation by the MMU. Providing cache isolation is limited by resources and
therefore can only be provided for a limited time to execute security sensitive sections.
Address translations are always present, therefore not just a small portion of the code
can be isolated.

Concurrent work In concurrent work, Data Bounce [22] and EchoLoad [23] present
side-channel attacks to bypass KASLR in face of KPTI (and absent CPU bugs like
RIDL [181]). In contrast to TagBleed, both attacks rely on the current KPTI imple-
mentation leaving a few kernel pages mapped in the user-visible address space with the
same KASLR entropy used for all the other kernel pages. As such, similar to traditional
address probing attacks against KASLR [59, 71, 81], such attacks can probe for user-
mapped kernel pages and indirectly infer that of the other kernel pages. In contrast,
TagBleed’s confused deputy attack can directly drop the entropy of kernel pages mapped
and used only by the kernel, showing that even a perfect implementation of KPTI as
well as the most recent mitigations against address probing attacks such as FLARE [23]
are insufficient.

2.10 Conclusions
In this chapter, we demonstrated that isolating the address space organization of the
kernel from that of user processes is not enough to prevent attackers from breaking
randomization in the kernel (KASLR). Ironically, the one feature that is commonly
hailed as the performance savior for kernel address space isolation, the presence of
address space tags in modern TLBs, turns out to break its isolation guarantees. Our
attack makes use of the fact that tagged TLBs allow attackers to observe kernel memory
accesses if they occur in the same TLB set. Moreover, by reverse engineering the TLB
architecture, we were able to infer part of the kernel’s virtual address from knowing the
TLB set. Complementing our side channel with second one (based on cache activity as
a result of page table walks), we completely broke KASLR in the Linux kernel, even in
the presence of advanced defenses and kernel page table isolation. In conclusion, since
we demonstrated that we need to reconsider the current designs and countermeasures
are invariably expensive and typically complicated, we now know that the transition
from a unified address space organization to one where the kernel gets its own address
space will be more costly than we thought.

Ka
sp
er

3 Kasper:
Scanning for Generalized
Transient Execution Gadgets
in the Linux Kernel

Due to the high cost of serializing instructions to mitigate Spectre-like attacks on mis-
predicted conditional branches (Spectre-PHT), developers of critical software such as
the Linux kernel selectively apply such mitigations with annotations to code paths they
assume to be dangerous under speculative execution. The approach leads to incomplete
protection as it applies mitigations only to easy-to-spot gadgets. Still, until now, this was
sufficient, because existing gadget scanners (and kernel developers) are pattern-driven:
they look for known exploit signatures and cannot detect more generic gadgets.

In this chapter, we abandon pattern scanning for an approach that models the
essential steps used in speculative execution attacks, allowing us to find more generic
gadgets—well beyond the reach of existing scanners. In particular, we present Kasper,
a speculative execution gadget scanner that uses taint analysis policies to model an
attacker capable of exploiting arbitrary software/hardware vulnerabilities on a transient
path to control data (e.g., through memory massaging or LVI), access secrets (e.g.,
through out-of-bounds or use-after-free accesses), and leak these secrets (e.g., through
cache-based, MDS-based, or port contention-based covert channels).

Finally, where existing solutions target user programs, Kasper finds gadgets in
the kernel, a higher-value attack target, but also more complicated to analyze. Even
though the kernel is heavily hardened against transient execution attacks, Kasper finds
1379 gadgets that are not yet mitigated. We confirm our findings by demonstrating an
end-to-end proof-of-concept exploit for one of the gadgets found by Kasper.

29

30 CHAPTER 3. KASPER

1 x = get_user(ptr);
2 if (x < size) {
3 y = arr1[x];
4 z = arr2[y];
5 }

Listing 2: Spectre-PHT BCB pattern, where attacker data bypasses an array bounds check in
order to leak secret data.

3.1 Introduction

Ever since Meltdown and Spectre burst onto the scene in January 2018 [69, 95, 109],
transient execution vulnerabilities have had the security community scrambling for
solutions. While some of the vulnerabilities, such as Meltdown, can be mitigated fairly
easily [33], this is not the case for others. In particular, Spectre-PHT (commonly
referred to as Spectre-V1)—which leaks secrets by abusing the transient execution
that follows a mispredicted conditional branch—cannot be fully eradicated without
crippling performance. One possible mitigation is to forbear all speculation after a
conditional branch. However, since speculative execution in modern CPUs is essential
to performance and conditional branches are everywhere, it is crucial that such an
expensive mitigation be applied only where necessary. The attack itself requires specific
Spectre-PHT gadgets: that is, vulnerable branches which can indeed leak secrets through
the microarchitectural state. Therefore, to maintain acceptable performance, we should
only serialize or otherwise instrument these gadgets.

Beyond pattern-matching However, current methods to identify gadgets are limited
as they are entirely pattern-driven. By searching for specific features of well-known
Bounds Check Bypass (BCB) patterns (Listing 2)—e.g., suspicious copies from user
space [25], potential out-of-bounds accesses [126], or attacker-dependent memory
accesses [140]—they only approximate the presence of BCB gadgets. Our experiments
show that today’s state-of-the-art scanners [126, 140] yield a false positive rate of 99%
(Section 3.9.1). In other words, 99% of the code snippets identified as gadgets cannot
actually lead to information disclosure. Adding expensive defenses to such code snippets
incurs substantial and unnecessary overhead. More, the false negative rate is up to 33%.
In other words, they miss many vulnerable branches that should be protected.

Furthermore, existing approaches are limited in scope. They all broadly assume the
same primitives as the traditional BCB pattern: direct attacker input, an out-of-bounds
secret access, and a cache-based covert channel. Such primitives are of little use in the
hardened Linux kernel since the large majority of BCB gadgets have been mitigated.
However, this does not mean the kernel is free of Spectre-PHT gadgets. Far from it: the
problem goes much deeper than BCB patterns. In reality, attackers do not care about
patterns; they just want to find any instructions in the wake of any conditional branch,
controllable by anymeans, which access secrets in arbitrary ways, and leak the secrets
through any covert channel.

A principled approach In this chapter, we propose a novel approach for finding
vulnerable gadgets in the kernel, abstracting away all pattern-specific details and instead
precisely modeling the essential steps of a Spectre-PHT attack shown in Figure 3.1.

3.1. INTRODUCTION

Ka
sp
er

31

Step 1: Inject controlled values into transient execution.
Step 2: Force the execution to access a secret.
Step 3: Force the execution to leak the secret.

Figure 3.1: Essential steps in a Spectre attack.

Around these steps, we use targeted taint analysis policies to generically model the
effects of arbitrary hardware/software vulnerabilities on a transient path.

To evaluate the approach, we present Kasper, a Spectre-PHT gadget scanner. By
modeling the effects of vulnerabilities on a transient path—e.g., memory errors [27,
95], load value injection [177], cache-based covert channels [95], MDS-based covert
channels [22, 150, 181], and port contention-based covert channels [13, 46]—Kasper
finds gadgets well beyond the scope of existing approaches.

Moreover, rather than focusing on user processes (to which our approach is easily
applicable), we developed our techniques specifically for the Linux kernel—a high-
value target like few other programs; since the kernel has access to all memory in the
system, a kernel attacker can target data from any of the running processes in the system.
Existing kernel gadget scanners however, are all based on static analysis [25, 93], which
previous work observes is imprecise [126, 140]. Instead, we take a dynamic analysis-
based approach, which simply requires us to build the kernel with Kasper support, fuzz
the syscall interface (to simulate the possible coverage from a user-to-kernel attacker),
then Kasper will report gadgets at runtime. Even though the kernel has undergone
intensive scrutiny and mitigation efforts to neuter all gadgets, we still find 1379 gadgets
in an automated fashion—including many gadgets which would be non-trivial to find
statically.

Furthermore, we present a case study of a gadget found by Kasperwhich is pervasive
throughout the codebase and non-trivial tomitigate. In total, we have found 218 instances
of the demonstrated gadget sprinkled all over the kernel. We demonstrate the efficacy
of our approach by presenting a proof-of-concept exploit of this gadget.

Contributions Wemake the following contributions:

• We present taint-assisted generic gadget scanning, a new approach to iden-
tify pattern-agnostic transient execution gadgets that stem from arbitrary
software/hardware vulnerabilities on a transient execution path.

• We present Kasper, an implementation1 of our approach for the Linux kernel.

• We evaluate Kasper on a recent version of the Linux kernel to identify 1379
previously unknown transient execution gadgets and present a proof-of-concept
exploit for one of the gadgets. The Linux kernel developers assessed mitigations
for the disclosed gadgets and requested access to Kasper for mainline kernel
regression testing moving forward.

The rest of this chapter is organized as follows. Section 3.2 presents background
on the attack primitives modeled by Kasper. Section 3.3 describes the threat model.
Section 3.4 defines the problem scope for Kasper. Section 3.5 describes the design of
Kasper at a high level. Section 3.6 explains speculative emulation, including unique
implementation challenges posed by the kernel. Section 3.7 explains Kasper’s vulner-
ability detectors and the taint policies which model their effects. Section 3.8 briefly

1Kasper is available at https://www.vusec.net/projects/kasper.

https://www.vusec.net/projects/kasper

32 CHAPTER 3. KASPER

Speculation Attacker input Secret output

PHT
BTB
RSB
STL

Arch:a

User, File, Net,
Dev,Massage

CACHE
MDS
PORT
AVXLVI

FPVI

aWe only list the set of Arch inputs that are relevant to the kernel.

Table 3.1: Overview of the possible primitives of a Spectre gadget. Kasper models the
primitives in bold.

describes implementation details. Section 3.9 evaluates the efficacy of Kasper compared
to existing approaches and Kasper’s gadgets found in the kernel. Section 3.10 discusses
the limitations of our approach. Section 3.11 presents a case study of a gadget found by
Kasper. Finally, Section 3.13 concludes.

3.2 Background

In this section, we will first provide a background on the components involved in a
Spectre attack and the defenses which combat them, motivating the need for Spectre-
PHT gadget scanners. Then, we will provide background on previous gadget-scanning
tools, highlighting the need for a pattern-agnostic gadget scanner.

3.2.1 Speculative execution attacks and defenses
Spectre attacks exploit the fact thatmodern processors predict the outcome of operations
such as conditional branches, and speculatively continue executing as if its prediction is
correct. If it turns out the prediction was incorrect, the processor reverts the results of
any speculative operations and restarts from the correct state. The modifications made
by the incorrect path to the microarchitectural state, however, can be examined by an
attacker using a covert channel to leak sensitive information.

We propose that the underlying primitives used by a Spectre gadget—i.e., the type
of speculation it abuses, the type of attacker data it depends on, and the type of leakage
it exploits—define a Spectre variant. The interactions between the different primitives
affect whether the variant is indeed exploitable and whether it is easily mitigated. We
summarize these primitives in Table 3.1.

Speculation type Spectre variants based on speculation from anything other than
the Pattern History Table—that is, Spectre-BTB [95], Spectre-RSB [99, 118], and
Spectre-STL [70]—are easily mitigated with relatively low overhead using microcode
updates [77] or software updates such as retpolines [76] and static calls [203].
Unfortunately, this is not so for Spectre-PHT. Spectre-PHT gadgets can be mitigated by
adding an lfence instruction after conditional branches; this approach does not scale,
however, as adding an lfence after every conditional branch would incur up to a massive
440% overhead [125]. Hence, rather than avoiding speculation altogether via lfence,

3.2. BACKGROUND

Ka
sp
er

33

Spectre-PHT is better addressed by mitigating specific speculative operations—that is,
either at the point where attacker data is used or where secret data is leaked.

Attacker input type Attacker data may reach a kernel gadget in a variety of ways—
either via architectural or microarchitectural means. First, an attacker may pass data to
the kernel via well-defined interfaces such as userspace, files, the network, or malicious
devices. Second, data can come from such places as normal, but then an attacker may
inject it into a victim kernel thread via targeted memory massaging [27, 28, 193, 206]—
wherein the attacker lands the data into a specific place on the kernel’s stack or heap,
in the hopes that later on, a bug such as an out-of-bounds read or an uninitialized
read (bugs that are relatively common on a transient path) will eventually use the
malicious data. Third, using thread that shares a simultaneous multithreaded (SMT)
core with a kernel thread (i.e., where the core executes instructions from both the
attacker thread and the victim thread at the same time), the attacker may inject data
into the victim’s transient path via load value injection (LVI) [177]—wherein the attacker
issues a sequence of faulting stores, filling the CPU’s load port with unresolved data
dependencies; meanwhile, if the kernel simultaneously loads from the same faulting
address, the CPU will inadvertently serve malicious data to the kernel. Concurrent to
our work, floating point value injection (FPVI) [141] similarly demonstrates this issue
for floating point values. Note that when we will discuss gadget exploitability, we will
group together variants using architectural input, since a Spectre gadget is agnostic to
architectural-level semantics, and will execute the same regardless of whether the input
comes from e.g., user space or memory massaging.

A widely-used mitigation to pacify attacker input is to prevent certain transient
array accesses from accessing secret data out-of-bounds by forcing the access to stay
in-bounds via a masking operation. The Linux kernel uses user pointer sanitization
and the macro array_index_nospec for this purpose. This approach however, does not
generalize well to non-array transient accesses.

Secret output type Secrets may leak from a kernel gadget in a variety of ways. First, a
gadget may rely on a cache-based channel [95], wherein the victim dereferences a secret,
thereby leaving a trace on the data cache (or TLB); an attacker can then recover this
secret through methods such as Flush+Reload [195]. Second, a gadget may rely on a
microarchitectural data sampling (MDS)-based channel [22, 150, 181], wherein the victim
simply accesses a secret, causing the CPU to copy the secret into its load buffer (or line
fill buffer, store buffer, etc.); meanwhile, an attacker can co-locate a thread on an SMT
core and issue a conflicting load. As a result, the CPU will inadvertently serve the secret
data to the attacker, who can then use it to leave a trace on their own Flush+Reload
buffer for recovery. Third, a gadget may rely on a port contention-based channel, wherein
the victim—depending on a secret—either executes one set of instructions or another;
meanwhile, an attacker can co-locate a thread on an SMT core and issue instructions
that compete for the same execution units (i.e., ports) as the victim’s instructions. Then,
the attacker can use timing information to infer which instructions the victim executed,
and hence, learn a bit of the secret [13, 46]. Finally, a gadget may rely on an AVX-based
channel, which exploits the timing of AVX2 instructions [152].

The kernel flushes CPU buffers to mitigate same-thread MDS channels. Hardware
updates for the most recent generation of CPUs mitigate cross-thread MDS (and LVI)
channels. For the same protections, older CPUs must disable hyper-threading, resulting
in massive performance penalties (not the default on Linux). The reality that these
defenses are only on by default on the newest CPUs, and that PHT gadgets cannot be

34 CHAPTER 3. KASPER

x = *ptr ;
if (x < size) {

y = arr1[x];
z = arr2[y]; }

(a) Gadget that is difficult to
detect statically because it is
unclear whether *ptr is
attacker-controllable.

x = get_user(ptr);
if (x < size) {

y = arr1[x];
z = arr2[y & MASK]; }

(b) Gadget that is
undetectable by
SpecFuzz [126] because its
in-bound leak eludes code
sanitizers.

x = 1000 ;
if (x < size) {

y = arr1[x];
z = arr2[y]; }

(c) Gadget that is not
controllable by an attacker, yet
falsely reported by
SpecFuzz [126] because it yields
an out-of-bounds access.

x = get_user(ptr);
if (x < size) {

y = arr1[x & MASK];
z = arr2[y]; }

(d) Gadget that is mitigated by the
masking operation, yet falsely
reported by SpecTaint [140] because
there is a direct dataflow from x to y
to arr2[y].

if (addr_is_mapped(ptr)) {

x = *ptr;
y = arr1[x];
z = arr2[y]; }

(e) Gadget that existing
approaches cannot detect. *ptr
gives a transient page fault, so an
attacker can inject data for x via
LVI [177].

Listing 3: Gadgets that differ slightly from the basic BCB pattern in Listing 2, and therefore foil
existing approaches.

systemically mitigated via lfence, array_index_nospec, and user pointer sanitization,
highlights the pressing need for Spectre-PHT gadget scanners.

3.2.2 Gadget scanning
Existing gadgets scanners, however, cannot accurately identify gadgets that stray even
slightly from the basic BCB pattern in Listing 2.

Static analyses Existing static analyses find gadgets through pattern-matching of
source code [25, 56], pattern-matching of binaries [30], static taint analysis [185], and
symbolic execution [60, 184]. Concurrent work [93]—which goes beyond the BCB
pattern, and instead targets a type-confusion pattern—similarly uses such approaches.
These approaches, however, all suffer from the fundamental limitation of static analysis:
assumptions to compensate for unknowns at compile time will severely hamper sound-
ness and/or completeness. For example, consider the gadget in Listing 3a, which loads
its input from a source that is unknown at compile time. In theory, an advanced analysis
such as symbolic execution could deduce whether *ptr is indeed attacker-controllable
by verifying the controllability of every possible value in every possible location of *ptr;
however, this kind of analysis cannot scale to the complex and massive kernel code-
base [206], so it instead must ultimately either assume that *ptr is attacker-controllable
(and risk false positives) or that it is not (and risk false negatives). Such scalability
issues are inherent to any sufficiently complex static analysis, leading to imprecise
points-to analyses, inaccurate call graph extractions, and ultimately, imprecise gadget
identifications. In Section 3.D, we describe a gadget found by our dynamic analysis
which relies on an indirect call, thereby thwarting static call graph extraction, and hence,
identification by static analysis altogether.

3.3. THREAT MODEL

Ka
sp
er

35

Dynamic analyses To overcome the limitations of static analysis, recent work instead
opts for dynamic analysis. Their approaches however, fall short since they are pattern-
driven and do not model the underlying semantics of gadgets.

For example, since the BCB pattern has an out-of-bounds access, SpecFuzz [126]
uses code sanitizers to report as gadgets any speculative out-of-bounds accesses. By
targeting this single behavior however, it incurs false negatives for gadgets such as the
one in Listing 3b, whose leak instruction is in-bounds. Furthermore, it incurs false
positives for any unrelated out-of-bounds accesses, such as the one in Listing 3c, even
though it is entirely uncontrollable by an attacker.

Another property about the BCB pattern is that there is a direct dataflow from an
attacker-controllable value, to a secret, and finally to a leak instruction. Targeting this
single property, SpecTaint [140] taints attacker-controllable values (x), then taints as a
secret any attacker-dependent loads (y), then reports as a gadget any secret-dependent
accesses (arr2[y]). This policy however, assumes very specific patterns and also incurs
false positives since not every attacker-dependent load accesses secret data. For example,
consider the attacker-dependent load in Listing 3d: even though the masking operation
prevents it from accessing secret data, SpecTaint falsely reports this mitigated gadget as
an exploitable gadget.

3.3 Threat Model

We consider a local unprivileged attacker with the ability to issue arbitrary system calls
to a target kernel free of (exploitable) software bugs. The attacker aims to gain a memory
leak primitive by exploiting a transient execution gadget in the kernel. As an operating
system kernel, we focus on a recent Linux kernel (in our case 5.12-rc2) with default
configurations, including all the mitigations against transient execution attacks enabled,
such as user pointer sanitization, lfences, array_index_nospec, retpolines, static calls,
etc. Additionally—although overlooked by the Linux kernel’s transient execution threat
model [170, 171], which only considers attacker input from user space and MDS/cache-
based covert channels—we consider an attacker able to: (1) inject data via memory
massaging, (2) inject data via LVI, and (3) exfiltrate data via port contention-based
covert channels. Note that on the most recent generation of CPUs, LVI and MDS are
mitigated in-silicon to a large extent, so our results for LVI and MDS do not apply to the
full extent to such CPUs.

3.4 Problem Analysis

Not only do existing approaches fail to identify gadgets which stray slightly from the
basic BCB pattern (Section 3.2.2), they do not even attempt to model primitives beyond
those it uses—i.e., where an attacker directly passes data to the victim, causing a cache-
based leak. For example, consider the gadget in Listing 3e, where an attacker can inject
data via LVI [177]. No existing approach attempts to model LVI, and hence, gadgets such
as these are missed. In reality, attackers have many such primitives at their disposal
(Table 3.1)—such as memory massaging, LVI, MDS, and port contention—all of which
may yield gadgets that fall outside the scope of existing approaches.

To reason about the various combinations of primitives which are possible in a
Spectre gadget, we express Spectre variants as a triple in terms of these primitives. For
example, we consider the original Spectre-PHT attack [95] which exploited the BCB

36 CHAPTER 3. KASPER

Spectre variant Described in: Verified signal? Existing scanning techniques?

PHT-Arch-Cache [95] ✓ ✓
PHT-Arch-MDS [22] ✓ -
PHT-Arch-Port [46] ✓ -
PHT-LVI-Cache This chaptera ✓ -
PHT-LVI-MDS Nonea -b -
PHT-LVI-Port Nonea - -

a The demonstrated LVI attack [177] exploits an LVI-Cache gadget.
bWe verified a signal for LVI-MDS, but not for PHT-LVI-MDS.

Table 3.2: Exploitability of the Spectre variants that are composed of the primitives which
Kasper models. Despite the signal on 4 variants, existing scanning techniques target only
PHT-Arch-Cache.

pattern to be a PHT-Arch-Cache gadget because it: (1) exploits prediction from the
PHT, (2) depends on architecturally-defined attacker input, and (3) leaks the secret via
the cache. Similarly, Fallout [22] uses a PHT-Arch-MDS gadget and SpectreRewind [46]
uses a PHT-Arch-Port gadget. Other Spectre attacks, including those using other
speculation types, can be expressed as a triple in this way; e.g., SMoTherSpectre [13]
exploits a BTB-Arch-Port gadget. Furthermore, even non-Spectre attacks can be
expressed as a tuple of the last two primitives; e.g., a standard cache attack [137] exploits
an Arch-Cache gadget.

Finally, assuming a gadget scanner canmodel all such primitives, we would first need
to verify that all the possible variant combinations are indeed exploitable. In Table 3.2, we
summarize the exploitability of the Spectre variants made up of the primitives modeled
by Kasper. The first three rows, as described above, are based on attacks from previous
work. Beyond existing work, we were able to verify a signal for a PHT-LVI-Cache gadget,
but not for a PHT-LVI-MDS gadget or a PHT-LVI-Port gadget. Hence, Kasper models
the first four variants of the table.

3.5 Overview

The key insight to our approach is that by generically modeling the vulnerabilities that
an attacker can use in each step of a Spectre attack, we can precisely identify gadgets. In
particular, we use: (1) speculative emulation tomodel transient execution, (2) vulnerability
detectors to model various software and hardware vulnerabilities, (3) dynamic taint
analysis to model the architectural and microarchitectural effects of such vulnerabilities,
and (4) fuzzing to model the possible coverage of an attacker. Figure 3.2 presents an
example of how these components interact to identify a gadget in a system call handler.

Modeling transient execution Tomodel branch mispredictions, we invert conditional
branches at runtime and emulate the corresponding transient execution by taking a
checkpoint at the point of ‘misprediction‘ and executing the code that would be executed
speculatively. We roll back to resume normal execution when the speculative window
closes.

Speculative emulation is not trivial in general and this is especially true for specula-
tive emulation in the kernel, where complexities such as device interactions, exceptions,

3.6. SPECULATIVE EMULATION

Ka
sp
er

37

void syscall_handler(int x) {
 ...
 if (x < size) {
 y = arr1[x];
 z = arr2[y];
 }
}

4. Memory error detector
finds an unsafe access.

2. Add an attacker label
to attacker-controllable data.

5. Add a secret label to
the output of an attacker-
controllable unsafe access. 6. Cache interference

detector reports a
PHT-USER-CACHE gadget.

Add runtime checkers to model software and hardware vulnerabilities
on a transient path.

Use taint policies to model the effects of transient vulnerabilities.

Fuzz the syscall interface to model the possible coverage of an attacker.

Flip conditional branches at runtime to model the transient execution
resulting from a branch misprediction.

1. Invoke varying system
calls with varying inputs.

3. If x ≥ size at runtime,
speculatively emulate the
branch.

7. After speculative
emulation finishes, revert all
speculative operations and
resume normal execution.

x = 3x = -7 x = 100000

Figure 3.2: Components used by our approach and how they interact to detect a
PHT-User-Cache gadget in a system call handler.

and inline assembly all pose challenges. We explain how our approach overcomes these
challenges in Section 3.6.

Modeling software and hardware vulnerabilities By modeling transient execution
at runtime, we expose transient code paths to runtime checkers to generically identify
software and hardware vulnerabilities which would otherwise remain undetectable.

Our current prototype uses: (1) a memory error detector to target software vul-
nerabilities in the shape of transient out-of-bounds and use-after-free accesses, (2) an
LVI detector to target hardware vulnerabilities via transient faulting accesses, and (3) a
covert channel detector for hardware vulnerabilities via cache-based, MDS-based, or port
contention-based channels. We explain our detectors in more detail in Section 3.7.1.

Modeling the effects of transient vulnerabilities By detecting software and hardware
vulnerabilities, we can design taint policies around the essential steps of a Spectre attack
(Figure 3.1) to reason about the effects of such issues.

For example, our policies may handle a transient invalid load in different ways:
(1) our LVI detector may taint the load with an attacker label to indicate that the
attacker may inject the value via LVI; (2) our memory error detector may taint the load
with a secret label to indicate that it may access arbitrary memory; or (3) our covert
channel detector may report the load as an MDS-LP [181] covert channel to indicate that
it may leak secret data. We explain how our taint policies reason about the interactions
between different vulnerabilities on a transient path in Sections 3.7.2–3.7.4, including a
summary of the policies in Figure 3.3.

Modeling the possible coverage of an attacker By modeling the effects of transient
vulnerabilities in the kernel, we can use a user-to-kernel fuzzer to only model the
vulnerabilities that are reachable by a user-space attacker issuing arbitrary syscalls. We
describe the fuzzer and implementations details in Section 3.8, including a summary of
the end-to-end pipeline in Figure 3.4.

