
CVE-2018-17145: Bitcoin Inventory

Out-of-Memory Denial-of-Service Attack

Braydon Fuller and Javed Khan

September 9th, 2020

Abstract

This paper describes an easily exploitable uncontrolled memory re-
source consumption denial-of-service vulnerability that existed in the peer-
to-peer network code of three implementations of Bitcoin and other blockchains
including Litecoin, Namecoin and Decred.

1 Attack Overview

There was an uncontrolled resource consumption and out-of-memory (OOM)
vulnerability that could have been easily exploited in a denial-of-service (DoS/D-
DoS) attack against many Bitcoin, Litecoin, Namecoin and Decred nodes by
any other network participant. The vulnerable versions include: Bitcoin Core
v0.16.0, Bitcoin Core v0.16.1, Bitcoin Knots v0.16.0, all beta versions of Bcoin
up to v1.0.0-pre, all versions of Btcd up to v0.20.1-beta, Litecoin Core v0.16.0,
Namecoin Core v0.16.1, and all versions of Dcrd up to v1.5.1.

The vulnerability has been patched in Bitcoin Core v0.16.2+, Bitcoin Knots
v0.16.2+, Bcoin v1.0.2+, Btcd v0.21.0-beta+, Litecoin Core v0.16.2+, Name-
coin v0.16.2+, and Dcrd v1.5.2+ releases. The issue does not affect earlier
versions of Bitcoin Core and derivatives including v0.15 and earlier.

The vulnerability was discovered on Friday, June 22nd, 2018 by Braydon
Fuller of the Bcoin protocol team at Purse. At the time of the discovery this
represented more than 50% of publicly advertised Bitcoin nodes with inbound
traffic [1], and likely a majority of miners and exchanges. The vulnerability in
Bitcoin Core was introduced on November 15th, 2017 in pull request #10286
of Bitcoin Core and released in versions v0.16.0 and v0.16.1 of Bitcoin Core.
Disclosure was made on Monday, July 9th 2018 to Bitcoin Core and Litecoin
Core maintainers, and covertly patched on the following day in pull request
#13622. Many forks of Bitcoin Core are not affected as they were forked earlier
or haven’t incorporated the updates. Projects such as Zcash, Bitcoin ABC,
Bitcoin Gold, Bitcoin Unlimited, Bitcoin XT did not include the vulnerable
code at the time of discovery.

On Friday, June 26th, 2020 it was discovered that the vulnerability also
existed in Btcd by Javed Khan. With additional research it was also found to

1



affect Dcrd on Tuesday, July 7th, 2020. The vulnerability was reported to the
Decred Bug Bounty program. At the time of discovery this represented 100%
of the Decred nodes and 100% of nodes serving compact block filters to Bitcoin
Lightning wallets.

It could be possible to escalate the severity of the denial-of-service vulner-
ability to contribute to a loss of funds or revenue. This could be through a
loss of mining time or expenditure of electricity by shutting down nodes and
delaying blocks or causing the network to temporarily partition. It could also
be through disruption and delay of time sensitive contracts or prohibiting eco-
nomic activity. That could affect commerce, exchanges, atomic swaps, escrows
and lightning network HTLC payment channels. There has not been a known
exploitation of this vulnerability in the wild.

2 Timeline

• 2018-Jun-22 - The DoS attack was discovered in Bcoin [2] by Braydon
Fuller. It was discovered during code review of how the code would handle
a large number of inventory messages and items. The Bcoin maintainers,
including Christopher Jeffrey and Javed Khan, were securely notified via
PGP email of the vulnerability with a patch included.

• 2018-Jul-02 - Before pushing fixes to Bcoin other implementations were
tested for the attack and it was discovered to also DoS the latest Bitcoin
Core [3] release (v0.16.1) and development branch.

• 2018-Jul-02 to 2018-Jul-08 - The attack was researched further by
Braydon Fuller to evaluate the vulnerability in other versions and forks
of Bitcoin Core. In this process it was discovered to only affect v0.16.1
and v0.16.0 of Bitcoin Core and Litecoin Core v0.16.0 and not previous
versions of Bitcoin Core and Litecoin Core [4] or other forks such as Zcash
or Bitcoin Cash, many others were tested and reviewed.

• 2018-Jul-09 - The description, patch and proof-of-concept of the vul-
nerability were timestamped in a Bitcoin block at height 531,241 in a
transaction with txid:

658d467097dc64e4e093d5bcb082139f34f570fe20bb71b57f098f5d6ebc3ce8

• 2018-Jul-09 - The description, patch and remedies were securely dis-
closed to Bitcoin Core and Litecoin Core maintainers, and later to several
exchanges and miners.

• 2018-Jul-10 - Bcoin v1.0.0 was released with the fix, and the vulnerability
was fixed in the master branch of Bitcoin Core from pull request #13622
by Matt Corallo.

• 2018-Jul-16 to 2018-Jul-17 - The patched version of Bitcoin Core
v0.16.2 was tagged as release candidates rc1 and rc2.

2



• 2018-Jul-23 - Litecoin Core v0.16.2 was tagged as release candidate rc1
with the patch.

• 2018-Jul-29 - Bitcoin Core v0.16.2 was released with builds.

• 2018-Jul-30 - Bitcoin Knots v0.16.2 was tagged and included the patch.

• 2018-Aug-06 - Namecoin Core 0.16.2 was tagged and included the patch.

• 2018-Sep-08 - Litecoin Core v0.16.2 builds were released.

• 2018-Sep-18 - A CVE ID was requested from https://cve.mitre.org by
Braydon Fuller.

• 2018-Sep-19 - The ID CVE-2018-17145 was given for the vulnerability.

• 2018-Sep-20 - A critical inflation vulnerability, CVE-2018-17144, was dis-
closed to the public. The vulnerable versions overlapped with releases also
vulnerable to CVE-2018-17145. Many nodes upgraded during this period
greatly reducing the number of nodes vulnerable to CVE-2018-17145.

• 2020-Jun-26 - Javed Khan in revisiting the attack discovered that it also
applied to Btcd [5], started further research and notified Braydon Fuller.

• 2020-Jul-01 - Btcd maintainer Olaoluwa Osuntokun was securely notified
via PGP email with details of vulnerability.

• 2020-Jul-03 - Btcd maintainer John C. Vernaleo and Olaoluwa Osun-
tokun were securely notified via PGP email with a patch to fix the vul-
nerability from Javed Khan.

• 2020-Jul-07 - Javed Khan opens pull request #1599 to Btcd. During
further research discovers that a variant of the vulnerability also affects
Dcrd [6] and reports the vulnerability to Decred Bug Bounty program.

• 2020-Jul-08 - Btcd pull request #1599 is merged and patched for the
vulnerability, see commit: 875b51c9fb83e5521ef5b4f8c9c522126baa2041.

• 2020-Jul-08 - Dcrd is patched in pull request #2253.

• 2020-Aug-07 - Decred Journal (July 2020) describes the behavior of the
vulnerability in reference to development for the vulnerability patch.

• 2020-Aug-27 - Dcrd v1.5.2 is released with the vulnerability patched.

• 2020-Aug-27 - Btcd v0.21.0-beta is released with the vulnerability patched.

3



3 Attack Technical Details

The attack can be performed by a peer rapidly sending multiple transaction inv

messages with random hashes, one below the max at 49,999 items and never
sending the corresponding tx data.

The attack can be accelerated with multiple peers, escalating into a DDoS,
and is limited by the bandwidth capabilities to the target nodes from attacker
nodes. With a 1Gbps (125 MB/s) connection it would be possible to send
around 83 inv messages with 49,999 items per second, giving a maximum rate
of 4,166,584 inv items per second. Memory will grow as fast as it’s possible to
send data to the node, until it crashes or locks up the machine in swap disk
usage in several minutes.

3.1 Bcoin Details

The issue was that a Map used for tracking inventory from peers could grow in
size without an upper-bound, aside from a time based limit that would flush
the txMap if a peer is stalling and not responding. If enough inventory hashes
can be sent before that stall timeout check, the memory can grow past memory
space and crash the process.

The p2p network messages could grow the memory of txMap without limit
via this exposed code path handlePacket -> handleInv -> handleTXInv ->

ensureTX -> getTX:

getTX(peer, hashes) {

...

for (const hash of hashes) {

if (this.txMap.has(hash))

continue;

this.txMap.add(hash);

peer.txMap.set(hash, now);

...

}

...

}

The issue was resolved by adding a limit to the size of the peer
txMap and removing peers that exceed the limits. This was fixed by Christopher
Jeffrey in commit: 05c38853d7f50fb4ad87e28fa7b46017f78e2955

3.2 Bitcoin Core Details

The issue in Bitcoin Core was more hidden as there appears to be code that lim-
its the growth of a similar map, see src/net processing.cpp in ProcessMessage:

if (vInv.size() > MAX_INV_SZ)

{

4



LOCK(cs_main);

Misbehaving(pfrom->GetId(), 20,

strprintf("message inv size() = %u",

vInv.size()));

return false;

}

However the actual behavior of the program was different and behaved as if
there wasn’t a limit and the memory would endlessly grow.