3.6 Speculative Emulation
To emulate speculative execution, we need to be able to execute possible execution
paths that would otherwise not be executed architecturally. Specifically, on a branch
misprediction, the processor first executes the wrong code path until the speculation
is eventually squashed. The processor then continues executing the correct side of
the branch. To model such branch mispredictions, we invert conditional branches at

38 CHAPTER 3. KASPER

1 x = get_user(ptr);
2 // Sets in_checkpoint
3 if (!in_checkpoint) new_checkpoint();
4 L1:
5 if ((x < size)
6 XOR in_checkpoint) {
7 y = arr1[x];
8 z = arr2[y];
9 }
10 // Unsets in_checkpoint
11 if (in_checkpoint) {rollback(); goto L1;}

Listing 4: Conditional branch instrumented to enable speculative emulation.

runtime in software and to be able to squash the incorrect execution path, we rely on
software-based memory checkpointing. Thus, at runtime we will first execute the wrong
code path to emulate speculation and when speculation is squashed, we execute the
correct code path.

Listing 4 shows how we instrument the example of Listing 2 to support speculative
emulation. If x ≥ size at runtime, we:

1. Start a checkpoint immediately before the branch via the call to new_checkpoint.

2. Simulate a branch misprediction by flipping the branch via XOR in_checkpoint.

3. Emulate speculative execution along the taken code path.

4. Simulate a speculative squash by rolling back to the saved checkpoint via
rollback(); goto L1;

5. Finally, continue normal execution along the correct not-taken code path.

3.6.1 Transactions and rollbacks
To ensure correct execution, speculative execution is inherently transactional from an
architectural point of view; either all the instructions after a predicted branch com-
mit (i.e., correct prediction) or none does. To provide this semantic, we opted for a
compiler-based memory checkpoint-restore mechanism to build a notion of transac-
tional execution. We implemented our solution with a combination of LLVM compiler
passes and a runtime component. On a rollback, we need to restore the original state
before the misprediction. Kasper does this by saving all relevant registers when starting
a checkpoint and tracking all memory changes in an undo log in preparation for a replay
on rollback, similar to prior work [126]. However, doing so in the kernel presents unique
challenges which we address in Section 3.6.2.

Stopping Speculative Emulation One question we need to answer is when to roll back
speculative emulation. Speculative execution is limited to a certain number of micro-ops
executed depending on the ReOrder Buffer (ROB). At compile time we approximate this
behavior with the number of executed LLVM instructions. At the start of every basic
block, the number of executed LLVM instructions from the beginning of the checkpoint is
compared against a configurable threshold to decidewhen to abort speculative emulation.

3.6. SPECULATIVE EMULATION

Ka
sp
er

39

1 x = get_user(ptr);
2 if (x < size) {
3 foo = *bar; // Page fault if bar is invalid
4 y = arr1[x]; // Would not execute
5 z = arr2[y]; // Would not execute
6 }

Listing 5: Executing past a potential page fault in speculative emulation.

While this does not map to the exact behavior of hardware, a reasonable approximation
is good enough, and we can easily configure the threshold to be conservative to avoid
false positives or more permissive to decrease the likelihood of false negatives. Similarly,
we define an upper limit of call depth, simulating the behavior of the Return Stack
Buffer (RSB).

Exception handling Exceptions do not necessarily stop speculative execution, as
instructions past an exception can still be executed out-of-order [109, 181]. Our initial
evaluation showed that the majority of exceptions raised during kernel speculative
emulation are page faults, due to a corrupted memory address within speculation. We
hence designed a page fault suppression for speculative emulation to execute past raised
page faults—and simply stop emulation in the exception handler in the other cases. To
avoid page faults, Kasper validates the pointer before dereferencing and replaces it with
a valid dummy pointer if it is invalid. Listing 5 shows an example gadget that we would
miss without this improvement. Another advantage of dedicated page fault handling is
the ability to model common hardware vulnerabilities, as discussed later.

3.6.2 Challenges unique to the kernel
Implementing speculative emulation for the kernel introduces new challenges compared
to userland. For example, a user program only operates on its own accessible memory
while the kernel is able to access the entire range of memory. The kernel is therefore
responsible for ensuring full memory integrity while user processes are only aware of
their own address space, prompting special treatment, as discussed next. As shown in
Section 3.A.2, these strategies only contribute to a negligible amount of rollbacks.

Non-conventional memory accesses The kernel uses device or I/O mapped memory
to communicate with external devices. Memory writes to such memory cannot be rolled
back by simply writing back the original value. Rollback after writes to such memory
ranges would require also rolling back the dedicated device. Since I/O communication
does not happen often in most syscall handlers, we gracefully stop emulation in those
cases without a big loss in speculative code coverage.

Low-level code andmitigations The Linux kernel codebase is sprinkled with low-level
assembly and transient mitigation code. To ensure speculative emulation correctness,
it is important to handle such snippets properly. To this end, Kasper conservatively
treats assembly code as a speculative emulation barrier (i.e., forcing rollback) by default
and implements dedicated handling for the common assembly snippets to allow their
use in speculative emulation. This is to avoid unnecessary rollbacks and maximize

40 CHAPTER 3. KASPER

1 static void arch_atomic64_inc(atomic64_t *v) {
2 kasper_track_store((void*)&v->counter);
3 asm volatile(LOCK_PREFIX "incq %0"
4 : "=m" (v->counter)
5 : "m" (v->counter) : "memory");
6 }

Listing 6: Enabling a common assembly sequence in speculative emulation.

speculative code coverage. Listing 6 illustrates an example, with custom handling for
atomic increment instructions. Since the assembly is not instrumented, we manually
preserve the changed memory location. As for mitigations, we observe the relevant
ones (lfence, stac, etc.) are all implemented in assembly snippets, thus our default
assembly handler (i.e., stop speculative emulation) already models them correctly with
no special treatment needed.

Concurrency Unlike many common user programs, the Linux kernel is a highly con-
current piece of software, with multiple threads running in parallel on different CPU
cores and hardware (e.g., timer) interrupts causing asynchronous event handling. Tak-
ing correct checkpoints in face of concurrency poses a fundamental challenge for the
correctness of checkpointing [158] (and speculative emulation in our case). To address
this challenge, we disable SMP support in the kernel and force single-core execution. To
handle hardware interrupts, we instrument the interrupt handler to: (i) record interrupt
information; (ii) stop speculative emulation and resume execution at the last checkpoint;
(iii) replay the interrupt as though it was delivered before entering speculative emulation.
These steps are all crucial to ensure correct checkpointing and kernel execution (i.e., no
interrupts are lost).

3.7 Taint Policies

To model each of the three steps in Figure 3.1, we can draw upon previous work that
uses information flow policies to detect sensitive data leakage [38, 42, 124, 147, 197], and
use a basic framework consisting of three types of policies:

1. Taint any data injected by an attacker with an attacker label.
2. Taint secret data (i.e., data accessed via an attacker pointer) with a secret label.
3. Report gadgets that leak such secret values.

However, to detect leakage via generic transient execution gadgets, we must refine
our framework with taint policies that account for arbitrary vulnerabilities exploited
on a transient path that enrich the attacker’s capabilities. In particular, with detectors
capturing the effects of vulnerabilities in software (i.e., memory errors in the current
implementation) or hardware (i.e., LVI,MDS, port contention, and cache covert channels
in the current implementation), we are able to model increasingly complex gadgets. In
the following, wefirst detail our current detectors and then discuss howour taintmanager
enforces the detection-based taint policies (for injection, access, and leakage). Many
more detectors can be deployed in the future for similar types of vulnerabilities, such
as TLB, branch target buffer or DRAM bank side channels. With Kasper, we currently

3.7. TAINT POLICIES

Ka
sp
er

41

Directly-controllable
attacker data (USER)

Secret data

MDS report

Unsafe access with an
attacker-dir pointer

Any access with a
secret pointer

CACHE report

Indirectly-controllable
attacker data (MASSAGE/LVI)

Unsafe/invalid access
with an untainted pointer

Any access with an
attacker-ind pointer

Any branch with
a secret target

PORT report

Any syscall argument or
copy from userspace

Any access that
outputs a secret

Untainted data

Leakage policies:

Access policies:

Injection policies:

Figure 3.3: Injection, access, and leakage taint policies which describe how data rises from an
untainted label, to an attacker label, to a secret label, and finally to a gadget report.

focus on the presented detectors to demonstrate its effectiveness. We summarize our
policies in Figure 3.3.

3.7.1 Vulnerability detectors

Memory error detector Our current memory error detector supports the detection of
unsafe (i.e., out-of-bounds or use-after-free) accesses on a transient execution path. This
is done by running sanitizers during speculative emulation and reporting information
about unsafe load/store operations and addresses to the taint manager. Information
about unsafe accesses is useful to model a degree of attacker’s control on a given address.
For instance, if an out-of-bounds detection is taken as evidence that an attacker can
make a load address go out-of-bounds at will, that address is a controlled pointer that
could be used for injection (via memory massaging), access (via unauthorized reads),
and leakage (via vulnerabilities such as MDS).

LVI detector Our current LVI [177] detector supports the detection of invalid loads
able to trigger LVI on a transient execution path. We tested the (known) LVI triggering
conditions and could reproduce only two cases of such invalid loads on a mispredicted
branch, also observed in prior work [22]: (i) loads incurring an SMAP fault (i.e., loading
a user address with SMAP on—default); (ii) loads incurring a noncanonical address fault
(i.e., loading an address outside the canonical 48-bit address space). We also verified
these loads can be poisoned by attackers for injection of transient values via MSBDS
exploitation [22]. To identify such invalid loads, we target loads with user/noncanoni-
cal addresses (a subset of unsafe loads). However, by default we omit NULL pointer
dereferences. Allowing them leads to plenty of usable gadgets, however those require
an attacker to map the 0x0 page (i.e., to cause an SMAP fault). The latter is forbidden by
default on Linux, but possible on systems with mmap_min_addr=0.

Cache interference detector Our current cache interference channel detector sup-
ports the detection of secret-dependent loads/stores on a transient execution path.

42 CHAPTER 3. KASPER

For all such memory accesses, an attacker can achieve leakage of the target (secret-
dependent) address with a classic cache [50] or TLB [115] attack. Hence, to identify
these loads/stores, we can simply report those that use a pointer tainted with the secret
label during speculative emulation.

MDS detector Our current MDS detector supports the detection of secret-accessing
loads/stores on a transient execution path whose data can be leaked by an MDS exploit
(i.e., sampling data via various CPU internal buffers, such as LFB [181], SB [22], etc.).
We tested the (known) MDS triggering conditions and verified that an attacker can
achieve leakage of data from arbitrary loads/stores on a mispredicted branch. Hence, to
identify these loads/stores, we report cases where the pointer is under the control of
the attacker during speculative emulation. These pointers are tainted with the attacker
label and/or leading to unsafe loads/stores.

Port contention detector Our current port contention detector supports the detection
of secret-dependent branches on a transient path. For such branches, an attacker can
leak a bit of the secret by issuing instructions that use the same execution units (i.e.,
ports) as the branch targets’ instructions. Hence, to identify these branches, we report
those that use a target tainted with a secret during speculative emulation. Note that
future work could refine the set of reported port contention gadgets by using static
analysis to determine whether a secret-tainted branch’s possible targets are indeed
SMoTher-differentiable [13]—i.e., whether there is a sufficiently large enough timing
difference generated by the port contention of one branch target to tell it apart from the
port contention of another branch target.

3.7.2 Injection policies
Our unified injection policies combine our basic policy of tainting directly-controllable
data injected via external input (e.g., syscall arguments) with our detection-based poli-
cies of tainting data injected via hardware/software vulnerabilities (e.g., memory mas-
saging or LVI) which we refer to as indirectly-controllable attacker data. We distinguish
between directly-controllable attacker data and indirectly-controllable attacker data
because our access policiesmake use of this distinction, as explained later (Section 3.7.3).
We refer to these labels as attacker-dir and attacker-ind (and attacker to refer to
either one).

Injection Policy I: Directly-controllable data.We taint all data which is directly-controllable
from user space—that is, syscall arguments and the output of functions such as get_user,
copy_from_user, and strncpy_from_user—with the attacker-dir label.

Injection Policy II: Indirectly-controllable data. We taint all data which is indirectly-
controllable from an attacker, as modeled by our memory error and LVI detectors, with the
attacker-ind label.

Data injected via memory errors We use our memory error detector to identify
unsafe loads during speculative emulation; by default, upon detection and if the pointer
is untainted, we add the attacker-ind label to the loaded value. Note that if the pointer
is already tainted with an attacker label, such label is automatically propagated (pointer
tainting enabled for loads). These policies are to model an attacker massaging controlled
data in the target memory location. Since our memory error detector operates on heap

3.7. TAINT POLICIES

Ka
sp
er

43

if (a < size) {
b = arr1[a]; // Transient out-of-bounds

access loading memory massaged data↪→

c = arr2[b];
d = arr3[c];

}

(a) Gadget where an attacker can inject data via
memory massaging by taking advantage of a
transient out-of-bounds read.

if (addr_is_mapped(ptr)) {
x = *ptr; // Transient faulting accessing

loading LVI-injected data↪→
y = arr2[x];

z = arr3[y];
}

(b) Gadget where an attacker can inject data with LVI
by taking advantage of a transient faulting load (see
Listing 3e).

Listing 7: Gadgets that demonstrate the injection policies.

and stack, these policies provide the attacker with plenty of exploitation strategies [27,
28, 193]. As an example, consider the gadget in Listing 7a which loads the attacker input
by reading a heap object out-of-bounds, thereby possibly reading data from another
object placed by the attacker using memory massaging. Attackers able to target heap
memory massaging may gain indirect control over the data at arr1[a] and inject it into
the otherwise-benign gadget.

Data injected via LVI Similarly, we use our LVI detector to detect invalid loads during
speculative emulation; by default, upon detection and if the pointer is untainted, we
add the attacker-ind label to the loaded value (again existing attacker labels are
propagated via pointer tainting). Consider the gadget in Listing 7b, which loads attacker-
controlled data via a transitive faulty access, thereby retrieving a value from the store
buffer. Attackers capable of LVI may gain indirect control over the data at a->bar and
inject it into the otherwise-benign gadget.

In addition to tainting unsafe (including invalid) loads as attacker-ind data, we
could also taint them as attacker-ind data loads whose pointer is tainted with an at
tacker-dir label. This is because if an attacker controls a pointer, then the attacker
could hypothetically force it to load data through LVI or memory massaging. However,
as explained later (Section 3.7.3), such loads are already tainted with the secret label
and such modeling would be redundant (and lead to gadget over-reporting). We could
also avoid using our detectors and only rely on pointer tainting, but this strategy leads
to unnecessary false negatives (i.e., noncontrollable pointers still able to read memory
massaged data or LVI data). Finally, we could disable pointer tainting on loads, but this
strategy still misses cases of (safe/valid) loads where the attacker can control the loaded
value.

3.7.3 Access policies

The raising of attacker labels to secret labels in access instructions is dependent on
(1) the type of control the attacker has on the pointer, as determined by its taint sources,
and (2) the degree of control the attacker has on the pointer, as approximated by the
memory error detector.

Access Policy I: Raising directly-controllable attacker data. If a load is unsafe and has a
pointer with an attacker-dir label, then we add the secret label to the loaded value.

We use both taint information and memory error detection to identify secret ac-
cesses. We observed that using only memory error detection leads to many false pos-

44 CHAPTER 3. KASPER

1 x = get_user(ptr);
2 if (x < size) {
3 y = arr1[x & MASK]; // In-bounds access
4 z = arr2[y];
5 }

Listing 8: Gadget that is mitigated via a masking operation will not be falsely report as a gadget
(see Listing 3d).

itives. This is because the attacker may not have enough control over the pointer to
leak arbitrary data. Using only taint information, on the other hand, still leads to false
positives, especially in the kernel. Indeed, the kernel contains many pointer masking
operations (for input sanitization), which have the effect of keeping many controlled
pointers always safe even in transient execution. Both strategies are an approximation
of controllability: using only memory error detection but then flagging cases with fixed
addresses as an indication for the lack of the attacker’s control, or using only tainting
but then flagging cases with limited controllability, as an indication that an attacker
will never be able to promote the access to go out-of-bounds. While state-of-the-art
solutions [126, 140] have focused on these two extremes, we will later show there is no
one-size-fits-all strategy and that different conditions require different treatments.

For example, consider the gadget in Listing 8, which is benign due to the masking
operation which keeps the access in-bounds. In the gadget, we do not raise the at
tacker-dir label to a secret label (i.e., use only taint information) because it could
never lead to an out-of-bounds access. In doing so, we avoid false positives which would
arise from reporting harmless gadgets.

Access Policy II: Raising indirectly-controllable attacker data. If a load has a pointer with
an attacker-ind label, then we always add the secret to its output.

Unlike the taint policies for raising directly-controllable data, we do not use memory
error detectors in this case because indirectly-controllable data is generated (barring
actual architectural bugs) within the same speculation window as the access instruction.
Code paths using such transiently-injected data typically break global code invariants
and we observed them to be rarely subject to pointer masking operations. As such, these
paths offer almost unrestricted control to the attacker—unlike, say, syscall arguments
and data loaded from usercopy functions, which kernel developers take efforts to sanitize
against traditional exploits.

Note that the indirectly-controllable data which is loaded during the analysis is not
generated by the user-space attacker. It is either loaded from a code sanitizer’s redzone
or a similar dummy region (as described in Section 3.6). Hence, its possible values
during analysis are limited, so any restriction based on a memory error detector would
simply test against the values incidentally loaded at runtime, rather than any meaningful
values injected by a user-space attacker.

With this policy, we avoid false negatives which would arise from failing to identify
an indirectly-controllable gadget because it incidentally did not lead to an unsafe access
instruction.

3.7. TAINT POLICIES

Ka
sp
er

45

x = get_user(ptr);
if (x < size) {

y = arr1[x];

z = arr2[y]; // Leaks via cache
}

(a) Gadget leaking a secret via a cache-based
covert channel.

x = get_user(ptr);
if (x < size) {

y = arr1[x]; // Leaks via MDS
}

(b) Gadget leaking a secret via an MDS-based
covert channel.

x = get_user(ptr);
if (x < size) {

y = arr1[x];

if (y) {

... // Leaks via port contention
} }

(c) Gadget leaking a secret via a port
contention-based covert channel.

Listing 9: Gadgets that demonstrate the leakage policies.

3.7.4 Leakage policies
We use our hardware vulnerability detectors to identify gadgets that use cache-based,
MDS-based, or port contention-based covert channels to leak secret information.

Leakage Policy I: Identifying cache-based gadgets. If a memory access has a pointer with
a secret value, then we report it as a cache-based gadget.

Hence, by propagating taint from attacker-controlled sources to dependent secret
accesses, we find the simple Spectre-BCB gadget from Listing 2 by propagating taint
as in Listing 9a. Similarly, if *ptr in Listing 3a is attacker-controlled, the policy also
identifies the gadget.

Unlike access instructions, leak instructions require no memory error detector—only
our simple cache interference detector. Such instructions will leave a trace on the cache
(and TLB) regardless of whether it is, say, in-bounds or out-of-bounds. Hence, even
if the leak instruction contains a masking operation to keep the index in-bounds—as
in Listing 3b—we would still report it as a cache-based gadget, as it leaks at least some
information. In doing so, we avoid false negatives which would arise from failing to
identify gadgets that leave traces in the cache.

Leakage Policy II: Identifying MDS-based gadgets. To identify MDS-based gadgets, we
use the same policies as our access policies (which raise attacker data to secret data)
with one minor difference (similar to our LVI policy): we do not report directly-controllable
null-memory accesses because exploitation of such accesses is more difficult.

For example, consider the MDS-based gadget in Listing 9b, where the errant access
loads secret data into internal CPU buffers. Our policy reports an MDS gadget since the
memory access outputs secret data, thereby potentially leaking the secret data to an
attacker thread sharing an SMT core with the kernel thread. Note that for MDS-based
gadgets, the access and leak steps occur in a single instruction.

Just as we avoid over-tainting harmless (e.g., in-bounds) access instructions, we
avoid over-reporting MDS-based gadgets which are similarly benign, thereby avoiding a
source of false positives.

Leakage Policy III: Identifying port contention-based gadgets. If a secret affects the
flow of execution—that is, if a branch’s condition, switch’s condition, indirect call’s target,

46 CHAPTER 3. KASPER

Build with KASPER
LLVM passesKASPER runtime

libraries

KASPER-instrumented
kernel

Linux kernel

Execution log
Fuzz with

modified syzkaller Gadget statistics
Parse and
analyze

Figure 3.4: The workflow of Kasper, which takes a vulnerable Linux kernel, identifies gadgets,
and finally presents statistics to aid developers in applying mitigations.

or indirect branch’s targets is a secret—then we report it as a port contention-based covert
channel.

For example, consider the port contention-based gadget in Listing 9c. Our policy
identifies the gadget because the secret determines whether the branch is taken—and in
effect, determines the resulting port contention, which can leak a bit of the secret to an
attacker that shares an SMT core with the kernel.

3.8 Implementation

Figure 3.4 presents the workflow of Kasper, our generalized transient execution gadget
scanner for the Linux kernel. First, we build the kernel with Kasper support by using
three components that each consist of a runtime library and an LLVM pass2: (1) Kernel
Speculative Emulation Unit (KSpecEm), which emulates speculative execution due to a
branch misprediction, (2) Kernel DataFlow Sanitizer (KDFSan), which performs the
taint analysis, and (3) Taint Manager (TManager), which manages the vulnerability-
specific taint policies. Next, we use a modified version of syzkaller [52] to fuzz the
instrumented kernel and generate gadget reports. Finally, we calculate aggregate gadget
statistics that aid developers in applying mitigations. Table 3.3 presents the total lines of
code (LOC) in each of the main components of Kasper.

Kernel Speculative Emulation Unit To simulate branch mispredictions, KSpecEm
replaces branch conditions with a SelectInst that, depending on a runtime variable,
will either take the original branch target or the inverse branch target. To simulate the re-
sulting speculative execution, KSpecEm hooks store instructions so that any speculative
memory write is reverted after speculative emulation finishes.

Kernel DataFlow Sanitizer For our taint analysis engine, we ported the user-space
DataFlowSanitizer (DFSan [113]) from the LLVM compiler to the kernel. KDFSan is,
to our knowledge, the first general compiler-based dynamic taint tracking system for
the Linux kernel. In contrast to the original DFSan implementation, we: (1) modified
its shadow memory implementation to work in the kernel, (2) fixed its flawed label
union operation (similar to existing work [26, 166]), (3) modified it to conservatively
wash taint on the outputs of inline assembly, and (4) created custom taint wrappers to
emulate the semantics of uninstrumentable code.

2Weopted for an LLVM-based implementation due to its low complexity and better performance
compared to e.g., a full-system emulator. Future work may see improvements by complementing
Kasper with a binary-based approach since it does not require special care of low-level code.

3.9. EVALUATION

Ka
sp
er

47

Component LLVM pass Runtime library

KSpecEm 964 2102
KDFSan 251 (diff) 1975
TManager 57 65
syzkaller – 355 (diff)

Table 3.3: Total lines of code (LOC) in the various components of Kasper. If a component is
based on an existing one, the LOC given is the diff with respect to the original.

Taint Manager TManager implements the taint policies described in Section 3.7.
It receives callbacks from the kernel and the KDFSan runtime library and will e.g.,
apply taint to syscall arguments, or determine if a memory operation is an inject, access,
or leak instruction. We e.g., apply taint on system call arguments to mark them as
attacker controlled by patching the system call routine added the necessary calls to the
KDFSan runtime library. It re-uses checks from KernelAddressSanitizer (KASAN) [98]
to determine whether a memory operation is an unsafe or an invalid access.

syzkaller We used a customized version of syzkaller [52], an unsupervised coverage-
guided fuzzer for the kernel, to maximize speculative code coverage. syzkaller’s strategy
of maximizing regular code coverage will inevitability maximize speculative code cover-
age since we start a speculative emulation window at every regularly-executed branch.
We utilized qemu snapshots to begin every syzkaller testcase (a series of syscalls) from
a fresh snapshot, avoiding leftover taint from previous testcases.

Gadget aggregation After fuzzing, Kasper parses the execution log for gadget reports.
Then, it filters out duplicate reports, categorizes themby type, and prioritizes thembased
on a set of exploitability metrics (see Section 3.C for a description of these metrics).
Finally, it stores the resulting aggregate gadget statistics into a database that is used by a
web interface to present the results. In Section 3.E, we present the interface that allows
kernel developers to easily process the found gadgets.

3.9 Evaluation

We evaluate Kasper’s efficacy compared to existing solutions and Kasper’s gadgets
found in the Linux kernel. We perform our evaluation on an AMD Ryzen 9 3950X CPU
with 128GB of RAM, where the Kasper-instrumented kernel (v5.12-rc2) runs as a guest
VM on a host running Ubuntu 20.04.2 LTS (kernel v5.8.0).

3.9.1 Comparison with previous solutions
We compare Kasper against previous approaches in a variety of ways. First, as a
micro-benchmark, we evaluate Kasper and all other approaches on the Kocher gadget
dataset [94]. Then, as a macro-benchmark, we evaluate Kasper and other dynamic
approaches on the syscalls invoked by UNIX’s ls command. Finally, in Section 3.B,
we evaluate the performance of Kasper and compare it to existing approaches, where
applicable.

48 CHAPTER 3. KASPER

Accesses detected Leaks detected

Static

MSVC [134] – 7
RH Scanner [30] – 12
oo7 [185] – 15
Spectector [60] – 15

Dynamic

SpecFuzz [126] 15 0a

SpecTaint [140] 15 14b

Kasper (User/Cache-only) 15 14
Kasper (User/Cache/Port-only) 15 15

a SpecFuzz’s eval. reports 15 leaks since it assumes all accesses are leaks.
b SpecTaint’s eval. reports 15 leaks since it assumes arbitrary ptrs. are secret.

Table 3.4: Gadgets detected in the 15 Spectre Samples Dataset [94] by various solutions.

Micro-benchmark We evaluate Kasper and previous work against Paul Kocher’s 15
Spectre examples [94], which were originally designed to evaluate the effectiveness
of the Spectre mitigation in MSVC (Microsoft Visual C++). Although the examples
are simple—as gadgets in real-world programs are often much more complex—they
represent one of the few well-defined microbenchmarks available for direct comparison
with different solutions.

Table 3.4 shows the results for tools that are based on static and dynamic analysis.
Static analysis tools specifically model the Spectre-PHT gadgets, combining the access
to the secret and its leakage through a covert channel. While these tools scale to such
small code snippets, they often miss many cases with more complex gadgets combining
multiple attack vectors. Furthermore, it is difficult to run solutions based on symbolic
execution [60] on large codebases such as the Linux kernel without losing soundness.

In the dynamic analysis category, SpecFuzz [126] depends on address sanitizers
to detect invalid accesses. Without data flow analysis, tracking the data dependency
between accessing and leaking of a secret is not possible. Assuming the second access
encoding the secret in the reload buffer is inbounds, SpecFuzz is not able to detect it.
SpecTaint [140] makes use of dynamic taint analysis, allowing it to detect dependencies
between the access and leakage. While the authors report that they detect all 15 variants,
it is unclear how they detect variant v10, that leaks the secret through the outcome of the
branch. In direct communication with the authors, they mentioned that SpecTaint as-
sumes that the leaking pointer is tainted as a secret. However, this makes it independent
of the presented variant.

Without implicit flow tracking, Kasper detects the access of the secret for all 15
variants and the transmission of 14 of those. For the undetected variant (v10), Kasper’s
port contention policies detect the attacker-controlled branch giving the attacker the
ability to leak the secret by controlling the outcome of the branch.

Macro-benchmark To provide a more realistic scenario, we evaluate Kasper and
previous work by running the ls UNIX command. Since SpecFuzz [126] and Spec-
Taint [140] are only implemented for user-space programs, we adapted Kasper to model
their functionality for the kernel. To model SpecFuzz, we report any address sanitizer
violation within speculative emulation as a Cache gadget. To model SpecTaint3, we taint
syscall arguments and user copies as attacker data, taint the output of any attacker-

3We base our implementation of SpecTaint on the information provided in the paper, because
while the paper states the authors’ intention to release SpecTaint as open source, the code is not
yet available.

3.9. EVALUATION

Ka
sp
er

49

Total Cache
gadgets reported

FP rate FN rate (USER-only) FN rate

SpecFuzz [126] 662 99% 33% 60%
SpecTaint [140] 688 99% 0% 40%
Kasper (User-only) 8 25% 0% 40%
Kasper 14 29% 0% 0%

Table 3.5: Cache gadgets reported in the kernel by various solutions when running the
ls UNIX command.

dependent speculative load as secret data, and report any secret-dependent access
as a Cache gadget.

For each solution, Table 3.5 presents: (1) the total number of Cache gadgets re-
ported, (2) the false positive rate, (3) the false negative rate when scanning for gadgets
controlled only by User input, and (4) the false negative rate when scanning for gadgets
controlled by User, Massage, and LVI input. In the scenario where an attacker can
only inject User input, we define a true positive as a gadget that: (1) injects directly-
controllable attacker data (i.e., syscall arguments or user copies), (2) accesses a secret
by dereferencing a pointer that is both unsafe (i.e., out-of-bounds or use-after-free)
and directly-controllable (i.e., flowing from the injected data), and (3) leaks the secret
by dereferencing a pointer that is secret (i.e., flowing from the accessed data). In the
scenario where an attacker can also inject Massage and LVI data, we define a true
positive as a gadget that may additionally: (4) inject indirectly-controllable attacker data
by dereferencing a pointer that is either invalid (i.e., a non-canonical address or a user
address with SMAP on) or unsafe, and (5) access a secret by dereferencing a pointer
that is indirectly-controllable.

As shown in the table, existing solutions’ pattern-based approaches incur a high FP
rate (99%) and a substantial FN rate (up to 33%). In contrast, Kasper (User-only)’s
more principled approach drastically decreases the FP rate (25%) and matches the best
case FN rate (0%). However, when considering gadget primitives beyond those in the
BCB pattern—i.e., Massage and LVI attacker inputs—FN rates for existing approaches
(and for the limited version of Kasper) increase significantly (to 40%–60%). Since the
full version of Kasper models these primitives (and more), it has no FNs and maintains
an acceptable FP rate (29%). We observed similar results on the GNU core utilities
other than ls.

We verified our FP/FN rates by checking whether each reported gadget satisfies our
definition of a TP. First, we verified that Kasper’s FPs are due to overtainting; moreover,
these FPs are also nondeterministic (i.e., they only appear in specific runs). Second, we
verified that all of SpecFuzz’s FPs are due to its inability to track attacker/secret data,
causing it to report leaks of non-secret data (as in Listing 3c). Third, we verified that all
of SpecFuzz’s (User-only) FNs are due to its inability to identify in-bound leaks (as in
Listing 3b). Fourth, we verified that all of SpecTaint’s FPs are due to its inability to filter
out safe accesses (as in Listing 3d). Finally, we verified that all remaining FNs are due to
existing approaches (and the limited version of Kasper) not modeling Massage or LVI
attacker input.

From these results, we can conclude that previous approaches are insufficient for a
variety of reasons. First, the high FP rates for existing techniques are problematic because
hardening every reported gadget would lead to a substantial slowdown, yet attempting
to verify all the reported gadgets is impractical. Second, SpecFuzz’s substantial FN rate

50 CHAPTER 3. KASPER

Gadget type Number of reports

PHT-User-Cache 147
PHT-Massage-Cache 47
PHT-LVI-Cache 12
Total PHT-*-Cache 183

PHT-User-MDS 600
PHT-Massage-MDS 193
Total PHT-*-MDS 722

PHT-User-Port 407
PHT-Massage-Port 123
Total PHT-*-Port 474

Total PHT-*-* 1379

Table 3.6: Different gadgets discovered by Kasper.

is problematic because it leaves many unidentified gadgets vulnerable. Finally, the high
FN rates when considering Massage and LVI primitives—which would be far worse
if also considering MDS and Port primitives—are problematic because they highlight
how previous approaches leave generic gadgets completely vulnerable.

3.9.2 Gadgets found in the kernel
We fuzzed the kernel for 18 days with 16 virtual machines running in parallel and report
the number of gadgets found in Table 3.6. Kasper currently taints data copied from user
space (User), data vulnerable to memory massaging (Massage) and data vulnerable to
LVI-injection (LVI) as attacker input. Furthermore, the prototype assumes that secret
data can leak either through microarchitectual buffers (MDS), port contention (Port)
or cache-based covert channels (Cache). Although Kasper can model PHT-LVI-MDS
and PHT-LVI-Port gadgets, we do not report such variants since we were unable to
exploit them in practice (see Section 3.4).

Most of the gadgets found by Kasper allow information to leak via MDS after a PHT
misprediction. The input for these gadgets mostly comes from syscall arguments or
values that the attacker can indirectly control in memory via massaging techniques.
We present a case study of one such gadget that is difficult to mitigate in Section 3.11.
Kasper also finds 147 gadgets with the same capabilities as Spectre-BCB, which are still
missed by existing mitigations due to limitations in the kernel’s static analysis-based
gadget scanning tools, which only look for specific patterns.

3.10 Limitations
Although we have shown that Kasper outperforms state-of-the-art gadget scanners, it is
still limited relative to the ideal gadget scanner—i.e., a scanner that detects practically
exploitable gadgets with perfect precision.

Practical exploitability We do not evaluate the practical exploitability of every gadget
found. Such an evaluation is infeasible in bounded time: it would require testing each
gadget against a myriad of possible microarchitectures, attack patterns to facilitate the

3.11. CASE STUDY

Ka
sp
er

51

exploit (e.g., concurrent cache evictions [50]), etc. Instead, like existing kernel Spectre
mitigations and state-of-the-art gadget scanners [126, 140], we aim to provide a more
comprehensive security-by-design, since even gadgets that are seemingly nonexploitable
now may become practically exploitable due to seemingly-innocuous changes—e.g.,
microcode updates, code refactors, or different compiler versions [93]. Nonetheless,
in Section 3.11, we present a proof-of-concept exploit of a gadget found by Kasper.
Furthermore, in Section 3.C, we discuss heuristics that developers can use to prioritize
gadgets that are more likely to be exploitable in practice.

Completeness Kasper’s results may be incomplete for a couple of reasons. First,
similar to existing dynamic gadget scanners [126, 140], we inherit dynamic analysis’s
inherent limitation of incomplete coverage. In Section 3.A, we evaluate this limitation
and conclude that as fuzzing progresses, FNs due to incomplete coverage become more
and more rare. Second, since (K)DFSan does not track attacker-controllable implicit
data flows, Kasper will fail to identify gadgets that rely on them. However, these FNs
may be less useful to an attacker, because implicit flows normally propagate only one
bit of data.

Soundness Similar to existing scanners based on dynamic taint analysis (DTA) [140],
we inherit DTA’s inherent soundness limitations. Specifically, since DTA cannot model
data-flow constraints (e.g., the effect of arbitrary arithmetic or bitwise operations on
data), Kasper may report gadgets that are not entirely controllable by an attacker. For
example, even though it might only be possible for an attacker-controllable access to
go one byte out-of-bounds—rather than arbitrarily out-of-bounds—Kasper will overlook
this, and still taint the output as a secret. To mitigate these FPs, Kasper washes taint
for common data masking operations that are part of mitigations in the Linux kernel
(i.e., array_index_nospec), but a general solution remains out of the scope of DTA. A
generic way to address this problem is to rely on symbolic (or concolic) execution, but
state-of-the-art techniques can only scale to a limited number of basic blocks of kernel
execution [206]. In contrast, Kasper can scalably find gadgets with attacker-controlled
data propagating even across multiple syscalls.

Fidelity Since our implementation does not faithfully model every aspect of a
natively-run kernel, its results may be imprecise. First, we cannot precisely model
nondeterminism—e.g., from timer interrupts occurring at different program states
in the Kasper kernel compared to the native kernel. We can mitigate any resulting
FNs by increasing coverage. Second, we do not precisely model all microarchitectural
details—e.g., exact speculative window sizes, pipeline stalls caused by memory aliasing,
etc. We can mitigate any resulting FNs by extending Kasper to model even more
low-level microarchitectural details. We consider any fidelity-related FPs to be
acceptable, as described above (i.e., seemingly-innocuous changes may turn a FP into a
TP).

3.11 Case Study

We have shown that Kasper finds a wide range of gadgets in the hardened Linux kernel
codebase. To demonstrate that the presence of such gadgets is serious, we now present a
case study for one of the (unmitigated) gadgets found by Kasper. It shows that focusing

52 CHAPTER 3. KASPER

1 #define list_for_each_entry(pos, head, member)
2 for (pos = list_first_entry(head,
3 typeof(*pos), member);
4 &pos->member != (head);
5 pos = list_next_entry(pos, member))

Listing 10: Linux implementation for generic list iterations. pos is the current list element, head
is the head of the list, and pos->member is the next list element.

on simple gadgets is insufficient andmitigation can be far from trivial. Finally, we analyze
the exploitability of the found gadget. We refer the interested reader to Section 3.D for
an additional case study illustrating the need for a dynamic analysis tool for the Linux
kernel.

3.11.1 List implementation of the kernel

Our case study is fundamental to the (double linked) list implementation that is
used pervasively in the Linux kernel. The kernel’s list implementation is cyclic and
consists of a head element (of type list_head) which is typically a field in another
data structure, and list elements containing the data, where the last element points back
to the head element. A data structure can become a list element, if it also embeds the
list_head struct as one of its fields. The list_head simply contains pointers to the
list_head fields in the previous and next list elements (or the head).

To iterate over a list, the kernel provides macros such as list_for_each_entry,
shown in Listing 10. Here pos points to the data structure and pos->member to the
embedded list_head. The list iteration terminates when it reaches the head element in
the cyclic list. List iterators are also used pervasively in the kernel codebase with more
than 2600 uses.

3.11.2 A list_for_each_entry gadget in keyring.c

The security implications of the list_for_each_entry implementation become clear
when we consider the gadget found by Kasper in the find_keyring_by_name function
in keyring.c. Listing 11 shows the relevant code snippet. Simulating a branch mis-
prediction, Kasper flips the terminating condition of the list iterator (&pos->member
!= head), resulting in an additional iteration with &pos->member == head. Note that
when the list iteration is speculatively executed for the head element, there is no as-
sociated key data structure. In other words, keyring and &keyring->user point to
out-of-bounds memory, in this case belonging to the data structure containing the head
element. The type confusion results in the access to keyring->user->uid dereferencing
an out-of-bounds read pointer.

Kasper not only detects the KASAN violation, but further reports the gadget as
capable of leaking secrets trough MDS, as it verifies through its dynamic taint analysis
that the pointer is attacker controlled.

3.11. CASE STUDY

Ka
sp
er

53

struct key *find_keyring_by_name(const char *name, bool uid_keyring) {
struct user_namespace *ns = current_user_ns();
struct key *keyring;
...
list_for_each_entry(keyring , &ns->keyring_name_list, name_link) {

if (!kuid_has_mapping(ns, keyring->user->uid))
continue;

...
} }

Listing 11: PHT-Massage-MDS gadget in find_keyring_by_name.

3.11.3 Exploitation

First, we evaluate the controllability of the out-of-bounds read pointer. The type-
confusion assumes that &ns->keyring_name_list is within a key struct, but in reality
the head element is in a user_namespace struct. To compute the location of &keyring- ⌋
>user in the speculative iteration, we first compute the offset of name_link within the
key struct. Next we compute the offset of user in the struct and apply those offsets
to &ns->keyring_name_list as shown in Figure 3.5. The out-of-bounds read pointer
keyring->user is read from ns->projid_map which can be easily controlled from user
space through the proc interface.

We evaluated the gadget on an i7-7700K machine with a recent v5.12 Linux ker-
nel. First, we verified whether the branch can be mistrained. Since the attacker can
control the length of the keyring_name_list list by adding keys through the add_ ⌋
key, mistraining the branch condition in-place is not difficult. Moreover, for easier
exploitation, the gadget can be reached close to the system call entry of keyctl with the
KEYCTL_JOIN_SESSION_KEYRING operation.

We build a simple Flush+Reload [195] proof of concept to verify that the attacker-
controlled pointer is actually used in the speculative load operation. For verification
purposes, we disabled SMAP and set the pointer pointing directly into the reload buffer
and observed the signal by executing the keyctl system call between flushing and
reloading. We confirm that the attacker-controlled pointer is dereferenced during
speculative execution.

In principle, any value loaded by a speculative load can be leaked cross-thread with
MDS [22, 150, 181] if SMT is enabled. Since SMT is not disabled by default in the latest
version of Linux, it is still vulnerable to MDS when leaking from the sibling hyperthread.
We verify this with a simple proof of concept where one thread repeatedly executes
the keyctl system call and the other thread reads in-flight data and encodes it within
a Flush+Reload buffer. We use madvice to force a page fault across a page boundary
which is required to leak the in-flight data. Listing 12 presents a simplified version of the
proof of concept. Without synchronization between the two threads (which was not
the focus of our research), the signal strength depends on the leaking load in the system
call occurring roughly at the same time as the load from CPU-internal buffers in the
reading thread. We verified that a signal exists if the loads are happening approximately
at the same time in both threads, leaking the secret from a kernel buffer to user space.

Mitigating the presented gadget is far from trivial. Adding a spot mitigation in
keyring.c leaves all other uses of list_for_each_entry vulnerable. Mitigating the

54 CHAPTER 3. KASPER

name_link

struct user_namespacestruct key

user

keyring_name_list

projid_map

Figure 3.5: Through the type confusion head is assumed to be within a key struct instead of
the user_namespace struct.

list iterators, that are frequently used throughout the kernel, may cripple performance
when using lfence in every iteration of the loop. Other kernel mitigations such as
array_index_nospec are not applicable with the current list implementation.

3.12 Related Work

Checkpointing for transactional execution While checkpointing was used to recover
from software faults [107, 182], we require such high frequency checkpointing (on every
conditional branch) that we built a checkpointing mechanism for the Linux kernel from
scratch. However, the solution is general and applicable to other scenarios (e.g., crash
recovery).

Taint tracking in the kernel For Kasper, we built KDFSan, the first generic compiler-
based dynamic taint tracking system for the kernel. Other non-generic, non-compiler-
based, and static taint tracking systems have also found bugs in the kernel. For example,
KMSAN is a widely-used compiler-based dynamic taint tracking system targeted at
detecting uninitialized memory usage; it has found hundreds of bugs in the Linux
kernel [139]. Furthermore, Bochspwn Reloaded is an emulation-based dynamic taint
tracking system targeted at detecting uninitialized memory disclosures to user-mode; it
has found 70 bugs in theWindows kernel and 10 bugs in the Linux kernel [86]. Finally, a
wide range of static taint tracking systems have found numerous bugs in the kernel [85,
117, 187].

Speculative gadget scanners Shortly after the publication of Spectre [95], the Red
Hat Spectre V1 scanner [30] and Microsoft’s Visual C/C++ Compiler [134] tried finding
and mitigating Spectre V1 gadgets using well-defined code patterns. More advanced
static analysis gadget scanners followed. oo7 [185] uses binary-level static taint analysis
and has analysis times of 74 hours on average on medium-sized user applications, scaling
it to large codebases such as the Linux kernel is impractical. Spectector [60] and
KLEESpectre [184] use symbolic execution to find Spectre based information leaks.

3.12. RELATED WORK

Ka
sp
er

55

while(1)
syscall(__NR_keyctl,

KEYCTL_JOIN_SESSION_KEYRING,
"kasper", 0, 0, 0);

(a) Attacker thread that repeatedly invokes the vulnerable keyctl system call.

while(1) {
madvise(leak+4096, 4096, MADV_DONTNEED);
flush(reloadbuffer);
asm volatile(

"movdqu (%0), %%xmm0 \n"
"movq %%xmm0, %%rax \n"
"andq $0xff, %%rax \n"
"shl $0xa, %%rax \n"
"prefetcht0 (%%rax, %1) \n"
"mfence \n" ::
"r"(leak + 4096 - 14),
"r"(reloadbuffer):"rax","rbx","rcx");

reload(reloadbuffer, results);
}

(b) Attacker thread that repeatedly encodes in-flight secret data into a reloadbuffer.

Listing 12: Simplified proof of concept exploit consisting of two simultaneously executing
threads.

Without sacrificing soundness and completeness, symbolic execution becomes a bottle-
neck when scaling to large real-world codebases like the kernel [206]. The Linux kernel
currently relies on manual analysis and static analysis tools such as smatch [25] to iden-
tify potential Spectre gadgets. However, this still involves manual inspection because
found code locations are patched at the source code level and it suffers from a high rate
of false positives. SpecFuzz [126], a dynamic analysis tool, combines fuzzing with the
use of sanitizers to detect and mitigate potential speculative memory leaks within user
applications. SpecTaint [140] uses dynamic taint analysis to track attacker controllability
and leaking of the secret. Similar to SpecFuzz, it targets user-space programs which
rarely have mitigations applied.

56 CHAPTER 3. KASPER

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Fuzzing time (in days)

0

100

200

300

400

500

600

700

N
um

be
r o

f u
ni

qu
e

ga
dg

et
s

Gadget type
MDS
CACHE
PORT

Figure 3.6: Gadgets found by Kasper over time, separated by gadget type.

3.13 Conclusion
We presented Kasper, a solution for finding generalized transient execution gadgets in
the Linux kernel. Where existing gadget scanners limit themselves to specific Spectre
patterns (in user programs), Kasper abstracts away pattern-specific details and instead
models the essential steps of an attack: injecting controllable data, accessing a secret, and
then leaking the secret. Moreover, where existing scanners target only the primitives
used in the BCB pattern, Kasper models the wide variety of primitives that are at an
attacker’s disposal. As a result, Kasper finds gadgets that are well out of reach of existing
techniques. We conclude that current Spectre mitigations in the Linux kernel are wholly
insufficient.

Appendix 3.A Coverage Evaluation

We evaluate the completeness of Kasper’s fuzzing results (Section 3.9.2) based on its
coverage in both normal execution and speculative emulation.

3.A.1 Normal execution coverage
First, we find that Kasper’s total gadgets found (Figure 3.6) begins to flatten at around
18 days; this is not surprising, since we fuzzed the kernel until Kasper found only 3
new gadgets per day (out of 1379 gadgets found in total). Next, we find that Kasper’s
code coverage (Figure 3.7) also flattens, confirming that further fuzzing will most likely
execute already-executed code, and as a result, uncover fewer and fewer gadgets.

To evaluate how long it would take for Kasper’s code coverage to completely flatten
(and in effect, uncover almost all gadgets), we compare Kasper’s code coverage to an

3.A. COVERAGE EVALUATION

Ka
sp
er

57

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Fuzzing time (in days)

0

5000

10000

15000

20000

25000

30000

C
ov

er
ag

e
(in

 e
dg

es
)

Figure 3.7: Covered edges in the Linux kernel reported by syzkaller.

uninstrumented kernel’s code coverage. We fuzzed an uninstrumented kernel for 18 days
and found that in the final 24 hours, the baseline’s coverage increased by only 0.15%, and
in the same span, Kasper’s coverage similarly increased by only 0.61%. In other words,
the baseline’s coverage—likeKasper’s coverage—flattens, but not completely. Since even
the baseline does not completely flatten in bounded time4, we cannot expect Kasper
to completely flatten in bounded time. Hence, future work on improving syzkaller’s
coverage would not only improve the completeness of Kasper’s results—it would also
improve all kernel fuzzing results.

3.A.2 Speculative emulation coverage
Apart from normal code coverage, KSpecEm specifically targets increasing the code
coverage in the speculative window. Simply executing basic blocks within speculative
emulation is not sufficient. Ideally, KSpecEm should execute a basic block speculatively
in every speculative window that may cover it. In other words, we should exhaust
speculative execution windows as much as possible and eliminate premature rollbacks.

Lightweight checkpointing in the kernel is more challenging than in well-defined
user-space programs, due to the many complex operations, frequent use of inline as-
sembly, interactions with device memory, and complex control flow resulting from
interrupts. As described in Section 3.6.2, to handle such cases we allow speculative emu-
lation to stop gracefully to ensure memory integrity on a rollback. Stopping speculative
emulation in the above cases limits the length of the emulation window.

Table 3.7 presents the different causes of rollbacks in three scenarios: the basic
implementation of KSpecEm and two improvements that we later made to improve
speculative code coverage. These numbers report the causes for rollbacks averaged over

4Indeed, Google runs syzkaller continuously on many different kernel versions and configura-
tions, and even its longest-running fuzzing campaigns continue to gain code coverage [51].

58 CHAPTER 3. KASPER

Rollback cause Basic + Page fault suppression + Inline assembly patches

Max spec length 20.8% 22.9% 56.9%
Return 32.9% 33.8% 39.7%
Inline asm 38.4% 41% 0.2%
Indirect calls 0.8% 1.2% 1.3%
Interrupts 6.5% 0.5% 1.2%
Blacklisted function 0.6% 0.6% 0.7%

Table 3.7: Causes for rollback in speculative emulation.

all instrumented functions when executing the ls command. A negligible amount of roll-
backs (3.4%) are due to limitations introduced by unique challenges of the Linux kernel,
as explained earlier in Section 3.6.2. We set the maximum of speculative instructions
for all evaluations to 250 executed LLVM IR instructions, which is in line with the size
of the ROB in modern microarchitectures [74] and what has been used in recent work
(for x86 instructions) [126, 140]. We have analyzed the ratio of the number of LLVM
IR instructions to x86 instructions within the Linux kernel per function using LLVM
passes. The median of the ratio is 0.92, concluding that counting LLVM IR instructions
is a reasonable approximation for the number of machine code instructions. The first
row shows the percentage of cases where KSpecEm rolls back because we reach this
maximum speculation length. Ideally, the percentage of rollbacks due to reaching the
maximum speculation length should be as high as possible.

We see that a small percentage of rollbacks can be attributed to indirect calls where
the target address cannot be verified at compile time, interrupts, and blacklisted func-
tions such as those that interact with I/O memory. This proves that, even for drivers
code, we have isolated the small locations interacting with I/O mapped memory, still
reaching high speculative code coverage within those kernel components. The low
number of rollbacks due to interrupts show that these interrupts, caused by exceptions
creating an unrecoverable state, are not a significant limitation of Kasper. A major
source of rollbacks consists of returns as speculative emulation tries to go up in the call
trace from the start of the checkpoint. In contrast, returning in functions that have been
called within speculative emulation is safe since it will return back into a function that
was already executed within emulation. Future work can support additional returns by
keeping track of safe functions within the call trace, and thus increase speculative code
coverage even further.

In the basic implementation (column 2), we stop on all interrupts (including ex-
ceptions and timers) and every occurrence of inline assembly. In this case, speculative
emulation reaches the maximum speculation length in a modest 20.8% of all cases.
However, by adding Page Fault suppression (column 3), we find new classes of attack
(e.g., LVI) and reduce interrupts from 6.5% to a mere 0.5%, to arrive at 22.9% of the
cases that exhaust the maximum speculation window. Moreover, by modeling the most
frequently-used inline assembly fragments, we increase the percentage of rollbacks
due to reaching the speculation length to 56.9%. As shown by our case studies, these
improvements enabled Kasper to find a wide range of gadgets.

3.B. PERFORMANCE EVALUATION

Ka
sp
er

59

Appendix 3.B Performance Evaluation

We evaluate the performance of Kasper relative to an uninstrumented kernel and where
possible, relative to previous approaches.