The issue was within an easy to overlook and unguarded call
to GetMainSignals().Inventory(inv.hash) in ProcessMessage of
src/net processing.cpp, that would grow the size of m callbacks pending

at a faster rate than it is processed in SingleThreadedSchedulerClient that
is used for tracking events. This is the code at the source of the vulnerability,
see src/validationinterface.cpp:

void CMainSignals::Inventory(const uint256 &hash) {

m internals->m schedulerClient.AddToProcessQueue([hash, this] {
m internals->Inventory(hash);

});
}

The issue was resolved by removing the vulnerable code as it was no-longer
needed in pull request #13622 by Matt Corallo, see details in commit:
beef7ec4be725beea870a2da510d2817487601ec

3.3 Btcd Details

The issue in Btcd takes more time to exploit compared to Bitcoin Core and
Bcoin and can be under 5 minutes to over 10 minutes from a single peer.

Btcd stores the received transaction inventory items in peer.knownInventory

(peer/peer.go) which is an MRU map (mruInventoryMap) that is supposed to
be limited by size (e.g. 1000). Unfortunately, the instance of peer.knownInventory
uses the MRU map in a way that exposes a bug which makes the map vulnerable
to memory leaks.

In detail, mruInventoryMap.Add takes a pointer to wire.InvVect which is
later modified by SyncManager.handleInvMsg. In netsync/manager.go:

if peer.IsWitnessEnabled() {

iv.Type = wire.InvTypeWitnessTx

}

When mruInventory.Add tries to evict the LRU item from invList, it no
longer matches the invMap key, since the object has been changed. The eviction
will always fail since lru.Type != iv.Type. Because of this the memory usage
keeps climbing. In peer/mruinvmap.go:

if uint(len(m.invMap))+1 > m.limit {

node := m.invList.Back()

5



lru := node.Value.(*wire.InvVect)

// Evict least recently used item.

delete(m.invMap, *lru)

...

}

In addition to mruInventoryMap, two other maps store received inventory
hashes as keys for peerSyncState: requestedTxns and requestedBlocks.
These maps should be bounded to prevent memory leaks.

The issue in Btcd was resolved by switching to a fixed LRU implementa-
tion and switching the usage of the maps to use the updated version. This
was completed in pull request #1599 by Javed Khan on July 7th, see commit:
4b3f7f3c7a490151801c0aaf117befeae1c6bc1b.

3.4 Dcrd Details

Similar to the Btcd vulnerability, however it relates specifically with a subset of
the two unbounded maps in blockmanager.go.

Both peerSyncState properties requestedTxns and requestedBlocks are
unbounded and only cleared when the corresponding inventory item is resolved.
If the remote peer returns notfound for the inventory items, the hash is not
cleared from the maps’ keys. A malicious peer may spam non-existent inventory
items until the host runs out of memory.

Stall detection is not triggered in this case because the malicious peer never
stalls, as every getblocks is returned an inv and every getdata is returned a
notfound.

A very straightforward fix is to simply bound the maps requestedTxns and
requestedBlocks in blockmanager.go. This issue in Dcrd has been resolved
in pull request #2253 by David Hill on July 8th, 2020, see commits:

• 0b3133113523972c3c2cc080058b2933b53e2609

• ef1530cfbc42e1b9583241923de16a2603bf5cdc

• 6187eebff62006c4bd71866391603e37a7e1654b

• 347b0b9376a8ae68af75b890cfb162131cea568a

4 Acknowledgments

• Braydon Fuller for finding the vulnerability in Bcoin and Bitcoin Core and
doing the initial research.

• Matt Corallo, Wladimir J. van der Laan and maintainers for patching the
vulnerability in Bitcoin Core.

• Christopher Jeffrey for patching the vulnerability in Bcoin.

6



• Purse team: Andrew Lee and Buck Perley for assisting in disclosure.

• Luke Dashjr for patching Bitcoin Knots.

• Adrian Gallagher and maintainers for patching the vulnerability in Lite-
coin Core.

• Jeremy Rand, Daniel Kraft and maintainers for patching Namecoin Core.

• Javed Khan for researching and patching the vulnerability in Btcd and
Dcrd.

• Thejaswi Puthraya for helping debug the vulnerability in Btcd and Dcrd.

• John C. Vernaleo and maintainers for patching Btcd.

• David Hill, Dave Collins and maintainers for patching Dcrd.

5 References

1. https://bitnodes.io

2. https://bcoin.io

3. https://bitcoincore.org

4. https://litecoin.org

5. https://github.com/btcsuite/btcd

6. https://decred.org

7