Analysis time Similar to previous work [126], we evaluate the time overhead of our
approach based on the fuzzing throughput (i.e., the number of testcases over time).
First, we compare the fuzzing throughput of Kasper against the uninstrumented kernel.
Next—since we observed that our modifications to syzkaller, which use qemu’s snapshot
feature to revert taint between testcases (see Section 3.8), introduced amajor overhead—
we also compare the fuzzing throughput of Kasper against the uninstrumented kernel
running with our modified version of syzkaller.

We ran each setup for 36 hours on the same machine used for our fuzzing evaluation
(Section 3.9.2). We found that on average, Kasper executes 136 testcases per hour,
compared to the uninstrumented kernel executing 45,933 per hour; however, when
running with our modified version of syzkaller, the uninstrumented kernel executes a
mere 252 testcases per hour. Hence, we can attribute a 1.8x slowdown due to Kasper’s
instrumentation and a 183x slowdown due to our syzkaller modifications. Since our modi-
fications to syzkaller were not the focus of this work, we consider this an acceptable
overhead; orthogonal (and concurrent) efforts to optimize qemu’s snapshot feature
can be used to improve the throughput [148]. Furthermore, note that reverting taint
between testcases is not strictly necessary for Kasper. Nonetheless, we opted for this
strategy because we prefer to have reproducible results (by starting each testcase from a
clean snapshot) over quick results (by fuzzing without snapshotting).

For comparison, SpecFuzz reports a 23x slowdown in the best case (on libHTP) and a
560x slowdown in the worst case (on OpenSSL). Hence, relative to the 1.8x overhead of
Kasper’s instrumentation, SpecFuzz’s instrumentation incurs a sizable overhead. We
attribute this difference to SpecFuzz’s use of nested speculation to improve speculative
code coverage: i.e., SpecFuzz inverts many conditional branches within a single specula-
tive emulation window, whereas Kasper only inverts one. Although SpecFuzz observes
that most gadgets found are within the lower orders of nested speculation (i.e., only
requiring one or two inverted branches), nested speculation (as well as other forms of
speculation) can be integrated in Kasper in future work.

Unfortunately, we cannot meaningfully compare against SpecTaint for a couple of
reasons. First, its performance numbers are not relative to a tangible baseline: e.g.,
it does not present baseline times for programs when not run with SpecTaint; also,
it does not define when an analysis is “finished”, even though the analysis times it
presents use this metric. Second, the code is not yet available, so we cannot reproduce
its performance numbers. However, we estimate that, because it uses a full-system
emulation-based approach, it likely incurs a more significant overhead compared to
Kasper’s and SpecFuzz’s LLVM-based approaches.

Memory consumption Kasper consumes just over 4x memory relative to a baseline
system. Of this overhead, 2x is required by syzkaller for its snapshot feature. Another
2x is required by KDFSan’s shadow memory, which allocates a page of shadow mem-
ory for every page of kernel memory. Beyond that, a constant, negligible amount of
memory is required for KSpecEm’s tracking of speculative memory writes and other in-
ternal data structures. Unfortunately, neither SpecFuzz nor SpecTaint evaluate memory
consumption, so we cannot compare against them.

60 CHAPTER 3. KASPER

10 15 20 25
Calltrace depth

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Figure 3.8: Distribution of the smallest calltrace for the found gadgets.

Appendix 3.C Large-Scale Exploitability Evaluation

We evaluate the found gadgets across different metrics to provide a more detailed
analysis of exploitability. Exploitability of a gadget depends on e.g., how close it is to
the syscall entry to avoid unrelated noise or how long is the speculative window until
the gadget is reached.

Required call depth We present the distance to the syscall entry by the depth of the
calltrace in Figure 3.8. The first four to five functions called on a syscall entry are usually
small and just direct execution towards the correct syscall handler, explaining the low
number of unique gadgets found with a call depth below five. 50% of the gadgets are
found with a call depth of a maximum of 9, suggesting that they are more likely to be
exploitable by this metric. There was no significant difference in the call depth between
the different gadget types.

Required speculation window length In Figure 3.9, we present the length of the
speculative window from the mispredicted branch until the leakage. More than 60%
of MDS gadgets have a speculative window length of less than 100 LLVM instructions.
Similarly, 50% of the Cache and Port gadgets have a speculative window length of less
than 130 LLVM instructions. MDS gadgets, on average, require a smaller window since
these gadgets leak through the access and do not require an additional step to encode
the secret in the cache. Such short speculative windows allow for easier exploitation
and make the gadgets also applicable to processors with smaller speculative windows.

3.D. ADDITIONAL CASE STUDY

Ka
sp
er

61

50 100 150 200 250
Speculative window length (in LLVM instructions)

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Gadget type
MDS
CACHE
PORT

Figure 3.9: Distribution of the smallest speculative length in LLVM instructions for the found
gadgets.

Appendix 3.D Additional Case Study

We present a case study found by Kasper that highlights the need for a dynamic
analysis-based approach and the need for automated transient execution patch verifica-
tion.

The gadget Listing 13 shows anMDS-based gadget in the vc_allocate function, which
is called by vt_ioctl. In this gadget, the attacker first supplies arg through an ioctl
syscall argument, which Kasper marks as tainted. Then, Kasper emulates the mispre-
dicted bounds check at line 1 and executes the else statement with an out-of-bounds
value for arg. After a second mispredicted bounds check at line 8, Kasper detects
an out-of-bounds memory access at line 11. Since curcons is a 32-bit value under full
control of the attacker, this gadget allows an attacker to leak a large range of kernel
memory. Note that a previous version of Kasper that used a basic implementation of
nested speculation found this gadget, as it relies on two inverted branches (lines 1 and 8).

Drawback of static analysis We identified an almost identical code snippet in vc_ ⌋
setallocate—which is very close to the other gadget, and also called from vt_ioctl—
however, it was already (partially) mitigated through speculative array index masking. It
is unclear why the kernel developers applied the mitigation to this gadget, but not to the
other. At first glance, the only noticeable difference between the two gadgets is that this
gadget receives user data from a copy_from_user call, whereas the other gadget receives
user data from a syscall argument. However, upon closer inspection, it becomes clear
why the kernel’s static analysis tool [25] may not have identified it. The dataflow from
the copy_from_user to the (partially) mitigated gadget is only separated by a direct call,

62 CHAPTER 3. KASPER

1 if (arg == 0 || arg > MAX_NR_CONSOLES)

2 ret = -ENXIO;
3 else {
4 arg --;
5 currcons = arg ;
6 console_lock();
7 WARN_CONSOLE_UNLOCKED();
8 if (currcons >= MAX_NR_CONSOLES)

9 return -ENXIO;
10

11 if (vc_cons[currcons].d)

12 ...
13 }

Listing 13: MDS-based gadget in the vc_allocate function used within the vt_ioctl
function.

whereas the dataflow from the syscall argument to the unmitigated gadget is separated
by an indirect call. Since indirect calls are notoriously difficult to resolve statically [116],
it is no surprise that the gadget was left unmitigated. This highlights the importance
of a dynamic analysis-based approach, which can uncover gadgets beyond the reach of
static analysis.

Drawback of manual mitigation verification Upon further inspection of the miti-
gation in vc_setallocate, we found that it was applied incorrectly. Indeed, Kasper
verifies that the mitigation is only partial. Namely, while the speculative array index
masking ensures that the index becomes zero if it goes out-of-bounds, the decrement
that follows (similar to line 4 in Listing 13) causes an integer underflow in transient
execution. This demonstrates the importance of an automated tool such as Kasper,
which can verify that manually-applied security patches work as intended.

Appendix 3.E Developer Interface
We have built a web interface to visualize all the necessary information retrieved from
the database, so that kernel developers can easily analyze and patch the reported Kasper
gadgets. Figure 3.10 presents a screenshot of the interface giving the kernel developer
important information such as the calltrace, source code of the mispredicted branch
and the leaking operation, taint information, and a testcase to reproduce the report.

3.E. DEVELOPER INTERFACE

Ka
sp
er

63

Restarts
func offset find_keyring_by_name+0x644/0x1310

Calltrace
kspecem_report_print_restart_end+0x3e/0x50
kspecem_report_print_and_clear+0x28c/0x2c0
kspecem_restart+0x167/0x240
kspecem_hook_restart+0x4f/0xb0
find_keyring_by_name+0x122c/0x1310
join_session_keyring+0x54a/0xef0
__se_sys_keyctl+0x2e2b/0x33f0
__x64_sys_keyctl+0x266/0x2a0
do_syscall_64+0x130/0x230
entry_SYSCALL_64_after_hwframe+0x44/0xae

Checkpoint Line Info
find_keyring_by_name in security/keys/keyring.c

 1156 continue;
 1157
 1158 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 1159 continue;
 1160
 1161 * if (strcmp(keyring->description, name) != 0)
 1162 continue;
 1163
 1164 if (uid_keyring) {
 1165 if (!test_bit(KEY_FLAG_UID_KEYRING,
 1166 &keyring->flags))

Reports

Func Offset Report
Type Pointer taint

strcmp+0x19a/0x270 PORT attacker_usercopy,
secret_slab_mem, sys_keyctl

strcmp+0xdc/0x270 MDS attacker_usercopy, sys_keyctl,
sys_keyctl

pointer labels:

* attacker_usercopy

* sys_keyctl(int cmd, unsigned long arg2, unsigned long arg3,
 unsigned long arg4, unsigned long arg5)

strcmp in lib/string.c

 380 {
 381 unsigned char c1, c2;
 382
 383 while (1) {
 384 c1 = *cs++;
 385 * c2 = *ct++;
 386 if (c1 != c2)
 387 return c1 < c2 ? -1 : 1;
 388 if (!c1)
 389 break;
 390 }

Testcase
syz_open_procfs(0x0, &(0x7f0000000240)='timerslack_ns')
r0 = socket$netlink(0x10, 0x3, 0x0)
r1 = syz_open_dev$vcsu(&(0x7f0000000000)='/dev/vcsu#', 0x3, 0x0)
dup3(r0, r1, 0x0)
bind$netlink(r1, &(0x7f0000000080)={0x10, 0x0, 0x0, 0x4000021}, 0xc)
keyctl$join(0x1, &(0x7f00000000c0)={'syz', 0x0})
accept4$packet(r1, &(0x7f0000000000)={0x11, 0x0, 0x0, 0x1, 0x0, 0x6, @link_local},
 &(0x7f0000000040)=0x14, 0x1000)

func offset strcmp+0x1c6/0x270

1-2 of 2

Display the Calltrace

Display the
mispredicted

branch source

Display the
taint labels

Display the
covert channel

source

Display testcase for
reproducibility

Display all reports for a given mispredicted branch

Figure 3.10: Screenshot of Kasper’s web interface.

un
co
nt
ai
ne

d

4 uncontained:
Uncovering Container
Confusion in the Linux
Kernel

Type confusion bugs are a common source of security problems whenever software
makes use of type hierarchies, as an inadvertent downcast to an incompatible type
is hard to detect at compile time and easily leads to memory corruption at runtime.
Where existing research mostly studies type confusion in the context of object-oriented
languages such as C++, we analyze how similar bugs affect complex C projects such as
the Linux kernel. In particular, structure embedding emulates type inheritance between
typed structures. Downcasting in such cases consists of determining the containing
structure from the embedded one, and, like its C++ counterpart, may well lead to bad
casting to an incompatible type.

In this chapter, we present uncontained, a systematic, two-pronged solution to dis-
cover type confusion vulnerabilities resulting from incorrect downcasting on structure
embeddings—which we call container confusion. First, we design a novel sanitizer to
dynamically detect such issues and evaluate it on the Linux kernel, where we find as
many as 11 container confusion bugs. Using the patterns in the bugs detected by the
sanitizer, we then develop a static analyzer to find similar bugs in code that dynamic
analysis fails to reach and detect another 78 bugs. We reported and proposed patches for
all the bugs (with 102 patches already merged and 6 CVEs assigned), cooperating with
the Linux kernel maintainers towards safer design choices for container manipulation.

65

66 CHAPTER 4. UNCONTAINED

4.1 Introduction

Complex software often makes use of class and type hierarchies to achieve modularity
in the design and favor code reuse for operations meant to work on similar objects.
Interestingly, this phenomenon is not exclusive to software written in object-oriented
languages. One compelling case involves the C language, as implementers of kernels
and large userland applications commonly resort to custom means, namely structure
embedding, to model inheritance between typed structures. In the lack of explicit
language provisions, the validity of casting operations becomes an implicit assumption
from code semantics (i.e., on implementation correctness).

Structure embedding operates by declaring an instance of a more general typed
structure (the parent) as a field of amore specific one (the child). Awell-known example
is the list_head structure in the Linux kernel. In this chapter, we will sometimes refer
to such structures as objects. Code that needs to access the more general representation
of an object, thus realizing an upcast, will simply use the member field for the parent in
the object. This operation is intuitively safe. Code that needs to access amore specialized
representation of an object, thus realizing a downcast, will (unsafely) manipulate the
parent pointer to recover the address of the child.

In more detail, an object downcast subtracts the offset of the parent field in the child
object from the address available for the parent, yielding the address of its container
structure (i.e., the child). The term container follows from the popular container_of
macro pioneered by the Linux kernel. Issuing a downcast is not only always unsafe, but
even not conforming to any C language standard [127]. Thus, the correctness and safety
burden is on the shoulder of the developers, who have to guarantee through program
semantics that the requested child type is correct. Failing to meet this requirement
would cause a type confusion, which may have possibly disastrous consequences, such
as a memory corruption vulnerability [106].

For object-oriented languages, runtime type information (RTTI) enables straightfor-
ward validation of downcasting operations. For example, current solutions that look for
type confusion in C++ code rely on forms of RTTI tracking [6, 39, 62, 88]. Solutions
with provisions for C code can detect (some) cases of type confusion by intercepting
heap allocations of objects and binding them with their top-level allocation type [39,
88] in userland code. Automatic type identification is difficult in C programs due ex-
plicit/implicit unions, pointer casting, allocation wrappers, and other factors as shown
in previous work [48, 178]. For kernels, current type-based solutions resort to manually
annotating allocation sites with the necessary type information [6].

In this chapter, we take a systematic approach to discover type confusion vulnera-
bilities resulting from incorrect downcasting on structure embeddings, which we call
container confusion. We design a new sanitizer that does awaywith runtime type tracking
of objects and uses instead information on object allocation boundaries, which we obtain
using an off-the-shelf solution. In more detail, we rely on redzones from memory sani-
tization literature [154] to augment allocation sites for out-of-bound access detection.
Our sanitizer checks type compatibility for a downcasting operation by checking the
relative position of the embedded parent structure, the outer child structure, and the
redzones. This scheme transforms a type check in multiple straightforward structure
bound checks, with low runtime overhead and no manual code changes.

We apply our sanitizer to the Linux kernel, one of the most complex and security-
sensitive program instances. An initial study of its code base, which we conducted to
gauge the potential bug surface, reveals more than 50, 000 occurrences of container_of
involving nearly 4, 000 structure types. The type graph is also highly connected, with

4.2. BACKGROUND

un
co
nt
ai
ne

d

67

extreme cases such as list_head used as parent for over 1, 800 child types.
We fuzzed a sanitized build of the kernel for one week and uncovered 11 cases of

container confusion, including long-standing container confusion bugs present in its
code base since 18 years. As the kernel is continuously fuzzed under multiple sanitizers
and configurations, these findings lead us to argue that our approach can find bugs that
current state-of-the-art testing practices fail to capture.

By analyzing the nature of such bugs, we identify five container confusion patterns of
general interest. We use such patterns to develop a static code analyzer that can process
the whole kernel in only a few seconds, allowing us to reach also code compartments that
fuzzers may not cover. The static analyzer identifies 366 potential cases of confusion:
by manual analysis, we identify 78 other bugs along with 179 anti-patterns where code
correctness hinges only on implicit assumptions on program semantics.

We reported our findings to the Linux kernel maintainers, who acknowledged them,
and proposed patches for all the bugs we found. At the time of writing, 102 patches
have been merged in the kernel, and 6 CVE identifiers have been assigned for bugs
whose security implications were immediately apparent. Our reports sparked valuable
discussions which, among others, resulted in upgrading the C standard (to mitigate
recurrent issues that we found) and in an attempt to change the list iterator integral to
the kernel.

In sum, this chapter proposes the following contributions:
• We systematize a class of type confusion bugs, showing how C programs are
affected by incorrect downcasting on structure embeddings. We dub it container
confusion.

• We design a sanitizer for them that does away with type tracking and show its
applicability to the Linux kernel.

• We derive 5 general patterns of container confusion from bugs we found in the
kernel and design a static analyzer around them to make our approach scale in
coverage.

• We evaluate our approach on a recent Linux kernel version, identifying 11 bugs
with dynamic analysis (e.g., fuzzing) and another 78 bugs through our static
analyzer.

Our sanitizer and static analyzer together form a framework, termed uncontained,
which is open source and available at: https://vusec.net/projects/uncontained.

4.2 Background

In this section, we will provide the relevant background to understand the remainder of
the chapter.

4.2.1 Type Confusion Bugs in C++... and in C

Casting an object to an incompatible type violating casting rules (i.e., bad-casting) causes
type confusion. For instance, a static downcast in C++ checks only if the source and
destination types are in the same type hierarchy, but not if the runtime destination type
is the expected one. As a result, large C++ projects, such as the major browsers, parts of
Windows, and the Oracle JVM [62], are rife with type confusion bugs.

https://vusec.net/projects/uncontained

68 CHAPTER 4. UNCONTAINED

Downcasting in C. The problem is not limited to object-oriented languages such as
C++ but also extends to large programs written in C. Since C is not an object-oriented
programming language, it does not support classes like C++. However, developers use
structure embedding to benefit from an approximation of classes and inheritance. In
particular, properties shared by multiple types are defined as a struct embedded in all the
relevant types. In such a way, all the child types inherit the struct members declared in
the parent type that is embedded. We show a simplified example of such use in Listing 14.
Since the child type includes the parent type in this design, it is called a container.

Analogous to C++, we require primitives to go from the child type to its parent
(“upcasting”) and from the parent to its child type (“downcasting”). Upcasting is
implemented by obtaining a pointer to the embedded parent structure from the child
structure and is guaranteed safe. Downcasting is not defined in the C standard since
it would require using a pointer to the parent structure to obtain a pointer outside
of the memory defined by the type of the parent structure itself [127]. Still, many
projects, including the Linux kernel, do exactly that. Given a pointer to the parent in
a type hierarchy based on structure embedding, they implement their own version of
downcasting, often in the form of a macro, that uses pointer arithmetic to calculate a
pointer to the child type.

Such a macro is often named container_of. The reference implementation in the
Linux kernel is shown in Listing 15. The container_of macro is not exclusive to the
Linux kernel but present in many large C projects such as QEMU, Node.js, Xorg, the
Windows kernel, git, FreeBSD, and XNU.

List Iterators. As an example, consider the popular list_head structure that program-
mers embed in their data structures in the Linux kernel to create a double-linked circular
list, with next and prev pointers pointing to the next and previous list_head element
of the list. Iterating over a list, we know we have reached the end when we encounter
the same pointer a second time. An empty list has its next and prev pointers pointing
to itself. Issuing a container_of on a list_head allows access to the derived type, i.e.,
the element of the entry.

While there are different ways to use list_head, adding a linked list to a structure
in the Linux kernel is a matter of embedding a list_head whose next field points to
the first entry of the list, while that of the last entry points back to the list_head in
the “owning” data structure. In this way, all list entries have the same type, except the
owning structure that anchors the head of the circular list. Similarly, it is safe to issue
a container_of from any list entry, except for the list_head in the owning structure,
where it would lead to container/type confusion. The owning structure need not even
be a struct, as it could also be a single list_head variable.

To iterate over a list, the kernel usesmacros such as list_for_each_entry. It repeat-
edly follows the next pointer to find the next list_head and then uses container_of
to set the iterator to the base of the entry that embeds it. For instance, we can iterate
over all inodes of a superblock as shown in Listing 16.

This is safe if the possibly invalid list iterator, upon loop exiting, is not used after-
wards. While the most common, list_head is not the only iterator in the Linux kernel
but most work in a similar way. Well-known further examples include single-linked lists
(hlist_node) and red-black trees (rb_node).

This chapter will highlight several cases where iterator invariants are violated, re-
sulting in buggy code.

4.3. CONTAINER CONFUSION IN THE LINUX KERNEL

un
co
nt
ai
ne

d

69

// parent struct
struct usb_request {

void *buf;
unsigned length;
dma_addr_t dma;
...

}
// child struct
struct gr_request {

struct usb_request req; // member field
...
struct gr_dma_desc *first_desc;
...

};
// child struct
struct goku_request {

struct usb_request req; // member field
...
unsigned mapped:1;

};

Listing 14: Structure embedding example, where gr_request and goku_request “inherit”
from usb_request.

4.2.2 Sanitizers
Sanitizers are runtime tools to detect undefined behavior in programs, typically through
compiler-based instrumentation that checks undefined behavior. The best-known ex-
ample is AddressSanitizer (ASan) [154], which detects memory errors such as buffer
overflows and use-after-frees. ASan instruments every memory access with a check
that consults a shadow memory to see if the memory access is valid. In particular, to
detect buffer overflows, ASan pads memory allocations with redzones and poisons the
memory in the shadow memory (setting it to a nonzero value) so that any future access
results in an ASan error. In this chapter, we will repurpose ASan redzones to detect
object boundaries.

4.3 Container Confusion in the Linux Kernel
In this section, we discuss security risks that can arise from container confusion, examine
a real-world bug as a running example, and show to what extent the Linux kernel resorts
to structure embedding.

4.3.1 Security Implications
Like C++’s static_cast, the container_of macro does not perform runtime checks to
verify whether the structure is actually contained within the expected outer structure.
When this is not the case, container confusion leads the program to access memory
under wrong assumptions on its layout. Two base scenarios are possible: a) the structure

70 CHAPTER 4. UNCONTAINED

1 # define container_of(ptr, type, member) ({
2 void *__mptr = (void *)(ptr);
3 ((type *)(__mptr - offsetof(type, member)));
4 })

Listing 15: container_of implementation in the Linux kernel.

is embedded in a different container, leading to member access over memory contents
typed for another layout; or b) the structure is not embedded in a container, leading to
a pointer that is out-of-bounds by the relative offset assumed within the container.

The security implications of bad casting have been well-researched for C++ (e.g.,
in the CaVeR paper [106]) and similarly apply here, being container_of equivalent
to C++’s static downcasting. Such effects can range from subtle state corruptions to
controlled out-of-bounds accesses that attackers can evolve for exploit construction.
The security risk is mainly dependent on structure layouts, for example when memory
containing function pointers can be overwritten. To probabilistically mitigate these and
other issues, the Linux kernel can randomize the layout of some structures at compile
time [72]. While this can make exploitation less reliable, in some cases it may also turn
an unexploitable bug into a security vulnerability. In fact, as the offset for the embedded
structure changes, also does the memory pointed by the type-confused pointer, directly
affecting the bug exploitability (for example, when further memory corruption becomes
possible under some randomized layouts). At the time of writing, only a few structure
types (65 in the entire kernel) can undergo randomization: enabling it globally (as done
in research operating systems [49]) can be difficult as code may assume a specific layout
for some structures, while others have layouts that are tuned for better performance [37].

We will show concrete examples of security risks uncovered by the dynamic and
static analyses of uncontained in Sections 4.6 and 4.7.3, where we outline, among
others, a vulnerability that breaks Kernel Address Space Randomization (KASLR) and a
controlled out-of-bound write. We will also discuss examples of bugs that may affect
execution semantics.

4.3.2 Running Example

We discuss next our running example (Listing 17) involving the kernel USB stack to
better illustrate container confusion.

The function gr_dequeue() iterates over a list of requests to find and remove the one
matching the supplied _req argument. Under correct operation, container_of(&ep- ⌋
>queue.next, struct gr_request, queue) in the macro at line 6 takes the address
of field queue in a gr_request list entry and subtracts a quantity χ=offsetof(struct
gr_request, queue) to make it point to the entry itself.

However, if the list is empty or does not contain it, the execution leaves the list iter-
ator variable gr_req with a container-confused pointer. As mentioned in Section 4.2.1,
the list iterator would incorrectly reference the owning structure (i.e., the list head),
which has gr_ep type. The confused container_of subtracts χ from the pointer to the
field queue in this other structure: the result will point somewhere within structure *ep.

The exploitability of the bug depends on the position of field req, used at line 10,
within gr_request structures. Listing 14 shows the partial structure layout. Had the
position been “deeper”, the resulting pointer could have reached and surpassed the

4.3. CONTAINER CONFUSION IN THE LINUX KERNEL

un
co
nt
ai
ne

d

71

1 // owning data structure ->
2 // struct superblock embeds 'struct list_head s_inodes'
3 struct superblock *sb;
4 // iterator ->
5 // struct inode embeds 'struct list_head i_sb_list'
6 struct inode *inode;
7 ...
8 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
9 spin_lock(&inode->i_lock);
10 ... // do more with inode
11 }

Listing 16: Kernel code to use list_for_each_entry to iterate over inodes.

outer gr_ep structure, referencing the adjacent heap storage. Were _req to match such
an out-of-bound pointer, the code attempts to remove a list entry that is not present,
possibly causing further memory corruption.

Rich discussions followed our disclosure of the bug to the Linux kernel mailing list.
As a result, the maintainers opted to migrate to the C11 standard, which would allow
them to define the iterator variable with a scope limited to specific loops, preventing its
usage afterwards. In the next section, we will examine the potential surface for container
confusion cases in the Linux kernel.

4.3.3 Type Graph Complexity
To examine the use of structure embedding in the Linux kernel, we analyze the preva-
lence of container_of and its derivatives, as container_of takes part in several macros
and inline functions. Depending on the selected kernel configuration, we note that the
build system of the kernel can choose between different function implementations and
even type definitions. Hence, we study the Linux kernel v.5.17 with the configuration in
use to Google’s syzbot [51] for continuous fuzzing.

We write an LLVM compiler pass to spot all the uses of container_of in the source
code as lowered during compilation and track the parent and child types at each such
use. This allows us to build a type graph that captures the possible containment relation-
ships between different structure types. We count over 56, 000 downcast instances (as
container_of or any of its derivatives) under our kernel configuration.

As the chapter will detail, the type graph is a foundational element of our approach
to container confusion detection. Figure 4.1 shows the one being discussed here, high-
lighting the relationships between the embedded types. Each node represents a type
involved in a downcast. We have a (directed) edge between two types if we find a
downcast instance that derives a child of the destination node type from a parent of
the source node type. We also compute edge weights based on the number of such
instances.

While we count as many as 18323 types in all the code for the build, we find 4275
of them to be involved in downcast operations: 506 can occur as parent and 4033 as
child object. To our surprise, this implies that almost one-fourth (23.3%) of all types
are involved in structure embedding.

For example, the usb_request structure shown in Listing 14 can be embedded in 17

72 CHAPTER 4. UNCONTAINED

1 static int gr_dequeue(struct usb_ep *_ep,
2 struct usb_request *_req) {
3 struct gr_request *gr_req; // renamed: was `req`
4 ...
5 struct gr_ep *ep = ...; // derived from `_ep`
6 list_for_each_entry(gr_req, &ep->queue, queue) {
7 if (&gr_req->req == _req)
8 break;
9 }
10 if (&gr_req->req != _req) {
11 ret = -EINVAL;
12 goto out;
13 }
14 ...
15 }

Listing 17: Using the list iterator gr_req past its validity causes container confusion.

different child structures in use to different USB drivers. Generally speaking, a variety
of destination types may favor cases of invalid runtime downcasts.

By looking at topological properties of the type graph, we find that 3486 of the
4033 possible destination types are not contained in any other type, meaning no other
type “inherits” from them. 419 of the 506 possible source types have an out-degree
greater than one, meaning that they can have multiple child types; 221 have more than
10 possible child types.

In the figure, we also highlighted the top-5 structure types by highest number
of child types: list_head (1857), work_struct (611), hlist_node (244), timer_list
(235), and qspinlock (223). Each colored cluster shows the possible destination types
for such a source type during downcasting.

Looking at edge weights, the structure types most often used as parent when down-
casting are list_head (22033), inode (7669), device (4130), hlist_node (3221), and
rb_node (2272). Several of them are involved in iterators.

We also note that list_head emerges as the type with most child types that inherit
from it and as the most used parent type across the whole kernel code base.

As the main takeaway of this study, we argue that the prevalence of container_of
and derivatives, combined with the notable complexity of the type graph they induce,
makes a compelling case for seeking container confusion bugs.

4.4 uncontained Overview

In this chapter, we design and implement uncontained to detect container confusion
bugs in the Linux kernel.

In Section 4.5, we present a novel container confusion sanitizer that uses object
boundaries to detect invalid downcasts during dynamic analysis. After describing the
design and implementation, we evaluate effectiveness and performance of the sanitizer
by combining it with the well-known syzkaller [52] kernel fuzzer and other benchmarks.
Finally, we use the sanitizer to analyze the occurrence of container confusion in the

4.5. CONTAINER CONFUSION SANITIZER

un
co
nt
ai
ne

d

73

list_head work_struct hlist_node timer_list qspinlock

Figure 4.1: Type graph for container_of (and alike) instances.

Linux kernel.

Achieving code coverage with dynamic analysis on the Linux kernel can be chal-
lenging due to the amount of complex code. In Section 4.6, we therefore analyze the
bugs we detect through fuzzing and identify common bug patterns that result in invalid
container_of usage. Based on these patterns, we develop a static analyzer to search for
additional bugs without suffering from the lack of code coverage inherent to dynamic
analysis in Section 4.7. In particular, we design and implement a configurable LLVM
forward and backward dataflow analysis to identify potentially buggy code patterns. We
then analyze any additional bugs found by the static analysis, including a worrying out-
of-bounds write, and demonstrate an acceptable rate of false positives. Although static
analysis has lower accuracy than dynamic analysis, it acts as an effective complement
for code that dynamic analysis fails to reach.

4.5 Container Confusion Sanitizer

This section introduces the sanitizer component of uncontained meant to detect
cases of container confusion at runtime. We explain its design and implementation in
Section 4.5.1 and Section 4.5.2, respectively, and evaluate it in Section 4.5.3.

74 CHAPTER 4. UNCONTAINED

list

container_of(ptr, outer_type, list)

list

container_of(ptr, outer_type, list)

outer_type

outer_type

Figure 4.2: Redzone layout for a valid downcast (top) and for an invalid one (bottom). Here, list
is the member field name.

4.5.1 Design
Our sanitizer aims to expose downcasts, represented by uses of the container_ofmacro
in kernel, where an incorrect destination (i.e., child) type causes a container confusion.
As we anticipated in Section 4.1, detecting such errors with existing approaches to type
confusion detection would require maintaining a form of RTTI for each allocated object.

Our design aims instead for a general solution that does not incur code modifi-
cations and/or pointer tracking costs while achieving broad compatibility. The key
idea is to turn a downcasting validity check into multiple bound checks relative to the
current embedded object (the parent) and the requested container object (the child)
of a container_of operation. Parent and child here are synonyms for inner and outer
structure.

We analyze structure definitions and use the relative distances of an embedded
structure from the start and the end of its container structure as the discriminating
factor for violations. When the container object is of the requested type, its allocation
boundaries will align perfectly with those that one can infer starting from the parent
pointer. A violation occurs instead when the object enclosing the parent turns out to be
larger or smaller than expected on either side.

To insert sanitization checks, inferring the expected boundaries of a child object
is straightforward, as both its size and the displacement of the parent field from its
start are known at compile time. However, even at runtime, the actual boundaries of an
object are normally not available in C programs.

Object Boundaries. For reliable boundary identification, we rely on standard runtime
means in use to sanitizers that target spatial memory safety violations. Namely, we
pad object allocations with redzones (Section 4.2.2) and use them to recover object
boundaries. The addresses immediately preceding and following an object will appear
as invalid in the shadow memory, while those at the boundaries will be valid.

For a container_of operation, we can thus check for the validity of memory at the
expected start and end addresses of the requested container, and the invalidity of the
memory right before and after them, respectively. This will readily expose mismatches

4.5. CONTAINER CONFUSION SANITIZER

un
co
nt
ai
ne

d

75

1 static int gr_dequeue(struct usb_ep *_ep,
2 struct usb_request *_req) {
3 struct gr_request *gr_req; // renamed: was `req`
4 ...
5 struct gr_ep *ep = ...; // derived from `_ep`
6 list_for_each_entry(gr_req, &ep->queue, queue) {
7 if (&gr_req->req == _req)
8 break;
9 }
10 if (!check_redzone(gr_req, sizeof(struct gr_request))) {
11 uncontained_report(gr_req);
12 }
13 if (&gr_req->req != _req) {
14 ret = -EINVAL;
15 goto out;
16 }
17 ...
18 }

Listing 18: Running example with our bound checks added.

between expected and actual boundaries.
Figure 4.2 shows an example of valid and bad downcasting, highlighting the differ-

ences in their object redzone layouts.
We chose a redzone-based approach over other bounds-tracking designs due to its

efficiency, practicality, and compatibility with complex code bases: mainly, inspections
have O(1) cost and we can build on an existing, well-tested infrastructure from memory
sanitizers for kernels. Alternative design points such as low-fat pointers [103] remain a
possibility.

Container Nesting. The bounds-checking policy we just presented may mishandle
containers that are embedded in another container. For those cases, we cannot expect
the presence of redzones for the inner container, being it a structure field. However, we
can still do the validation through the outer container. In the Linux kernel, only 547
of its 4033 container types may incur such a scenario, whereas for 3486 no nesting is
possible. Therefore, when the desired child type of a container_of instance is one of
those 547, we apply the following scheme if the normal bound checks fail.

We note that a container_of operation carries the expected type for the innermost
container only. Moving to an outer container, we can check if its boundaries (i.e., the
redzones around it) align with the layout expected for any of the container types that
have a field of the expected inner container type. This information is available in the type
graph (Section 4.3.3) at compile time and we compute it recursively for multi-nesting
cases. If the redzones of the outermost container do not match any feasible layout, we
report a container confusion error.

This strategy effectively allows us to avoid false positives from container nesting.
The attentive reader may notice that, by accepting more redzone layouts as valid, we
open the door to more false negatives: however, as we will show later in this section,
the probability of such layout collisions is very low. Ideally it would be possible to inject

76 CHAPTER 4. UNCONTAINED

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256

C
o
u
n
t

container_of class: (offset of parent field, size of child)

Figure 4.3: Distribution of container_of invocations according to offset of parent field and
container size. Logarithmic scale.

redzones between struct members to both make the analysis more accurate and reduce
the complexity of analyzing outer structs. Unfortunately, many structs in the kernel are
carefully optimized to fit within certain boundaries or represent a specific amount of
memory that make inserting such redzones non-trivial and would require a kernel-wide
effort to support.

Time-of-use Checking. In the Linux kernel code, we found several cases where a
container_of instance sees at runtime also objects of an incompatible type but the
following code is never affected by the confusion. For example, with list iterators, the
obtained child pointer was used only to access the parent again through the child field
corresponding to it. These cases in the programming practice are not strictly bugs.
Therefore, in our design, we opted to validate a container_of instance at the time of
use for its output pointer rather than immediately when downcasting. Listing 18 shows
our running example augmented with bound checks around redzones.

To identify uses of the output pointer, we run a standard intra-procedural def-
use [65] analysis. As the program may modify it before dereferencing it (e.g., to access
a child field), we analyze pointer arithmetic operations and, when the modification can
be determined statically, we forward the check to the next use of the pointer. When the
program dereferences it or we can no longer follow it statically, we emit bound checks
and have them account for the modified offset, if any.

Discussion. The sanitization scheme we propose can detect container confusion by
relying solely on structure layout knowledge (known at compile time) and object bound-
aries (obtainable with off-the-shelf lightweight techniques). When both sources are
accurate, no false positives are possible.

Compared to an ideal design that tracks pointer types, the price we may pay for our
efficiency and compatibility relates to false negatives when an invalid downcast involves
an object whose layout coincides with the one of a valid child type1.

To look into this dimension, we identify a domain and a codomain for it. As domain,
we study how many unique container_of instances are present in the Linux kernel as
we consider the pair (parent field, child type) for a downcast operation. We include
the field as one child may embed multiple parents. As codomain, we identify pairs of
the form (offset of parent field, size of child) for such operations, since these are the
two quantities that we use—independently from one another—for bound checking. We

1We deem a container confused if not immediately preceded (resp., followed) by a redzone byte
and if its first (resp., last) byte is valid memory. With a false negative, the former check lands on
invalid memory and the latter on valid memory. Note also that this property is not affected by the
redzone size.

4.5. CONTAINER CONFUSION SANITIZER

un
co
nt
ai
ne

d

77

count 6, 526 unique instances mapping to unique 3, 262 pairs. A collision occurs when
two distinct instances map to the same pair.

The distribution in Figure 4.3 shows that 40.8% of the unique container_of in-
stances map to one pair exclusively, 16.9% to 2-4 pairs, 21.1% to 4-32 pairs, and only
5 of them to 100 or more pairs. Hence, we expect collisions to be infrequent. We
then analyze them under the realistic hypothesis that incorrect downcasts happen only
over objects of related types. When counting all the siblings and descendants in the
type hierarchy for the expected downcast type of a unique container_of instance, we
measure the probability of a collision to be 0.0283, which decreases to 0.0088 when
considering siblings only.

Note also that one may avoid false negatives almost entirely by adding padding bytes
to structures mapped to the same codomain point(s). We leave this investigation to
future work.

4.5.2 Implementation
The sanitizer of uncontained consists of two components. The first one is a coc-
cinelle [130] script to intercept occurrences of container_of at the source level, which
the C preprocessor would otherwise expand before we may instrument them.

The second one is a pass for the intermediate representation (IR) of the LLVM
compiler (v.12.0.1) implemented in 1640 lines of C++ code. The pass is responsible
for building the type graph of the code base, expanding the intercepted container_of
instances, and adding sanitization machinery.

We also develop a framework2 of potentially independent interest to apply custom
LLVM passes during kernel compilation and run VMs for testing (e.g., with syzkaller)
and debugging, automatically spawning one with a breakpoint attached to the found
crash site for manual inspection in gdb.

To have full visibility on type information, we run our pass as a link-time optimiza-
tion. We then leverage the existing redzone insertion and shadow memory mechanisms
of Kernel Address Sanitizer (KASAN) [98] to support object boundary identification
for stack, global, and heap-allocated variables. While our sanitizer can coexist with
KASAN’s machinery to sanitize memory accesses for safety violations, we disable its
generation as these checks are unnecessary for our purposes.

As mentioned in the previous section, correct object boundary identification is
essential for precision. This aspect is not influenced by the redzone size (for which we
use KASAN’s defaults), as the shadow memory has always 1-byte granularity. However,
even state-of-the-art techniques for redzones fail to handle the edge cases we discuss
next. As they may lead to false positives, we disable confusion checks for them.

We find two object allocation schemes that require special handling. One involves a
known limitation of redzones with arrays: in these cases, redzones cannot be inserted
around their individual elements, unless one modifies the type definition. With a
coccinelle script, we identify in the code base all the types that take part in array
allocations and disable the validation of container_of instances using them as a child
type. For future work, we are considering the addition of machinery to test all possible
array cells when their number is known statically, whereas for dynamic sizes the recent
proposal of bounded flexible C arrays [31] may be of help.

The second scheme involves the allocation of multiple, differently typed structures
(e.g., kalloc(sizeof(A) + sizeof(B), ...)) followed by pointer extraction for each

2Available at https://github.com/Jakob-Koschel/kernel-tools.

https://github.com/Jakob-Koschel/kernel-tools

78 CHAPTER 4. UNCONTAINED

structure. This coding choice brings performance benefits, as it optimizes the use of
the allocator, but complicates memory sanitization schemes. To avoid false positives
for objects involved in such allocations, we devise a coccinelle script to disable the
involved types from validation. However, for a few recurring cases and if code semantics
allowed doing so safely, we manually split allocations and enable container confusion
detection for types like io_buffer used in io_uring code or net_device private data
in networking code.

Overall, for the two schemes, we disable validation for 13, 926 out of 56, 468 down-
casts. We also highlight that the shadow memory and redzones of KASAN operate only
after the early boot phase of the kernel. Heap objects allocated by the boot memory
allocator memblock have no redzones: we identify and skip them using address range
checks at runtime.

While we test and evaluate our sanitizer around the Linux kernel, the adaptations
needed for other subjects would be limited. Redzone management for userland software
is available in LLVM with AddressSanitizer [154], while kernels like FreeBSD and XNU
have their own KASAN implementation.

4.5.3 Evaluation

We run our sanitizer on the Linux kernel v.5.17 (commit c269497d248e). For the fuzzing
experiments, we use syzkaller (commit 9e8eaa75a18a) and build two images com-
piled, respectively, with the default kernel configuration and the one in use to Google’s
syzbot [51], as it enables additional features. The choice is an attempt to slightly balance
the exploration of code between pervasiveness and breadth.

To stress specific/additional components, we also run typical userland workloads
such as installing programs with the aptitude package manager, executing binutils
utilities, code for SGX enclaves, and the Linux Test Project [104].

As experimental setup, we ran syzkaller for one week on two Ubuntu 22.04.1 (Linux
kernel v.5.15) host machines with 16 cores @2.3GHz (AMD EPYC 7643), using a total of
16 QEMU-KVM virtual machines with 4GB RAM and even distribution of the default
and the syzbot-configured builds.

Discovered Cases of Container Confusion

Our fuzzing campaign revealed 37 cases of container confusion. After manual analysis
of the crash sites, we identified 11 unique bugs and 10 anti-patterns (see below). The
remaining 16 are false positives deriving frommissing redzones inmixed-type allocations
that our coccinelle scripts miss (Section 4.5.2). Adding them to our filtering logic is
a one-time effort that would prevent such false positives from occurring in future
campaigns.

We consider anti-patterns type confusion cases where the use of a confused pointer
is a “controlled” case of undefined behavior as the code does not incur a corruption
only thanks to implicit assumptions on program semantics (which may silently change
over time) and/or compiler behavior. Such anti-patterns might silently turn into bugs
in future releases.

The 11 bugs affect the following kernel subsystems: drivers/net, net/{ipv4&6,
sctp}, fs/f2fs, and sgx. We disclosed and proposed patches to the maintainers for all
the bugs: at the time of writing, all patches have been or are being merged. We present
five of these bugs in Section 4.6. The 11 bugs had not emerged, e.g., in the continuous

4.6. RETROSPECTIVE ANALYSIS AND BUG PATTERNS

un
co
nt
ai
ne

d

79

fuzzing efforts from Google’s syzbot, which uses state-of-the-art sanitizers like KASAN
and tests several configurations.

The 10 anti-patterns relate to places where a container confusion occurred but
developers manage it explicitly later. As examples, we briefly describe two of the
anti-patterns that our sanitizer found.

The first involves the function crypto_alg_lookup() of the Kernel Crypto API. The
function can return a pointer to a synchronous-hash structure (shash_alg) confused
as if it were an asynchronous (ahash_alg) one. However, all the users of the function
eventually check the requested instance type through additional fields to differentiate
them and correctly cast the confused pointer before use.

The second involves the inet_lookup_established() networking function, which
can return a pointer to a struct inet_timewait_sock confused as a struct sock. Sim-
ilar to above, all the users of the function check the socket state to differentiate them.

Runtime Overhead

We conduct two sets of experiments tomeasure the overhead introduced by the sanitizer
component of uncontained: the bare sanitization costs with LMbench [119] and their
impact on the end-to-end throughput when fuzzing with syzkaller.

We run the LMbench programs on a single QEMU-KVM instance with 8 GB of RAM
executing on an i7-10700K CPU host machine with minimal background activity and
identical software to the previous experiments. We repeat each experiment 10 times,
taking themedian value for every program. Our sanitizer introduces a geomean overhead
of 74%. As a reference, KASAN introduces a 126% overhead (with 33% coming from
redzone management, which we use too). We list figures for the individual programs in
Section 4.B.

For fuzzing throughput, we measure howmany test cases one syzkaller VM executes
within the first hour of fuzzing. We take the median value of 10 experiment repetitions,
starting from an empty fuzzing corpus. The syzkaller baseline with no sanitizers enabled
executed 80348 test cases, whereas with uncontained 69734 with a net reduction of
the fuzzing throughput of around 13%. As a reference, KASAN introduced a 55% net
reduction of the throughput. We find our approach to induce an overhead3 acceptable
for fuzzing.

4.6 Retrospective Analysis and Bug Patterns
The cases of container confusion that our sanitizer detected when fuzzing revealed
several lingering bugs and anti-patterns in the Linux kernel. Their analysis brought out
two key reflections we present next, as they motivate and form the basis of the research
from the remainder of the chapter.

Unexplored Code. In spite of the widespread use of containers, the issues found were
located in a fairly limited, yet relevant, subset of the Linux kernel code base. Prolonging
the fuzzing campaign by a few days did not uncover new bugs.

We find this to stem directly from the inherent coverage problem of dynamic tools.
Much code may be locked under specific kernel states [63, 201], require emulation for

3One opportunity to reduce it would be to follow [156] by disabling stack walking upon memory
(de)allocation events, as it helps only for crash debugging/deduplication but is expensively frequent.
Each crash may be analyzed offline by re-running the test case in an unmodified KASAN.

80 CHAPTER 4. UNCONTAINED

crossing the hardware/software barrier with device drivers [136], or need complex
input generation logic (e.g., with protocols). Special-purpose fuzzers [35, 132, 136, 149,
156, 160, 161, 167], which one may run naturally on our instrumented kernels, currently
exist only for a fraction of such components.

This led to us eventually to investigate container confusion detection through static
approaches that could cover the whole code base, even if with a diminished precision/re-
call.

Dynamics of Bugs. We noted a few distinctive traits in the nature of the bugs spotted
with the experiments of Section 4.5.3. Thesemaymake some bugs harder to reason about,
especially for static analysis. However, as we show in Section 4.7, domain knowledge
(e.g., on list operations) can come to the rescue.

For example, one trait relates to whether, for a container_of instance that sees
objects incoming from a given program path, confusion occurs on all or only a few of
them (e.g., only on a list’s owning element). Another relates to whether, on the path(s)
from the container allocation to its confused use, pointer upcasts and downcasts involve
indirection (e.g., the address is stored in a field of another object).

In the following, we present five bug patterns that encompass all the issues of
Section 4.5.3 and represent general forms of container confusion. These patterns are
distinct, albeit not exhaustive in terms of possible types of confusion (other than those
we encountered). Most importantly, the descriptions we give are actionable for program
analysis (Section 4.7).

Pattern 1 : Statically Incompatible Containers. This pattern describes the most
generic and shallow container confusion that we identified. It involves using a type
(or member field) that is always incorrect when downcasting object pointers incoming
from a certain program path.

Listing 19 reports an exemplary bug found when fuzzing in the sock_init_data()
function while manipulating a socket struct. The function assumes that its struct
socket* sock parameter is embedded in a socket_alloc container. This assumption
is correct for most sockets in the kernel, except for TUN and TAP ones. Hence, when a
program path from function tun_chr_open() reaches the buggy function, its argument
is embedded in a tun_file container instead.

When the function assigns the socket with the owner’s UID, the confused bytes
are always set to zero in the kernel configuration that we tested. Any TUN or TAP
socket thus appears as owned by the root user, nullifying user-based firewall/routing
rules possibly in place. The severity of the bug may be even amplified by the effects of
structure randomization (Section 4.3.1). At the time of disclosure, the bug had been
present in the Linux kernel for more than 6 years.

Pattern 2 : Empty-list Confusion. As we anticipated in Section 4.2.1, a confusion can
originate when issuing a container_of operation on the owning structure of a circular
list. When such a list is empty, the owning structure sees the next and prev fields
of its embedded list_head point to itself. Accessing list members in a list_entry4,
list_first_entry, or list_last_entry operation causes container confusion.

Listing 20 reports an exemplary bug found in the kernel networking stack when
fuzzing. Since the inet_diag_msg_sctpasoc_fill() function assumes that the asoc- ⌋
>base.bind_addr.address_list list is populated without checking for it, laddr points
to a container-confused object when the list_entry() operates on an empty list. The

4.6. RETROSPECTIVE ANALYSIS AND BUG PATTERNS

un
co
nt
ai
ne

d

81

1 static int tun_chr_open(struct inode *inode, struct file *file) {
2 struct tun_file *tfile;
3 ...
4 sock_init_data(&tfile->socket, &tfile->sk);
5 ...
6 }
7

8 struct inode *SOCK_INODE(struct socket *socket) {
9 return &container_of(socket,
10 struct socket_alloc, socket)->vfs_inode;
11 }
12

13 void sock_init_data(struct socket *sock, struct sock *sk) {
14 if (sock) {
15 ...
16 sk->sk_uid = SOCK_INODE(sock)->i_uid;
17 } else {
18 ...
19 }
20 ...
21 }

Listing 19: The first argument to sock_init_data() is contained within tfile when called
from tun_chr_open(). SOCK_INODE() incorrectly assumes sock to be contained within a
socket_alloc struct.

code at line 11 copies some of its fields into memory provided to user space. As these
confused fields contain kernel heap pointers, this results in a KASLR leak that determin-
istically breaks the address randomization of the kernel, which often represents one of
the first steps in kernel exploitation [59, 71, 81, 101]. At the time of disclosure, the bug
had been present in the Linux kernel for almost 7 years.

Pattern 3 : Mismatch on Data Structure Operators. Insertion, deletion, selection,
and other operations on objects taking part in container-based data structures (e.g., lists,
trees) should see the use of consistent types and member fields.

Listing 21 shows an exemplary bug found when fuzzing involving the sock structure.
A struct sock can be inserted into multiple lists and therefore embeds multiple list
structures. Among others, it contains two single-linked lists using the fields sk_bind_ ⌋
node and sk_node. With a list, its elements must always be accessed via the field used
to insert them into it. The socket code manages the &tb->owners list, which holds
sockets using their sk_bind_node member. But __inet_hash_connect() accesses the
same objects using the sk_node member. In this case, the two members are located at
different offsets, thus the downcast on the access adjusts the pointer incorrectly, causing
container confusion.

As a result, the condition at line 17, which controls a fast path for the function, never
evaluates to true. At the time of disclosure, the bug had been present in the Linux kernel
for 18+ years (i.e., the extent of its git history).

4We recall that list_entry is simply an alias for container_of.

82 CHAPTER 4. UNCONTAINED

1 static void inet_diag_msg_sctpasoc_fill(
2 struct inet_diag_msg *r,
3 struct sock *sk,
4 struct sctp_association *asoc) {
5 union sctp_addr laddr;
6 ...
7 laddr = list_entry(asoc->base.bind_addr.address_list.next,
8 struct sctp_sockaddr_entry, list)->a;
9 ...
10 if (sk->sk_family == AF_INET6) {
11 *(struct in6_addr *)r->id.idiag_src = laddr.v6.sin6_addr;
12 ...
13 }
14 ...
15 }

Listing 20: list_entry() assumes the presence of at least one entry within
asoc->base.bind_addr.address_list, causing a container confusion in
inet_diag_msg_sctpasoc_fill due to the missing check for whether the list is empty.

Pattern 4 : Past-the-end Iterator. Developers often rely on a break-like logic when
searching for an element in a data structure using iterators. Program semantics may
sometimes deceive them into believing that a search will always succeed, so theymay use
an iterator without checking for its validity, which would not hold if the loop completes.

This container confusion characterized our running example (cf. Section 4.3.2).
Listing 22 shows another exemplary bug that we found in SGX code when running an
enclave in our instrumented kernel build using qemu-sgx. As the function processes an
empty &encl_mm->encl->mm_list list, the tmp iterator is never assigned a valid entry,
holding a confused pointer after the loop. At the time of disclosure, the bug had been
present in the Linux kernel for more than 2 years.

Pattern 5 : Containers with Contracts. An object embedded in a data structure may
come with additional metadata (e.g., custom RTTIs [106]) that program semantics uses
as an implicit contract to control what operations can be done on it.

This is the casewith the sysfs subsystemof the kernel, which lets user-space programs
inspect and control several kernel features. Listing 23 shows a container confusion that
we found in an inspection function when fuzzing. Here, the kobject that kobject_ ⌋
init_and_add() registers is not embedded in another structure, but the buggy f2fs_ ⌋
attr_show() function treats it as if embedded in a f2fs_sb_info structure.

This plays out as a “controlled” confusion, as the contract (i.e., the companion object
of type ktype at line 3) carries a pointer, retrieved at line 11, to a function that does
not access the confused sbi supplied at line 12. We classify this as an anti-pattern,
as an imperfect knowledge of program semantics or changes to it would open up the
possibility for bugs.

Bug Counts. With our sanitizer (Section 4.5.3), we discovered 6 mismatches on data
structure operators, 2 cases of empty-list confusion, and 1 case for each of the other
patterns.

4.7. STATIC ANALYZER

un
co
nt
ai
ne

d

83

1 void inet_bind_hash(struct sock *sk,
2 struct inet_bind_bucket *tb,
3 const unsigned short snum) {
4 ...
5 hlist_add_head(&sk->sk_bind_node, &tb->owners);
6 ...
7 }
8

9 int __inet_hash_connect(..., struct sock *sk, ...) {
10 ...
11 struct inet_bind_bucket *tb;
12 ...
13 if (port) {
14 ...
15 tb = inet_csk(sk)->icsk_bind_hash;
16 ...
17 if (hlist_entry((&tb->owners)->first,
18 struct sock, sk_node) == sk &&
19 !sk->sk_bind_node.next) {
20 inet_ehash_nolisten(sk, NULL, NULL);
21 spin_unlock_bh(&head->lock);
22 return 0;
23 }
24 ...
25 }
26 ...
27 }

Listing 21: inet_bind_hash() inserts list elements using the sk_bind_node member,
whereas __inet_hash_connect() accesses them incorrectly using the sk_node member.

4.7 Static Analyzer

This section introduces the static analyzer component of uncontained, which aims to
identify the container confusion patterns presented in the previous section. We illustrate
the design of our static analyses in Section 4.7.1, their implementation in Section 4.7.2,
and the experimental results in Section 4.7.3.

4.7.1 Design
As anticipated in Section 4.6, our static analyzer aims for the code regions that are
not within easy reach of current dynamic testing solutions. We note, though, that
the reflections and bug patterns we presented involve phenomena, like indirection via
memory, that may be expensive to reason about statically. Also, most of the bugs found
involved inter-procedural flows.

For our analysis to scale to a code base as huge as the Linux kernel while maintaining
satisfying accuracy, we make the following design choices. We cast bug pattern search to
a static information flow analysis problem, relying on def-use information to track value

84 CHAPTER 4. UNCONTAINED

1 void sgx_mmu_notifier_release(struct mmu_notifier *mn,
2 struct mm_struct *mm) {
3 struct sgx_encl_mm *encl_mm = ...;
4 struct sgx_encl_mm *tmp = NULL;
5 ...
6 list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
7 if (tmp == encl_mm) {
8 list_del_rcu(&encl_mm->list);
9 break;
10 }
11 }
12 ...
13 if (tmp == encl_mm) {
14 synchronize_srcu(&encl_mm->encl->srcu);
15 mmu_notifier_put(mn);
16 }
17 }

Listing 22: Incorrect use of the list iterator variable tmp after the loop in
sgx_mmu_notifier_release().

propagation. The five bug patterns become rules for an on-demand backward or forward
analysis where container_of instances act as sources or sinks depending on the pattern.
We extend def-use chains through procedure boundaries (as a simplified form of [65])
and model memory as a single, coarse-grained symbolic location for scalability. We use
semantic knowledge of common data structure manipulations (e.g., list iterators) to
model several flows that involve indirection, enabling static reasoning.

We provide descriptions below for how we encode the five bug patterns as rules for
the information flow analysis. Section 4.C contains more rigorous definitions of what
we use as (and do at) sources, sinks, and path-discarding filters.

Pattern 1 . To spot statically incompatible containers, we run a backward analysis
from the pointer supplied to a container_of instance to every operation, if any, that
obtains a pointer to an embedded structure starting from a pointer typed as a container.
If the type (or member field) is incompatible with what container_of is asked for, we
report a confusion.

Static reasoning is limited to instances for which we can infer the container type, i.e.,
cases where the code computes the parent structure pointer flowing into container_of
by referencing the member field of the child structure—e.g., with a &(child.member)
pattern. Our static reasoning gives up instead if the code reads the parent pointer
value directly from memory: in these cases, even complex pointer analyses may be
inconclusive due to aliasing, indirection, and other factors.

Pattern 2 . To spot potential accesses on empty lists, checking only for the use of
dedicated helpers (e.g., list_empty, list_is_head, list_entry_is_head) would be
prone to false positives. In fact, a code may keep track of the list size in a separate
variable and check it before any downcasting; we find this to happen frequently in the
Linux kernel.

4.7. STATIC ANALYZER

un
co
nt
ai
ne

d

85

1 ...
2 ret = kobject_init_and_add(&f2fs_feat,
3 f2fs_feat_ktype,
4 NULL, "features");
5 ...
6 ssize_t f2fs_attr_show(struct kobject *kobj,
7 struct attribute *attr, char *buf) {
8 struct f2fs_sb_info *sbi = container_of(kobj,
9 struct f2fs_sb_info,
10 s_kobj);
11 struct f2fs_attr *a = ...;
12 return a->show ? a->show(a, sbi, buf) : 0;
13 }

Listing 23: Invalid container_of on kobj (originating from &f2fs_feat) in
f2fs_attr_show().

We thus conduct a forward analysis from any occurrence of list_{entry, next,
prev, first, last} to any use of the output pointer. If we encounter no conditional
check guarding a use in the control flow, we report a potential confusion.

When reviewing buggy code, we also noted that some code erroneously compares
the assigned pointer to NULL (whereas, when the list is empty, the result would reference
the owning structure). Therefore, we added an analysis that detects such checks and
deems them as incorrect (unless the code did not explicitly initialize the pointer as such
before list iteration).

Pattern 3 . Object flows between operations involving container-based data structures
(e.g., insertion and retrieval in a list) are in general hard to reason about statically, as they
involve memory contents manipulation. However, we can rely on domain knowledge on
the identity of the operations to detect cases of container confusion from inconsistent
member selection.

We do a forward analysis from any operation on a data structure type to any sub-
sequent operation on the same structure (e.g., from list_add to list_entry). If the
pointers supplied to both can be determined to be the same but the container type or
field is different, we report a potential confusion.

Pattern 4 . To detect when an iterator may have outlived its validity and cause con-
tainer confusion if dereferenced, we analyze the instances of iterator-related macros that
take part in loops. For each of them, we conduct an intra-procedural forward analysis to
see if the code uses it outside the loop. We deem such a use as potentially confused if it
is not guarded by a conditional check (e.g., using a boolean variable set by the loop),
as developers typically insert one to assess whether the loop stopped advancing the
iterator (i.e., before invalidity).

Pattern 5 . Confusion cases on containers with contracts are hard to spot in terms
of code manipulations alone. We find it reasonable to assume that, for a given code
base, the identity of such container types is known. For the Linux kernel, we devise

86 CHAPTER 4. UNCONTAINED

an analysis for kobject containers that one may in principle adapt to other types from
other code bases. The analysis comes with a forward and a backward component.

For each occurrence of the kobject_init_and_add() function, which is designed
to register an object with its contract, we run a backward analysis to identify the con-
tainment relationships of the registered object and collect its ktype contract.

For each contract, we gather what functions of sysfsmay be called on the object by
inspecting its related fields. Then, we run a forward analysis from the kobject argument
in each such function, looking for container_of invocations incompatible with any
valid containment identified by the backward component.

4.7.2 Implementation
We implement the general forward and backward information flow analyses and the
rules for patterns 1 , 2 , 3 , and 5 as a pass for LLVM IR in 1286 lines of C++ code.
Similarly to the dynamic analyzer (Section 4.5.2), we intercept every container_of
occurrence at the source level and expose its source and destination type and object at
the IR level. We run the pass at link time, so we can effectively extend def-use chains
across procedure boundaries. However, in this scenario LLVM would normally merge
type definitions having an identical memory layout: to keep our analyses accurate, we
disabled this behavior by changing ~25 lines of code in the compiler.

The forward analysis starts from an IR value representing a source and follows its
uses. When a use eventually reaches a function call argument, the analysis continues by
seeing the uses of the arguments in the callee, recursively. The analysis also accounts
for uses that concur to the return value of a callee, returning to the caller for continuing
the analysis.

The backward analysis proceeds from a source IR value to its reaching definition(s).
When it meets a function argument, it continues by exploring the code of each possible
caller.

Both analyses stop exploring a path upon reaching a sink, a memory dereferencing
operation (as we modeled memory as a single location), or an instruction already visited
when analyzing a particular source. The rules for the patterns to check specify sources,
sinks, direction of the exploration, and filters (if applicable) to stop a path exploration
early.

Since our analysis visits each instruction at most once for each source location, and
source locations are generally limited in number, we can approximately estimate the
cost of our analysis as linear in the number of LLVM IR instructions.

As an implementation refinement, for pattern 2 we suppress false positives in-
volving container confusion in functions passed as callbacks for list_sort() or seq_ ⌋
operations structures. The reason is that the latter come with additional logic for
emptiness checks before invoking the callbacks.

To ease the analysis of the reported confusion cases, we implement a Visual Studio
Code plugin that recovers and presents to the developer the relevant code locations
involved.

For pattern 4 , when reporting the bug presented in Section 4.3.2, the kernel main-
tainers pointed us to a coccinelle script proposed in 2012 by Julia Lawall on their mailing
list to flag uses of iterators after loops. We assume that it had limited impact because
of the high false positive rates. However, since our analysis for 4 is simple and local,
coccinelle is a great fit for it. We therefore extended the script in ways (mainly, with
detection of checking logic already in place) that significantly reduced its false positive
rate.

4.7. STATIC ANALYZER

un
co
nt
ai
ne

d

87

Description FP AP Bug

1 Statically Incompatible Containers 72 27 3

2 Empty-list Confusion 19 4 20

3 Mismatch on Data Structure Operators 16 8 1

4 Past-the-end Iterator 0 137 56

5 Containers with Contracts 0 3 0

Table 4.1: Reports from the static analyzer categorized as False Positives (FP), Anti-Patterns
(AP), and Bugs for each pattern.

4.7.3 Evaluation
Werun our static analyzer on the same kernel code base studied in Section 4.5.3. Table 4.1
summarizes the findings from a manual analysis of the reported cases of potential
container confusion: we identified 80 bugs, 179 anti-patterns, and 107 false positives.
We disclosed and proposed patches (144 in total with 97 already merged at the time of
writing) for all the bugs as well as for the anti-patterns that can be removed without
intrusive program semantics changes.

For the analysis time, we recall that pattern 2 employs two rules whereas the others
just one (5 included, as its two analyses run in combination). We measure it took an
average of 33.6 seconds for a rule to process all the container downcasts in the code that
meet the definition of source for it.

We classify a report as a bugwhen the container confusion is unintended, which can
lead to errors and possibly security-sensitive behavior. We consider as anti-pattern (AP)
those cases where confusion can happen but program semantics prevents any use of
the pointer. We consider as false positive (FP) those cases where pointers cannot have a
confused value but the over-approximation of static analysis fails to see it.

Pattern 1 . Reports about Statically Incompatible Containers cases include 3 bugs, 27
anti-patterns, and 72 false positives. This pattern is prone to false positives (67.3% of
the total among all five patterns) due to imprecision of the static analysis: we found
most of them to occur when some backward control flows are unfeasible as they are
guarded by checks on fields carrying explicit type tags5. A similar semantics is also
behind most of the anti-patterns we found. As for the bugs, static checking identifies
the TUN bug from fuzzing that we discussed when presenting the pattern in Section 4.6,
but also a similar variant for TAP socket interfaces.

Pattern 2 . Reports about Empty-list Confusion cases are the second most numerous:
we found 20 bugs (5 from missing checks and 15 from checks against NULL) and 2
anti-patterns.

For example, we found a container confusion in code that incorrectly checks HID
device drivers reports, affecting all the 9 kernel drivers that rely on it. The bug had
been present in the kernel for almost 9 years. In other HID driver code, we found 2
use-after-free and 1 NULL pointer dereference bugs. We also found a bug in the RT
scheduler for an incorrect check on the task queue that had been present for 15 years.

5It could be a one-time effort to add such domain knowledge to the checker and stop the analysis
of the current path upon recognizing such explicit checks over fields. However, we found 72 false
positives here to still be a reasonable number for the manual analysis we conducted.

88 CHAPTER 4. UNCONTAINED

The 19 false positives involve lists that cannot be empty due to program semantics,
missing effects of indirect calls (like the sort comparators that we model already), and
implementation limitations for non-nearby conditional checks.

Pattern 3 . We found a notable bug by looking for patternMismatch on Data Structure
Operators cases. The bug affects the function rds_rm_zerocopy_callback(), which
writes a cookie provided by user space to memory. The function issues a list_entry()
directly on the list_head instead of using list_first_entry(). The code passes the
container-confused pointer to a function that finalizes the write.

The function uses confused values to write data to an offset where both are under
user-space control, offering a controlled out-of-bounds (OOB) write primitive. Due
to the container confusion, also an overlapping lock structure gets corrupted in the
process, de-synchronizing it and potentially causing a use after free. The bug had been
present in the kernel for 5 years. As the OOB write does not overlap with redzones,
ongoing continuous fuzzing efforts could not detect it.

Anti-patterns mainly originate from iterating a list with an incorrect type, sharing a
few initial member fields with the intended type. False positives come from implemen-
tation limitations with complex cases of GEP instructions in LLVM IR and unfeasible
control flows from switch-case constructs.

Pattern 4 . Reports about Past-the-end Iterator are the most numerous in our results:
this is quite expected, being list iteration popular in the kernel. We identify 56 bugs and
137 anti-patterns where the code may use a list iterator without checking whether it
surpassed the end of the data structure.

The most immediate effect of our reporting and patching activity was upgrading the
C standard for the Linux kernel to C11 [32]: this makes it possible to declare iterators
valid only within loops, forcing developers to use (valid) retrieved values in a safer way.
Shortly after, Linus Torvalds and other maintainers followed up with a proposal under
adoption for a safer design of list iterators [34] that prevents anti-patterns of this kind
completely.

Pattern 5 We conclude by briefly mentioning that our reports from searching for
Containers with Contracts cases uncovered two anti-patterns involving kobject container
confusion in addition to the one discovered by dynamic analysis.

4.8 Discussion

Wefind that the dynamic and static components of uncontained operate synergetically
to expose typically different instances of bugs over large code bases such as the Linux
kernel.

Thanks to precise runtime information, the sanitizer component offers high accuracy
by incurring only a few false positives in our tests.

The wealth of information also allows it to detect bugs that are out of reach of
the static analyzer due to the latter’s inherent under-approximation (e.g., for cases of
memory indirections that we cannot recover via domain knowledge). This can be seen
in the limited overlap in the bugs found: only 2 of the 11 bugs found dynamically occur
in the reports of the static analyzer.

4.9. RELATED WORK

un
co
nt
ai
ne

d

89

On the other hand, the static analyzer succeeds in its intended goals, revealing a large
number of bugs (80) originating often in kernel areas that the dynamic experiments
did not stress sufficiently or at all—and are also fundamentally difficult to cover due to
configuration and hardware entropy. These include virtual drivers, ptrace facilities, the
RT scheduler, and the kernel components of NFS and KVM, among others. Being a static
analysis, the main shortcoming of the approach when it comes to analyzing reports is
the lack of actionable test cases to reach the involved code. While this is an inherently
hard problem for any static analysis, the patterns that we propose are quite intuitive,
greatly helping manual analysis.

The majority of false positives come from pattern 1 , primarily because the static
analysis is currently unable to recognize explicit type checks on structure fields that
act as runtime type information and prevent container confusion bugs (Section 4.7.3).
Therefore, violations of pattern 1 can be regarded with lower confidence compared to
the other patterns.

False negatives in the static analysis may be caused by incomplete control-flow
information (e.g., indirect calls) and by inaccuracies in our modeling of program state.
For example, precise modeling of memory may be an area worth examining to improve
the reach of the static analyzer. We opted not to use pointer analyses as accurate ones are
expensive on large programs [165] and features desirable in this context (e.g., flow- and
context-sensitivity) would increase their costs considerably. Moreover, they would be
unaware of the many indirect control transfers to functions caused by userland activities.
We leave this investigation to future work.

Similarly, it would be interesting to explore directed fuzzing [14] and/or fuzzers
specialized for certain kernel areas (Section 4.6) to reach functions/regions where static
analyses report potential container confusion cases. Doing so may enable both their
in-depth exploration and input generation for some reports.

The security impact of type confusion bugs depends on the memory layout of the
objects involved. In an exploitation scenario, an attacker would leverage a controlled
type confusion to overlap and corrupt interesting fields. On the other hand, the type
confusion bugs found by our approach have no control over which types overlap. This
may influence the immediate exploitability of the bugs we found and require more
effort to turn a type confusion into memory corruption. However, 8 of our bugs were
considered security-relevant for their exploitability and got assigned 6 CVEs (3 bugs
got merged into the same CVE, as listed in Section 4.A). As a concrete illustration of
security impact, we have also demonstrated a controllable out-of-bounds write on the
heap for one of the CVEs reported.

4.9 Related Work

This section covers literature on type confusion, sanitization, and static analysis that
the research in this chapter relates to.

Type Confusion Detection. Most existing type confusion detectors are limited to C++.
UBSan [114], for instance, replaces static casts with dynamic casts in C++ to expose
bugs. CaVeR [106], TypeSan [62], HexType [82], and Bitype [133] are specialized to
find type confusion for C++ classes by managing runtime type metadata and performing
checks on cast operations. CASTSan [123] efficiently detects type confusion leveraging
C++ virtual tables, but is limited to polymorphic classes only. While all other existing

90 CHAPTER 4. UNCONTAINED

approaches rely on dynamic analysis, TCD [205] uses a field-, context- and flow sensitive
pointer analysis to detect type-confused C++ code.

libcrunch [88] and EffectiveSan [39] support C programs. However, both approaches
rely on intercepting object allocations and binding them with their top-level allocation
type. In practice, this would be hard, if not impossible, to collect in projects with the
complexity of a kernel. For this reason, the typed allocator mitigation in XNU resorted
to manual annotations in allocations [6]. Our approach overcomes the need of both
allocation-time type inference and manual annotations.

Speculative Type Confusion. Previous work has explored speculative type confusion
while dealing with objects of multiple types. Confusion in the speculative domain
fundamentally differ from non-speculative one for observability and/or explainability.
Kasper [83] scans the Linux kernel for arbitrary speculative gadgets. It shows how the
current list iterator implementation is subject to speculative container confusion when
dealingwith the list heads if the terminating condition ismispredicted. Kirzner et al. [93]
focus on speculative type confusion in the Linux kernel. The paper highlights possible
type confusion originating from eBPF code, compiler-introduced vulnerabilities, and
polymorphic types. BHI [8] leverages a speculative type confusion in eBPF code in their
exploit. FPVI [141] and Spook.js [2] exploit speculative type confusion in JavaScript
engines.

Other Sanitizers. Similarly to ASan [154], several sanitizers rely on redzones: Pu-
rify [67], Memcheck [155], Dr. Memory [20] and LPC [66] leverage them to detect
memory corruptions in the form of spatial and temporal safety violations.

MSan [164] targets reads from uninitialized memory using a shadow map mecha-
nism. Other sanitizers, such as Undangle [21], FreeSentry [196], DangNull [105], and
DangSan [179] detect dangling pointers that cause use-after-free errors.

For boundary identification, other techniques encode tracking metadata within
pointers, as with low-fat pointers [40, 103] and delta pointers [102]. For example, our
approach could replace redzones with low-fat pointers on supported systems.

Static Analyzers. We conclude by mentioning a few popular static analysis tools for
the Linux kernel.

Coccinelle [130] is pervasively used as a program matching and transformation tool.
In addition to its use for refactoring and code hardening, it also has provisions to find
intra-procedural bugs. Sparse [19] uses Linux kernel-specific annotations to perform
few specialized checks. Smatch [25] followed in its footsteps to build a generic static
analysis framework for several kernel bug types; it can only conduct intra-procedural
dataflow analyses.

4.10 Conclusion

We presented a sanitization scheme for container confusion designed as a compiler-
based runtime checker. For demonstration, we implemented the sanitizer for the Linux
kernel, finding 11 bugs, which were undetected by previous work. Those bugs have
often existed in the kernel for several years. Based on our results, we identified common
bug patterns and used those categories to build a tailored static analyzer to discover bugs
in code often unreachable by dynamic analysis. With our static analyzer, we unveiled

4.A. ASSIGNED CVES

un
co
nt
ai
ne

d

91

CVE Description

CVE-2023-1073
Type confusion in hid_validate_values(),
Type confusion in bigben_probe(),
NULL pointer dereference in betopff_init()

CVE-2023-1074 KASLR leak in inet_diag_msg_sctpasoc_fill()
CVE-2023-1075 Type confusion in tls_is_tx_ready()
CVE-2023-1076 Incorrect UID assigned to tun/tap sockets
CVE-2023-1077 Type confusion in pick_next_rt_entity()
CVE-2023-1078 Heap OOB write in rds_rm_zerocopy_callback()

Table 4.2: CVEs assigned to the reported type confusion bugs.

78 additional, previously undiscovered bugs. We conclude that bad downcasting is not
only problematic in object-oriented programming languages but also occurs in large C
projects, with serious security impact.

We have disclosed and proposed possible fixes for all found bugs and relevant anti-
patterns to the Linux kernel mailing list, with a total of 149 patches and 102 already
merged. Some of the disclosed issues have prompted significant changes to core kernel
design patterns, with fixes even requiring the kernel to transition to the modern C11
standard.

Appendix 4.A Assigned CVEs
Table 4.2 presents the list of CVE identifiers assigned to the type confusion bugs we
reported.

Appendix 4.B LMbench Evaluation
Table 4.3 presents detailed results for the LMbench tests mentioned in Section 4.5.3.

Appendix 4.C Static Analysis Rules
Table 4.4 shows the definitions for our static information flow analyses. For each
pattern, we report the source where the dataflow starts from, the sinks that the dataflow
searches, the path filters that inhibit the report (i.e., stop path exploration) when met,
and additional checks that the analysis performs at a sink before reporting a potential
container confusion.

92 CHAPTER 4. UNCONTAINED

B
en
ch
m
ark

baselin
e

u
n
c
o
n
ta

in
ed

K
A
SA

N
u
n
c
o
n
ta

in
ed

overh
ead

K
A
SA

N
overh

ead

Sim
ple

syscall
1.05

µ
s

1.21
µ
s

1.93
µ
s

16
%

84
%

Sim
ple

read
1.28

µ
s

1.64
µ
s

2.32
µ
s

28
%

82
%

Sim
ple

w
rite

1.02
µ
s

1.24
µ
s

1.83
µ
s

21
%

79
%

Sim
ple

stat
8.34

µ
s

72.10
µ
s

37.59
µ
s

764
%

351
%

Sim
ple

fstat
5.01

µ
s

59.24
µ
s

21.24
µ
s

1083
%

325
%

Sim
ple

op
en
/close

18.14
µ
s

86.89
µ
s

66.97
µ
s

379
%

269
%

Select
on

10
fd
’s

2.05
µ
s

2.41
µ
s

3.68
µ
s

18
%

80
%

Select
on

100
fd
’s

6.29
µ
s

6.79
µ
s

9.07
µ
s

08
%

44
%

Select
on

250
fd
’s

13.38
µ
s

14.13
µ
s

18.06
µ
s

06
%

35
%

Select
on

500
fd
’s

25.79
µ
s

29.10
µ
s

38.73
µ
s

13
%

50
%

Select
on

10
tcp

fd
’s

2.19
µ
s

2.55
µ
s

3.95
µ
s

17
%

81
%

Select
on

100
tcp

fd
’s

11.85
µ
s

12.74
µ
s

19.37
µ
s

07
%

63
%

Select
on

250
tcp

fd
’s

28.23
µ
s

29.83
µ
s

45.37
µ
s

06
%

61
%

Select
on

500
tcp

fd
’s

56.05
µ
s

61.16
µ
s

95.02
µ
s

09
%

70
%

Sign
alh

an
d
ler

in
stallation

1.32
µ
s

1.57
µ
s

2.46
µ
s

19
%

87
%

Sign
alh

an
d
ler

overh
ead

4.75
µ
s

7.65
µ
s

14.51
µ
s

61
%

206
%

P
ip
e
laten

cy
16.58

µ
s

20.99
µ
s

39.54
µ
s

27
%

139
%

A
F
_U

N
IX

sock
stream

laten
cy

22.71
µ
s

38.03
µ
s

74.32
µ
s

67
%

226
%

P
rocess

fork+exit
627.32

µ
s

1076.48
µ
s

1869.73
µ
s

72
%

197
%

P
rocess

fork+execve
718.54

µ
s

1210.79
µ
s

2099.22
µ
s

69
%

191
%

P
rocess

fork+/bin
/sh

-c
2530.20

µ
s

5370.25
µ
s

6756.88
µ
s

112
%

167
%

U
D
P
laten

cy
usin

g
localh

ost
44.56

µ
s

135.34
µ
s

106.43
µ
s

204
%

139
%

T
C
P
laten

cy
usin

g
localh

ost
56.33

µ
s

113.18
µ
s

141.90
µ
s

101
%

152
%

T
C
P/IP

con
n
ection

cost
to

localh
ost

240.82
µ
s

494.53
µ
s

672.52
µ
s

105
%

179
%

geom
ean

74
%

126
%

Table
4.3:

LM
bench

experim
ents:com

paring
the

native
execution

baseline
againstuncontained

and
KASAN.

4.C. STATIC ANALYSIS RULES

un
co
nt
ai
ne

d

93

B
ug

P
at
te
rn
s

D
ir
ec
ti
on

So
ur
ce

Si
n
k

Fi
lt
er
s

C
h
ec
ks

1
St
at
ic
al
ly
In
co
m
pa
ti
bl
e

C
on

ta
in
er
s

B
co

nt
ai

ne
r_

of
()

in
p
ut

O
ri
gi
n

ob
je
ct

o
f
in
p
u
t

p
oi
n
te
r

M
is
m
at
ch

b
et
w
ee
n

co
nt

ai
ne

r_
of

()
d
es
ti
-

n
at
io
n

ty
p
e
an
d

o
ri
gi
n

ty
p
e

2
E
m
p
ty
-l
is
t
C
o
n
fu
si
o
n

(r
ul
e
1)

F
li

st
_e

nt
ry

()
re
su
lt

A
ny

us
e

C
on

d
it
io
n
al
C
h
ec
ks

2
E
m
p
ty
-l
is
t
C
o
n
fu
si
o
n

(r
ul
e
2)

F
li

st
_e

nt
ry

()
re
su
lt

C
om

p
ar
is
on

w
it
h
N
U
L
L

Fl
ow

s
w
it
h
ex
pl
ic
it
N
U
L
L

va
lu
es

3
M
is
m
at
ch

o
n

D
at
a

St
ru
ct
ur
e
O
p
er
at
or
s

F
A
ny

li
st

op
er
at
io
n

(e
.g
.

li
st

_a
dd

()
o
r

li
st

_e
nt

ry
()
)

A
ny

li
st

op
er
at
io
n

(e
.g
.

li
st

_a
dd

()
o
r

li
st

_e
nt

ry
()
)

M
is
m
at
ch

be
tw

ee
n
m
em

-
be
r
fi
el
d
/t
yp

e
us
ed

4
P
as
t-
th
e-
en
d
It
er
at
or

F
A
ny

it
er
at
o
r

va
ri
ab
le

u
se
d

in
a
lo
op

ov
er

a
li
st
,
e.
g.
,

li
st

_f
or

_e
ac

h
_e

nt
ry

()

A
ny

us
e
af
te
r
th
e
lo
op

C
he
ck
s
on

fo
un
d-
lik
e
va
ri
-

ab
le
s

5
C
o
n
ta
in
er
s
w
it
h
C
o
n
-

tr
ac
ts
(b
ac
kw

ar
d
s
p
ar
t)

B
A
rg
u
m
en
ts

o
f

ko
bj

ec
t_

in
it

_a
nd

_a
dd

()
C
ol
le
ct

co
n
ta
in
in
g
st
ru
c-

tu
re

o
f
th
e

ko
bj

ec
t
an
d

sy
sf

s_
op

s
fu
n
ct
io
n
s

5
C
o
n
ta
in
er
s
w
it
h
C
o
n
-

tr
ac
ts
(f
or
w
ar
d
p
ar
t)

F
ko

bj
ar
gu
m
en
t
o
f
co
l-

le
ct
ed

sy
sf

s_
op

s
fu
n
c-

ti
on

s

co
nt

ai
ne

r_
of

()
M
is
m
at
ch

b
et
w
ee
n

co
l-

le
ct
ed

co
n
ta
in
in
g
st
ru
c-

tu
re

o
f
th
e

ko
bj

ec
t
an
d

co
nt

ai
ne

r_
of

()
de
st
in
a-

ti
on

ty
p
e

Ta
bl
e
4.
4:

De
ta
ils

of
ru
le
sf
or

th
e
pa
tte

rn
sd

efi
ne

d
fo
rs
ta
tic

an
al
ys
is.

Sh
ow

in
g
th
e
di
re
ct
io
n
(B

fo
rb

ac
kw

ar
ds

da
ta
flo

w,
F
fo
rf
or
w
ar
d
da
ta
flo

w
),
so
ur
ce

an
d
sin

k
m
at
ch
ed

,a
nd

ev
en

tu
al
fil
te
rs
an
d/
or

ad
di
tio

na
lc
he

ck
s.

5
em

pl
oy
sa

sin
gl
e
ru
le
in
tw

o
pa
rt
s.

Co
nc
lu
sio

n

5 Conclusion

In this thesis, we uncovered multiple new classes of kernel vulnerabilities across all
the major vulnerability kinds. These new vulnerability classes identify gaps in existing
mitigations and bug finding methodologies for software vulnerabilities, side channels,
and transient execution attacks.

To this day, finding and fixing security vulnerabilities is still a big issue in the kernel.
For that reason, we aimed to address the research question of whether the kernel is
sufficiently protected against new attack vectors and if fuzzing efforts for those classes
of vulnerabilities still need improvement. To highlight areas where security is still
lacking and remains an ongoing issue, we presented (1) a new side-channel attack
against the kernel, (2) an automated scanner for transient execution attack gadgets, and
(3) a new type confusion software bug pattern.

In the following, we outline our contributions for each chapter and possible future
directions.

Combined side-channel attack using the TLB architecture In TagBleed, we demon-
strated that isolating the address space organization of the kernel is not enough to
prevent attackers from breaking randomization in the kernel. In fact, the feature to make
isolating address spaces performant in modern TLBs, address space tagging, breaks the
isolation guarantees. We reverse engineered the TLB architecture to infer the parts of
the virtual address influencing the TLB set indexing. With that knowledge, we comple-
mented our TLB side channel with a second side channel, using the cache activity caused
by a page table walk. Both side channels individually were limited and could not reduce
the randomization entry, however, combining them TagBleed was able to completely
break KASLR in the Linux kernel. In conclusion, the transition to isolated address spaces
will be more costly, due to optimizations causing new unintended information sharing.

Transient execution gadget scanning In Kasper, we presented a scanner for general-
ized transient execution gadgets in the kernel. Existing gadget scanners where either too
focused on detecting specific patterns, only applied to user space or suffered from many
false positives. Kasper abstracts away patterns and instead models the essential steps of
an attack. Additionally, we focused on more than the traditional bounds-check bypass
gadget, extending the scanner to leakage from CPU-internal buffers or port contention.
Kasper finds gadgets that would have remained out of reach for existing techniques and

95

96 CHAPTER 5. CONCLUSION

conclude that current mitigations against transient execution attacks in the kernel are
insufficient.

After publication, we received a lot of appreciation and interest from both academia
and industry. A recent paper by Kogler et al. [97] used a gadget found by Kasper
and combined it with Correlation Power Analysis (CPA). InSpectre Gadget [190] also
explored the attack surface of Spectre gadgets in the kernel, however focused on Spectre
v2 gadgets. Zomer and Sandulescu [204] explored gadget finding specifically for the
Linux kernel with static analysis. Google aims to deploy Address Space Isolation (ASI)
as a defense against a wide range of transient execution attacks, such as Spectre v2 [95],
L1TF [188], Retbleed [191], Inception [174], however, conditional branches exploited
with Spectre v1 [95] remains difficult to mitigate completely without per-gadget mitiga-
tions.

Object-oriented type confusions in C In uncontained, we presented a new saniti-
zation scheme for an overlooked type confusion bug using a compiler-based runtime
checker and a static analysis component. Many large C code bases simulate object-
oriented programming using struct containerization which, however, lacks sufficient
checks against potential type confusions on downcasts. With uncontained, we found
dozens of such bugs, many remained undetected for several years, with serious security
impact. We conclude that bad downcasting is also a problem affecting large C projects
and was previously overlooked by the community. Our work resulted in discussions
about introducing a new list iterator, widely used across the Linux kernel, to eradicate
one of the discovered bug patterns and caused the Linux kernel to transition to the
modern C11 standard since C89 does not yet allow declaring a local variable in the scope
of a loop iteration. In more recent work, type++ [7] demonstrates safe downcasts in
C++ but the problem in C, especially in the kernel where the memory layout of structs
cannot easily change, persists.

5.1 Future directions

We have demonstrated the effectiveness of new vulnerability classes and improved
on finding them in the kernel. There are several opportunities in the discovery and
generalization of such vulnerability classes in future work.

Explore new combination of side channels We demonstrated the possibility to com-
bine two entirely independent side-channel sources to explore a new attack vector in
the kernel. This allows applying side-channels to new targets, turning user-space attacks
into attacks against kernels or hypervisors. However, there are many more combina-
tions of side channels possible to explore. For example, port contention or TLB sets
are often used to improve covert channel signals. The information revealed by those
can also be used as additional input, similar to how we used the TLB set indexing to
break KASLR. Recently, SLAM [68] demonstrated that the TLB can actually be used
to disclose information from the victim, rather than just breaking randomization. We
believe there are many more opportunities to use the TLB architecture to minimize
noise and as a covert channel for various gadget types in the kernel.

Systematic approach to break KASLR kasld [10] combines different techniques to
break KASLR in a single tool and can select a working technique based on the kernel

5.1. FUTURE DIRECTIONS

Co
nc
lu
sio

n

97

version, configuration and given architecture. While, it implements several software-
based and one hardware-based KASLR break, most hardware vulnerabilities breaking
KASLR are not yet implemented. Having a systematic approach to break KASLR would
allow better testing of which combinations of system configuration basically render
KASLR useless in the scenario of a local or even remote attacker.

Systematic approach to transient execution attacks Canella et al. [24] presented a
systematic evaluation and classification of transient execution attacks. Since its publica-
tion, many new attacks were published, pressing the need for an updated classification
and terminology used by the community. More importantly, some recent works don’t
provide source code or are not easily reproducible in the future. For instance, we worked
with a proof of concept for a transient execution attack targeting a specific Ubuntu
kernel version that is no longer easily available in the public repositories. Ideally, we
would have a tool similar to kasld for breaking KASLR to leak sensitive memory by
automatically using a suitable exploit based on the target, e.g., kernel version, hosted
microarchitecture and enabled kernel mitigations. General adoption of such a tool
would incentivize authors to make proof of concepts more general, allowing better
reproducibility and evaluation against previous work.

Regression testing for transient execution attacks As a follow-up to the systematic
approach for transient execution attacks, we are in deep desire of better regression
testing. While a systematic tool would simplify regression testing already, many attacks
are gadget-based and therefore dependent on the specific kernel version and even used
compiler configuration. Currently, mitigations against transient execution attacks are
developed after the proof of concept is sent to the vendors. The mitigations are then
merged in a newer kernel version than the one used for the proof of concept and, even
with back porting, proof of concepts are usually specific to an exact compilation of the
kernel, making testing the mitigation with the original proof of concept quite tedious.
In the past it already happened, that a defense [5] was widely deployed, only to realize
later that its implementation was actually flawed. We should e.g., have test gadgets in
the kernel and the hypervisor that can be enabled for regression testing to ensure the
(often obscure) mitigations put in place by the vendors actually work on all affected
architectures and remain working with future kernel changes.

Improve transient gadget exploitability analysis With Kasper, we demonstrated a
scanner to find potential transient execution gadgets, but analyzing their exploitability
remains future work. We utilized dynamic taint tracking in the kernel to evaluate over
controllability from user space. While being performant, taint tracking only gives limited
information about the control an attacker has over the value. To do better exploitability
analysis, future work can deploy symbolic or concolic execution to gather accurate
constraints of attacker controlled data. At the sink, then the constraints can be solved
to get accurate information about the possible control of an attacker. Concretely, with
Kasper the found gadgets can be reproduced with concolic execution to evaluate which
parts of the kernel can actually be leaked by the given gadget.

Automatic transient gadget mitigation With the additional information gained from
exploitability analysis, an attacker can automate further which gadgets are exploitable,
but also defensive efforts can more effectively deploy (expensive) mitigations for ex-
ploitable gadgets. Previous work [126] has improved performance over the conservative

98 CHAPTER 5. CONCLUSION

mitigation of all branches, by protecting branches from gadgets in user space. We be-
lieve such effort can be further improved by applying them to crucial targets, like the
kernel, and detecting specific gadget patterns to apply faster mitigation types. Cur-
rently, automated mitigations insert the expensive LFENCE on the branch instruction,
but for example with better detecting of a bounds-check-bypass the more performant
array_index_nospec macro can be deployed in the kernel.

A general purpose gadget fuzzer Kasper already combines searching for gadgets of
various transient execution attacks, such as Spectre v1, RIDL, LVI and SMoTherSpectre.
However, the framework can further be improved and expanded with other speculation
types and disclosure channels. Additional speculation types could be Straight Line
Speculation (STL), Branch Target Buffer (BTB) speculation for indirect branches and
Return Stack Buffer (RSB) speculation for returns. For disclosure channels, the already
mentioned translation-based covert channel using LAM features [68] together with the
TLB architecture would be a great addition to Kasper making it an all-purpose gadget
scanner. Gadget scanners for different transient execution attacks will often suffer from
the same challenges to be answered; e.g., how controllable is the gadget or how to reach
the gadget’s code path in the target. By providing a generic approach that implements
the fuzzing environment, dynamic taint analysis and concolic execution to extract the
necessary constraints, the researcher instead can focus on extending the framework
with the new attack primitive.

More generic type confusion scanning in C uncontained exposed new specific
type confusion bug patterns in C. We focused on specific patterns since generic type
confusion detection in C is extremely difficult. Often integers and different pointer
types are used interchangeably making detection of invalid casts difficult without false
positives. Future work however can generalize different classes of type confusions,
similarly how uncontained focused on containerization bugs.

Shrink the type confusion surface in C Type confusion cannot be solved in C since
the language does not forbid invalid casting and simply defines it as undefined behavior.
Individual code bases can however employ policies against specific bug types to effec-
tively eradicate them. This often requires extensive rewrites and is non-trivial to retrofit
into a memory unsafe language. One such example currently adopted by some C++ code
bases, are SafeBuffers [29] used to harden C++ code against buffer overflows. Similarly,
Apple is deploying a hardened allocator in their XNU kernel, called kalloc_type [6]. It
isolates allocations of a different type to e.g., render use-after-free attacks ineffective
but in order to do so it requires type annotated allocations. Such type annotation would
be extremely useful to protect against type confusions by knowing that memory in a
specific cache is of a specific type, or by maintaining a shadow map with RTTI informa-
tion to perform necessary type checks when casting. We believe in the future the Linux
kernel will also adopt such typed allocation to deploy better mitigations against type
confusions.

Co
nt
rib

ut
io
ns

6 Contributions to papers

TagBleed: Breaking KASLR on the Isolated Kernel Address Space using Tagged TLBs.
Koschel, J.: Conceptualization, Methodology, Software, Validation, Investigation,
Writing - Original Draft, Writing - Review & Editing, Visualization. Giuffrida, C.:
Methodology, Supervision, Writing - Original Draft, Writing - Review & Editing. Bos,
H.: Methodology, Supervision, Writing - Original Draft, Writing - Review & Editing.
Razavi, K.: Methodology, Supervision, Writing - Original Draft, Writing - Review &
Editing.

Kasper: Scanning for Generalized Transient Execution Gadgets in the Linux Kernel.
Koschel, J.: Conceptualization, Methodology, Software, Validation, Investigation, Writ-
ing - Original Draft, Writing - Review & Editing. Johannesmeyer, B.: Conceptualization,
Methodology, Software, Validation, Investigation, Writing - Original Draft, Writing
- Review & Editing, Visualization. Razavi, K.: Methodology, Supervision, Writing -
Original Draft. Bos, H.: Methodology, Supervision, Writing - Original Draft, Writing -
Review & Editing. Giuffrida, C.: Methodology, Supervision, Writing - Original Draft,
Writing - Review & Editing.

uncontained: Uncovering Container Confusion in the Linux Kernel.
Koschel, J.: Conceptualization, Methodology, Software, Validation, Investigation, Writ-
ing - Original Draft, Writing - Review & Editing, Visualization. Borrello, P.: Concep-
tualization, Methodology, Software, Validation, Investigation, Writing - Original Draft,
Writing - Review & Editing. D’Elia, D.: Writing - Original Draft, Writing - Review &
Editing. Bos, H.: Supervision, Writing - Original Draft, Writing - Review & Editing,
Methodology. Giuffrida, C.: Supervision, Writing - Original Draft, Writing - Review &
Editing, Methodology.

99

References

[1] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache attacks on AES
(short paper). In ICICS, 2006.

[2] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel
Genkin, Eyal Ronen, and Yuval Yarom. Spook.js: attacking Chrome
strict site isolation via speculative execution. In S&P, 2022.

[3] Hussain AlJahdali, Abdulaziz Albatli, Peter Garraghan, Paul Townend,
Lydia Lau, and Jie Xu. Multi-tenancy in cloud computing. In SOSE, 2014.

[4] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and
Yuval Yarom. Amplifying side channels through performance degrada-
tion. In ACSAC, 2016.

[5] AMD. LFENCE/JMP Mitigation Update for CVE-2017-5715. https://
www.amd.com/en/resources/product-security/bulletin/amd-sb-
1036.html.

[6] Apple Security Research. Towards the next generation of XNUmemory
safety: kalloc_type. https://security.apple.com/blog/towards-
the-next-generation-of-xnu-memory-safety/, 2022.

[7] Nicolas Badoux, Flavio Toffalini, Yuseok Jeon, and Mathias Payer.
Type++: prohibiting type confusion with inline type information. In
NDSS, 2025.

[8] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cris-
tiano Giuffrida. Branch history injection: on the effectiveness of hard-
ware mitigations against cross-privilege Spectre-v2 attacks. In USENIX
Security, 2022.

[9] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross.
CAIN: silently breaking ASLR in the cloud. InWOOT, 2015.

[10] bcoles. Kernel Address Space Layout Derandomization (KASLD).
https://github.com/bcoles/kasld.

[11] Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M Frans
Kaashoek, and Nickolai Zeldovich. Efficiently mitigating transient
execution attacks using the unmapped speculation contract. In OSDI,
pages 1139–1154, 2020.

101

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1036.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1036.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1036.html
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://github.com/bcoles/kasld

102 REFERENCES

[12] Daniel J. Bernstein. Cache-timing attacks on AES. In 2005.

[13] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: exploiting speculative execution through port con-
tention. In CCS, 2019.

[14] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roy-
choudhury. Directed greybox fuzzing. In CCS, 2017.

[15] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In CHES, 2006.

[16] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Dedup Est Machina: memory deduplication as an advanced exploitation
vector. In S&P, 2016.

[17] Benjamin A. Braun, Suman Jana, and Dan Boneh. Robust and effi-
cient elimination of cache and timing side channels. arXiv preprint
arXiv:1506.00189, 2015.

[18] Niel Brown. Smatch: pluggable static analysis for C. https://lwn.net/
Articles/691882/.

[19] Niel Brown. Sparse: a look under the hood. https : / / lwn . net /
Articles/689907/, 2016.

[20] Derek Bruening and Qin Zhao. Practical memory checking with Dr.
Memory. In CGO, 2011.

[21] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: early detection of dangling pointers in use-after-free and
double-free vulnerabilities. In ISSTA, 2012.

[22] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp,MarinaMinkin, DanielMoghimi, Frank Piessens,Michael Schwarz,
Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking Data on
Meltdown-Resistant CPUs. In CCS, 2019.

[23] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: break it, fix it, repeat. InASIACCS,
2020.

[24] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and
Daniel Gruss. A systematic evaluation of transient execution attacks
and defenses. In USENIX Security, 2019.

[25] Dan Carpenter. Smatch check for Spectre stuff. https://lwn.net/
Articles/752409, 2018.

[26] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled
Search. In S&P, 2018.

[27] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. KOOBE: To-
wards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write
Vulnerabilities. In USENIX Security, 2020.

https://lwn.net/Articles/691882/
https://lwn.net/Articles/691882/
https://lwn.net/Articles/689907/
https://lwn.net/Articles/689907/
https://lwn.net/Articles/752409
https://lwn.net/Articles/752409

REFERENCES 103

[28] Yueqi Chen and Xinyu Xing. SLAKE: Facilitating Slab Manipulation for
Exploiting Vulnerabilities in the Linux Kernel. In CCS, 2019.

[29] Clang. C++ Safe Buffers. https : / / clang . llvm . org / docs /
SafeBuffers.html.

[30] Nick Clifton. SPECTRE Variant 1 scanning tool. https : / / access .
redhat.com/blogs/766093/posts/3510331, 2018.

[31] Kees Cook. Bounded Flexible Arrays in C. https://people.kernel.
org/kees/bounded-flexible-arrays-in-c, 2023.

[32] Jonathan Corbet. Moving the kernel to modern C. https://lwn.net/
Articles/885941/, 2022.

[33] Jonathan Corbet. The current state of kernel page-table isolation. https:
//lwn.net/Articles/741878, 2017.

[34] Jonathan Corbet. Toward a better list iterator for the kernel. https:
//lwn.net/Articles/887097/, 2022.

[35] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
ShuangHao, ChristopherKruegel, andGiovanniVigna. Difuze: interface
aware fuzzing for kernel drivers. In CCS, 2017.

[36] LucasDavi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow,
and Fabian Monrose. Isomeron: code randomization resilient to (just-
in-time) return-oriented programming. In NDSS, 2015.

[37] Arnaldo Carvalho De Melo. Profiling data structures. https://lpc.
events/event/16/contributions/1200/attachments/1054/2013/
ProfilingDataStructures.pdf, 2022.

[38] Dorothy E. Denning. A LatticeModel of Secure Information Flow. SOSP,
1975.

[39] Gregory J. Duck and Roland H.C. Yap. EffectiveSan: type and memory
error detection using dynamically typed C/C++. In PLDI, 2018.

[40] Gregory J. Duck, RolandH.C. Yap, and Lorenzo Cavallaro. Stack Bounds
Protection with Low Fat Pointers. In NDSS, 2017.

[41] Marco Elver and Dmitry Vyukov. Kernel Concurrency Sanitizer. https:
//google.github.io/kernel-sanitizers/KCSAN.html, 2019.

[42] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol
N. Sheth. TaintDroid: An Information-Flow Tracking System for Real-
time Privacy Monitoring on Smartphones. TOCS, 2014.

[43] Isaac Evans, Sam Fingeret, Julián González, Ulziibayar Otgonbaatar,
Tiffany Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Ri-
nard, and Hamed Okhravi. Missing the point(er): on the effectiveness
of code pointer integrity. In S&P, 2015.

[44] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over ASLR: attacking branch predictors to bypass ASLR. In MICRO,
2016.

https://clang.llvm.org/docs/SafeBuffers.html
https://clang.llvm.org/docs/SafeBuffers.html
https://access.redhat.com/blogs/766093/posts/3510331
https://access.redhat.com/blogs/766093/posts/3510331
https://people.kernel.org/kees/bounded-flexible-arrays-in-c
https://people.kernel.org/kees/bounded-flexible-arrays-in-c
https://lwn.net/Articles/885941/
https://lwn.net/Articles/885941/
https://lwn.net/Articles/741878
https://lwn.net/Articles/741878
https://lwn.net/Articles/887097/
https://lwn.net/Articles/887097/
https://lpc.events/event/16/contributions/1200/attachments/1054/2013/Profiling Data Structures.pdf
https://lpc.events/event/16/contributions/1200/attachments/1054/2013/Profiling Data Structures.pdf
https://lpc.events/event/16/contributions/1200/attachments/1054/2013/Profiling Data Structures.pdf
https://google.github.io/kernel-sanitizers/KCSAN.html
https://google.github.io/kernel-sanitizers/KCSAN.html

104 REFERENCES

[45] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. BranchScope: ANewSide-Channel Attack onDirectional Branch
Predictor. In ASPLOS, 2018.

[46] Jacob Fustos, Michael Bechtel, and Heechul Yun. SpectreRewind: Leak-
ing Secrets to Past Instructions. In ASHES, 2020.

[47] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen, Yier
Jin, and Ahmad-Reza Sadeghi. LAZARUS: practical side-channel re-
silient kernel-space randomization. In RAID, 2017.

[48] Cristiano Giuffrida, Clin Iorgulescu, and Andrew S. Tanenbaum. Muta-
ble checkpoint-restart: automating live update for generic server pro-
grams. InMiddleware, 2014.

[49] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. En-
hanced operating system security through efficient and fine-grained
address space randomization. In USENIX Security, 2012.

[50] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative Probing: Hacking Blind in the Spectre
Era. In CCS, 2020.

[51] Google. syzbot dashboard. https://syzkaller.appspot.com.

[52] Google. syzkaller. https://github.com/google/syzkaller.

[53] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Transla-
tion leak-aside buffer: defeating cache side-channel protections with
TLB attacks. In USENIX Security, 2018.

[54] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuf-
frida. ASLR on the Line: Practical Cache Attacks on the MMU. InNDSS,
2017.

[55] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance Regres-
sions. http://www.brendangregg.com/blog/2018- 02- 09/kpti-
kaiser-meltdown-performance.html, 2018.

[56] grsecurity. Open Source Security Inc. Announces Respectre: The State
of the Art in Spectre Defenses. https://grsecurity.net/respectre_
announce, 2018.

[57] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan
Haller, and Manuel Costa. Strong and efficient cache side-channel pro-
tection using hardware transactional memory. In USENIX Security,
2017.

[58] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémen-
tine Maurice, and Stefan Mangard. KASLR is dead: long live KASLR. In
ESSoS, 2017.

[59] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: bypassing SMAP and
kernel ASLR. In CCS, 2016.

https://syzkaller.appspot.com
https://github.com/google/syzkaller
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://grsecurity.net/respectre_announce
https://grsecurity.net/respectre_announce

REFERENCES 105

[60] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. SPECTECTOR: Principled Detection of Speculative Informa-
tion Flows. In S&P, 2020.

[61] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games –
bringing access-based cache attacks on AES to practice. In S&P, 2011.

[62] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuf-
frida, Herbert Bos, and Erik Van Der Kouwe. TypeSan: practical type
confusion detection. In CCS, 2016.

[63] YuHao,Hang Zhang, Guoren Li, XingyunDu, ZhiyunQian, andArdalan
Amiri Sani. Demystifying the dependency challenge in kernel fuzzing.
In ICSE, 2022.

[64] Norm Hardy. The confused deputy: (or why capabilities might have
been invented). ACM SIGOPS Operating Systems Review, 1988.

[65] Mary Jean Harrold and Mary Lou Soffa. Efficient computation of inter-
procedural definition-use chains. TOPLAS, 16(2):175–204, 1994.

[66] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds
checking. In CGO, 2012.

[67] Reed Hastings. Purify: fast detection of memory leaks and access errors.
In USENIXWinter, 1992.

[68] Mathé Hertogh, Sander Wiebing, and Cristiano Giuffrida. Leaky ad-
dress masking: exploiting unmasked spectre gadgets with noncanonical
address translation. In S&P, 2024.

[69] Jann Horn. Reading privileged memory with a side-channel. https://
googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html, 2018.

[70] Jann Horn. speculative execution, variant 4: speculative store bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=
1528, 2019.

[71] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In S&P, 2013.

[72] Nur Hussein. Randomizing structure layout. https : / / lwn . net /
Articles/722293/, 2017.

[73] Intel. Indirect Branch Restricted Speculation. https://www.intel.
com / content / www / us / en / developer / articles / technical /
software - security - guidance / technical - documentation /
indirect-branch-restricted-speculation.html, 2018.

[74] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
Volume 1. Order Number: 253668-060US, 2023.

[75] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1 (Table 4-13). Order
Number: 253668-060US, 2016.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html

106 REFERENCES

[76] Intel. Retpoline: A Branch Target Injection Mitigation, 2018.

[77] Intel. Speculative Execution Side Channel Mitigations. https://www.
intel.com/content/dam/develop/external/us/en/documents/
336996-speculative-execution-side-channel-mitigations.pdf,
2018.

[78] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: a shared
cache attack that works across cores and defies VM sandboxing – and
its application to AES. In S&P, 2015.

[79] Gorka Irazoqui,Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar.
Lucky 13 strikes back. In CCS, 2015.

[80] Gorka Irazoqui,Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar.
Wait a minute! a fast, Cross-VM attack on AES. In RAID, 2014.

[81] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with Intel TSX. In CCS, 2016.

[82] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, andMathias
Payer. HexType: efficient detection of type confusion errors for C++.
In CCS, 2017.

[83] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Kasper: scanning for generalized transient execu-
tion gadgets in the Linux kernel. In NDSS, 2022.

[84] Ken Johnson. KVA Shadow: Mitigating Meltdown on Windows. https:
//blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-
mitigating-meltdown-on-windows, 2018.

[85] Rob Johnson and David Wagner. Finding User/Kernel Pointer Bugs
With Type Inference. In USENIX Security, 2004.

[86] Mateusz Jurczyk. Bochspwn Reloaded: Detecting Kernel Memory Dis-
closure with x86 Emulation and Taint Tracking. Black Hat USA, 2017.

[87] David Kaplan, Jeremy Powell, and TomWoller. AMD memory encryp-
tion.White paper, 2016.

[88] Stephen Kell. Dynamically diagnosing type errors in unsafe code. In
OOPSLA, 2016.

[89] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side chan-
nel cryptanalysis of product ciphers. In ESORICS, 1998.

[90] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song,
Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Safe-
spec: banishing the spectre of a meltdownwith leakage-free speculation.
In DAC, pages 1–6. IEEE, 2019.

[91] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM:
system-level protection against cache-based side channel attacks in the
cloud. In USENIX Security, 2012.

https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows

REFERENCES 107

[92] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. DAWG: a defense against cache timing attacks
in speculative execution processors. InMICRO, pages 974–987. IEEE,
2018.

[93] Ofek Kirzner and Adam Morrison. An Analysis of Speculative Type
Confusion Vulnerabilities in the Wild. In USENIX Security, 2021.

[94] Paul Kocher. SpectreMitigations inMicrosoft’s C/C++Compiler. https:
//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.
html, 2018.

[95] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution.
In S&P, 2019.

[96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, 1996.

[97] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Mar-
tin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard.
{Collide+ power}: leaking inaccessible data with software-based power
side channels. In USENIX Security, 2023.

[98] Andrey Konovalov and Dmitry Vyukov. KernelAddressSanitizer
(KASan): a fast memory error detector for the Linux kernel. LinuxCon
North America, 2015.

[99] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song,
and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks using
the Return Stack Buffer. InWOOT, 2018.

[100] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N
Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. Speccfi: mitigating
spectre attacks using cfi informed speculation. In S&P, pages 39–53.
IEEE, 2020.

[101] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
TagBleed: breaking KASLR on the isolated kernel address space using
tagged TLBs. In Euro S&P, 2020.

[102] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and
Cristiano Giuffrida. Delta pointers: buffer overflow checks without the
checks. In EuroSys, 2018.

[103] Albert Kwon, Udit Dhawan, Jonathan M. Smith, and Andre Knight
Jr Thomas F.and DeHon. Low-fat pointers: Compact encoding and
efficient gate-level implementation of fat pointers for spatial safety and
capability-based security. In CCS, 2013.

[104] Paul Larson. Testing Linux with the Linux test project. In Ottawa Linux
Symposium, 2002.

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

108 REFERENCES

[105] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo
Kim, Long Lu, and Wenke Lee. Preventing use-after-free with dangling
pointers nullification. In NDSS, 2015.

[106] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type
casting verification: stopping an emerging attack vector. In USENIX
Security, 2015.

[107] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini
Yajnik. Hypervisor-assisted Application Checkpointing in Virtualized
Environments. In ASPLOS, 2011.

[108] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: reading kernel
memory from user space. In USENIX Security, 2018.

[109] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security, 2018.

[110] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee.
CATalyst: defeating last-level cache side channel attacks in cloud com-
puting. In HPCA, 2016.

[111] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In S&P, 2015.

[112] LLVM. Clang Static Analyzer. https://clang-analyzer.llvm.org/.

[113] LLVM. DataFlowSanitizer. https : / / clang . llvm . org / docs /
DataFlowSanitizer.html.

[114] LLVM. UndefinedBehaviorSanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

[115] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. DOLMA: Securing Speculation with
the Principle of Transient Non-Observability. InUSENIX Security, 2021.

[116] Kangjie Lu and Hong Hu. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In CCS, 2019.

[117] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christo-
pher Kruegel, and Giovanni Vigna. DR. CHECKER: A Soundy Analysis
for Linux Kernel Drivers. In USENIX Security, 2017.

[118] Giorgi Maisuradze and Christian Rossow. Ret2Spec: Speculative Execu-
tion Using Return Stack Buffers. In CCS, 2018.

[119] Larry W. McVoy and Carl Staelin. Lmbench: portable tools for perfor-
mance analysis. In USENIX ATC, 1996.

[120] Danie Micay. Comparing ASLR between mainline Linux, grsecurity
and Linux-hardened. https : / / gist . github . com / thestinger /
b43b460cfccfade51b5a2220a0550c35#file-linux-vanilla, 2022.

https://clang-analyzer.llvm.org/
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35#file-linux-vanilla
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35#file-linux-vanilla

REFERENCES 109

[121] Microsoft. A detailed description of the Data Execution Prevention
(DEP) feature. https://mskb.pkisolutions.com/kb/875352, 2006.

[122] Daniel Moghimi. Downfall: exploiting speculative data gathering. In
USENIX Security, pages 7179–7193, 2023.

[123] Paul Muntean, Sebastian Wuerl, Jens Grossklags, and Claudia Eckert.
CastSan: efficient detection of polymorphic C++ object type confusions
with LLVM. In ESORICS, 2018.

[124] Andrew C. Myers. JFlow: Practical Mostly-Static Information Flow Con-
trol. In POPL, 1999.

[125] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and
Christof Fetzer. You Shall Not Bypass: Employing data dependencies to
prevent Bounds Check Bypass. arXiv preprint arXiv:1805.08506, 2018.

[126] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In
USENIX Security, 2020.

[127] open-std. Defect Report 051. https://www.open- std.org/jtc1/
sc22/wg14/www/docs/dr_051.html, 1993.

[128] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: practical cache attacks in
javascript and their implications. In CCS, 2015.

[129] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of AES. In CT-RSA, 2006.

[130] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.
Documenting and automating collateral evolutions in Linux device
drivers. ACM SIGOPS Operating Systems Review, 2008.

[131] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel, 2002.

[132] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: optimiz-
ing OS fuzzer seed selection with trace distillation. In USENIX Security,
2018.

[133] Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing Guo. Mapping to
bits: efficiently detecting type confusion errors. In ACSAC, 2018.

[134] Andrew Pardoe. Spectre mitigations in MSVC. https://devblogs.
microsoft.com/cppblog/spectre-mitigations-in-msvc, 2018.

[135] Mathias Payer. HexPADS: a platform to detect "stealth" attacks. InESSoS,
2016.

[136] Hui Peng and Mathias Payer. USBFuzz: a framework for fuzzing USB
drivers by device emulation. In USENIX Security, 2020.

[137] Colin Percival. Cache missing for fun and profit, 2005.

https://mskb.pkisolutions.com/kb/875352
https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_051.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_051.html
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc

110 REFERENCES

[138] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: exploiting DRAM addressing for Cross-CPU
attacks. In USENIX Security, 2016.

[139] Alexander Potapenko. Add KernelMemorySanitizer infrastructure.
https://lwn.net/Articles/878652, 2021.

[140] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng
Yin, and TaoWei. SpecTaint: Speculative Taint Analysis for Discovering
Spectre Gadgets. In NDSS, 2021.

[141] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage Against the Machine Clear: A Systematic Analysis of Machine
Clears and Their Implications for Transient Execution Attacks. In
USENIX Security, 2021.

[142] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Crosstalk: speculative data leaks across cores are real. In S&P,
pages 1852–1867. IEEE, 2021.

[143] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England. Re-
source management for isolation enhanced cloud services. In CCSW,
2009.

[144] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In CCS, 2009.

[145] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: systems, languages, and applications.
TISSEC, 2012.

[146] Rough auditing tool for security (RATS). https://code.google.com/
archive/p/rough-auditing-tool-for-security/.

[147] Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-
Flow Security. J-SAC, 2003.

[148] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWorner,
and Thorsten Holz. NYX: Greybox Hypervisor Fuzzing using Fast Snap-
shots and Affine Types. In USENIX Security, 2021.

[149] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: hardware-assisted feedback fuzzing
for OS kernels. In USENIX Security, 2017.

[150] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In CCS, 2019.

[151] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp, Claudio
Canella, and Daniel Gruss. Context: leakage-free transient execution.
arXiv preprint arXiv:1905.09100, 2019.

https://lwn.net/Articles/878652
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/

REFERENCES 111

[152] Michael Schwarz,Martin Schwarzl, Moritz Lipp, JonMasters, andDaniel
Gruss. NetSpectre: Read Arbitrary Memory over Network. In ESORICS,
2019.

[153] Jeff Seibert, Hamed Okhravi, and Eric Söderström. Information leaks
without memory disclosures: remote side channel attacks on diversified
code. In CCS, 2014.

[154] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: a fast address sanity checker. In
USENIX ATC, 2012.

[155] Julian Seward and Nicholas Nethercote. Using valgrind to detect unde-
fined value errors with bit-precision. In USENIX ATC, 2005.

[156] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt. Drifuzz: har-
vesting bugs in device drivers from golden seeds. In USENIX Security,
2022.

[157] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring.
In DSNWorkshops, 2011.

[158] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason
Nieh, and Angelos D. Keromytis. ASSURE: Automatic Software Self-
Healing Using Rescue Points. In ASPLOS, 2009.

[159] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code
reuse: on the effectiveness of fine-grained address space layout ran-
domization. In S&P, 2013.

[160] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul
Na, Stijn Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre
Seifert, and Michael Franz. Periscope: an effective probing and fuzzing
framework for the hardware-OS boundary. In NDSS, 2019.

[161] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent Byunghoon
Kang, Jean-Pierre Seifert, and Michael Franz. Agamotto: accelerating
kernel driver fuzzing with lightweight virtual machine checkpoints. In
USENIX Security, 2020.

[162] Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B. Bobba,
Sibin Mohan, and Roy H. Campbell. A novel scheduling framework
leveraging hardware cache partitioning for cache-side-channel elimina-
tion in clouds. arXiv preprint arXiv:1708.09538, 2017.

[163] Raphael Spreitzer and Thomas Plos. Cache-access pattern attack on
disaligned AES T-tables. In COSADE, 2013.

[164] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer: fast
detector of uninitialized memory use in C++. In CGO, 2015.

[165] Yulei Sui and Jingling Xue. SVF: interprocedural static value-flow anal-
ysis in LLVM. In CC, 2016.

112 REFERENCES

[166] Evan Sultanik. Two New Tools that Tame the Treachery of Files. https:
//blog.trailofbits.com/2019/11/01/two-new-tools-that-tame-
the-treachery-of-files, 2019.

[167] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: facilitat-
ing dynamic analysis of device drivers of mobile systems. In USENIX
Security, 2018.

[168] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-
sensitive fencing: securing speculative execution via microcode cus-
tomization. In ASPLOS, pages 395–410, 2019.

[169] Gil Tene. PCID is now a critical performance/security feature on x86.
https : / / groups . google . com / forum / m / # ! topic / mechanical -
sympathy/L9mHTbeQLNU, 2018.

[170] The Linux Kernel documentation: MDS - Microarchitectural Data Sam-
pling. https://www.kernel.org/doc/html/latest/admin-guide/
hw-vuln/mds.html.

[171] The Linux Kernel documentation: Spectre Side Channels. https://www.
kernel.org/doc/html/latest/admin- guide/hw- vuln/spectre.
html.

[172] Linus Torvalds. LKML: Page Colouring. https://yarchive.net/comp/
linux/cache_coloring.html, 2003.

[173] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on AES, and countermeasures. Journal of Cryptology, 2010.

[174] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. Inception: expos-
ing new attack surfaces with training in transient execution. InUSENIX
Security, pages 7303–7320, 2023.

[175] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and
Hiroshi Miyauchi. Cryptanalysis of DES implemented on computers
with cache. In CHES, 2003.

[176] Jo Van Bulck, Marina Minkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In USENIX Security,
2018.

[177] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In S&P, 2020.

[178] Erik Van Der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos,
and Cristiano Giuffrida. Type-after-type: practical and complete type-
safe memory reuse. In ACSAC, 2018.

https://blog.trailofbits.com/2019/11/01/two-new-tools-that-tame-the-treachery-of-files
https://blog.trailofbits.com/2019/11/01/two-new-tools-that-tame-the-treachery-of-files
https://blog.trailofbits.com/2019/11/01/two-new-tools-that-tame-the-treachery-of-files
https://groups.google.com/forum/m/#!topic/mechanical-sympathy/L9mHTbeQLNU
https://groups.google.com/forum/m/#!topic/mechanical-sympathy/L9mHTbeQLNU
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://yarchive.net/comp/linux/cache_coloring.html
https://yarchive.net/comp/linux/cache_coloring.html

REFERENCES 113

[179] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuffrida. Dangsan:
scalable use-after-free detection. In EuroSys, 2017.

[180] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Malicious Management Unit: why stopping cache attacks in software is
harder than you think. In USENIX Security, 2018.

[181] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: rogue in-flight data load. In S&P, 2019.

[182] Dirk Vogt, Cristiano Giuffrida, Herbert Bos, and Andrew S. Tanenbaum.
Lightweight Memory Checkpointing. In DSN, 2015.

[183] Dmitry Vyukov. Syzbot and the Tale of Thousand Kernel Bugs. https:
//lssna18.sched.com/event/FLYI/syzbot- and- the- tale- of-
thousand-kernel-bugs-dmitry-vyukov-google.

[184] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika
Mitra, and Abhik Roychoudhury. KLEESPECTRE: Detecting Informa-
tion Leakage through Speculative CacheAttacks via Symbolic Execution.
TOSEM, 2020.

[185] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra,
and Abhik Roychoudhury. oo7: Low-overhead Defense against Spectre
Attacks via Program Analysis. TSE, 2021.

[186] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky
cauldron on the dark land: understandingmemory side-channel hazards
in SGX. In CCS, 2017.

[187] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans
Kaashoek. Improving Integer Security for Systems with KINT. In OSDI,
2012.

[188] OfirWeisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas FWenisch,
and Yuval Yarom. Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution. In USENIX Security,
2018.

[189] David A. Wheeler. Flawfinder. https://dwheeler.com/flawfinder/.

[190] Sander Wiebing, Alvise de Faveri Tron, Herbert Bos, and Cristiano
Giuffrida. Inspectre gadget: inspecting the residual attack surface of
cross-privilege spectre v2. In USENIX Security, 2024.

[191] Johannes Wikner and Kaveh Razavi. {Retbleed}: arbitrary specula-
tive code execution with return instructions. In USENIX Security,
pages 3825–3842, 2022.

[192] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. Precisely
characterizing security impact in a flood of patches via symbolic rule
comparison. In NDSS, 2020.

https://lssna18.sched.com/event/FLYI/syzbot-and-the-tale-of-thousand-kernel-bugs-dmitry-vyukov-google
https://lssna18.sched.com/event/FLYI/syzbot-and-the-tale-of-thousand-kernel-bugs-dmitry-vyukov-google
https://lssna18.sched.com/event/FLYI/syzbot-and-the-tale-of-thousand-kernel-bugs-dmitry-vyukov-google
https://dwheeler.com/flawfinder/

114 REFERENCES

[193] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan
Zhang, and Dawu Gu. From Collision To Exploitation: Unleashing Use-
After-Free Vulnerabilities in Linux Kernel. In CCS, 2015.

[194] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher Fletcher, and Josep Torrellas. Invisispec: making speculative exe-
cution invisible in the cache hierarchy. InMICRO, pages 428–441. IEEE,
2018.

[195] Yuval Yarom andKatrina Falkner. FLUSH+RELOAD:AHighResolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security, 2014.

[196] Yves Younan. FreeSentry: protecting against use-after-free vulnerabili-
ties due to dangling pointers. In NDSS, 2015.

[197] Jiyong Yu,Mengjia Yan, ArtemKhyzha, AdamMorrison, Josep Torrellas,
and Christopher W. Fletcher. Speculative Taint Tracking (STT): A
Comprehensive Protection for Speculatively Accessed Data. InMICRO,
2019.

[198] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In CCS, 2014.

[199] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In CCS,
2012.

[200] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter
Schwabe, and Yuval Yarom. Ultimate {slh}: taking speculative load
hardening to the next level. In USENIX Security, pages 7125–7142,
2023.

[201] Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma, Ming Yuan, Wenyu
Zhu, Zhihong Tian, and Chao Zhang. StateFuzz: system call-based state-
aware Linux driver fuzzing. In USENIX Security, 2022.

[202] Ziqiao Zhou,Michael K. Reiter, andYinqian Zhang. A software approach
to defeating side channels in last-level caches. In CCS, 2016.

[203] Peter Zijlstra. Add static_call(). https://lwn.net/Articles/824406,
2020.

[204] Jordy Zomer and Alexandra Sandulescu. Finding Gadgets for CPU Side-
Channels with Static Analysis Tools. https://github.com/google/
security-research/blob/master/pocs/cpus/spectre-gadgets/
README.md.

[205] Changwei Zou, Yulei Sui, Hua Yan, and Jingling Xue. TCD: statically
detecting type confusion errors in C++ programs. In ISSRE, 2019.

[206] Xiaochen Zou, Guoren Li,Weiteng Chen, Hang Zhang, and ZhiyunQian.
SyzScope: Revealing High-Risk Security Impacts of Fuzzer-Exposed
Bugs in Linux kernel. In USENIX Security, 2021.

https://lwn.net/Articles/824406
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md

Summary

Modern operating systems evolved into massively complex pieces of software with tens
of millions lines of code. It is inevitable to have bugs in such large code bases, many
of them with serious security implications. For decades, the kernel of such operating
systems has been an interesting target for attackers due to its elevated privileges. Initially,
attacks primarily targeted traditional software vulnerabilities like memory corruption.
However, recent academic research has increasingly highlighted side-channel and tran-
sient execution vulnerabilities as well. While kernels have mitigations deployed against
the most common vulnerability classes, many are too expensive for production systems.
Instead, they are often used during continuous fuzzing efforts to find bugs. In recent
years the amount of bugs discovered increased steadily with the improvements in bug
detection during fuzzing, indicating that we are still scratching the surface and far from
bug-free kernels. Additionally, state-of-the-art kernel fuzzers only focus on well-known
bug classes and still find too many bugs to fix, urging the need to improve the security
of our kernels.

In this thesis, we uncover new classes of kernel vulnerabilities. Within the category
of side-channel vulnerabilities, we demonstrate a novel way to combine multiple side
channels to overcome limitations when attacking the kernel. With our attack we demon-
strate that the very same feature that makes mitigation of side channels efficient, opens
up a new attack surface. For transient execution vulnerabilities, we demonstrated the
first gadget scanner based on dynamic analysis for the kernel. Detecting such gadgets
is often difficult without suffering from large amounts of false positives, we showed
that we can yield more precise detection by facilitating dynamic taint tracking. We
implemented our scanner as a sanitizer to expose transient execution to traditional
fuzzing environments to rely on existing bug detection capabilities. For software vulner-
abilities, we find previously undiscovered type confusion bugs which we call container
confusion bugs. Such bugs can be found in many large C code bases, such as kernels,
that use nested structures to implement object-orientated functionality. We designed a
specialized sanitizer to detect such bug patterns with continuous fuzzing and designed
static analyzers to expand our search to sections of the kernel that are difficult to reach
during fuzzing.

In conclusion, we demonstrate that it is not enough to focus on currently well-
established bug types and need to continue looking for new classes of vulnerabilities.
We explored such new classes and improved fuzzing in all the main categories: software
vulnerabilities, side channels, and transient execution attacks. Only by exploring such
new exploitation angles and including them in our bug detection capabilities, we can
slowly turn our kernels into a safe foundation of modern computing.

115

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Publications
	1 Introduction
	1.1 Kernel defenses
	1.2 Bug Discovery in the kernel
	1.3 Goals
	1.4 Contributions

	2 TagBleed: Breaking KASLR on the isolated kernel address space using tagged TLBs
	2.1 Introduction
	2.2 Background
	2.3 Threat Model
	2.4 Attack Overview
	2.5 Reverse Engineering the TLB
	2.6 TagBleed
	2.6.1 Forcing Kernel Memory Access
	2.6.2 Leaking Through Tagged TLB
	2.6.3 Confused Deputy Attack with AnC
	2.6.4 Derandomizing Kernel Modules
	2.6.5 Derandomizing Physmap

	2.7 Evaluation
	2.7.1 Side channel by TLB set eviction
	2.7.2 Side channel by cache line eviction
	2.7.3 Combining the two side channels
	2.7.4 Success rate
	2.7.5 Attack time
	2.7.6 Noise
	2.7.7 Comparison against other KASLR attacks

	2.8 Mitigations
	2.9 Related Work
	2.10 Conclusions

	3 Kasper: Scanning for Generalized Transient Execution Gadgets in the Linux Kernel
	3.1 Introduction
	3.2 Background
	3.2.1 Speculative execution attacks and defenses
	3.2.2 Gadget scanning

	3.3 Threat Model
	3.4 Problem Analysis
	3.5 Overview
	3.6 Speculative Emulation
	3.6.1 Transactions and rollbacks
	3.6.2 Challenges unique to the kernel

	3.7 Taint Policies
	3.7.1 Vulnerability detectors
	3.7.2 Injection policies
	3.7.3 Access policies
	3.7.4 Leakage policies

	3.8 Implementation
	3.9 Evaluation
	3.9.1 Comparison with previous solutions
	3.9.2 Gadgets found in the kernel

	3.10 Limitations
	3.11 Case Study
	3.11.1 List implementation of the kernel
	3.11.2 A listforeachentry gadget in keyring.c
	3.11.3 Exploitation

	3.12 Related Work
	3.13 Conclusion
	Appendix 3.A Coverage Evaluation
	3.A.1 Normal execution coverage
	3.A.2 Speculative emulation coverage

	Appendix 3.B Performance Evaluation
	Appendix 3.C Large-Scale Exploitability Evaluation
	Appendix 3.D Additional Case Study
	Appendix 3.E Developer Interface

	4 uncontained: Uncovering Container Confusion in the Linux Kernel
	4.1 Introduction
	4.2 Background
	4.2.1 Type Confusion Bugs in C++... and in C
	4.2.2 Sanitizers

	4.3 Container Confusion in the Linux Kernel
	4.3.1 Security Implications
	4.3.2 Running Example
	4.3.3 Type Graph Complexity

	4.4 uncontained Overview
	4.5 Container Confusion Sanitizer
	4.5.1 Design
	4.5.2 Implementation
	4.5.3 Evaluation

	4.6 Retrospective Analysis and Bug Patterns
	4.7 Static Analyzer
	4.7.1 Design
	4.7.2 Implementation
	4.7.3 Evaluation

	4.8 Discussion
	4.9 Related Work
	4.10 Conclusion
	Appendix 4.A Assigned CVEs
	Appendix 4.B LMbench Evaluation
	Appendix 4.C Static Analysis Rules

	5 Conclusion
	5.1 Future directions

	6 Contributions to papers
	References
	Summary

