
Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in
TLS-DH(E)

Robert Merget1, Marcus Brinkmann1, Nimrod Aviram2, Juraj Somorovsky3, Johannes Mittmann4, and Jörg
Schwenk1

1Ruhr University Bochum
2Department of Electrical Engineering, Tel Aviv University

3Paderborn University
4Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany

Abstract
Diffie-Hellman key exchange (DHKE) is a widely adopted

method for exchanging cryptographic key material in real-
world protocols like TLS-DH(E). Past attacks on TLS-DH(E)
focused on weak parameter choices or missing parameter
validation. The confidentiality of the computed DH share, the
premaster secret, was never questioned; DHKE is used as a
generic method to avoid the security pitfalls of TLS-RSA.

We show that due to a subtle issue in the key derivation
of all TLS-DH(E) cipher suites in versions up to TLS 1.2,
the premaster secret of a TLS-DH(E) session may, under
certain circumstances, be leaked to an adversary. Our main
result is a novel side-channel attack, named Raccoon attack,
which exploits a timing vulnerability in TLS-DH(E), leaking
the most significant bits of the shared Diffie-Hellman secret.
The root cause for this side channel is that the TLS standard
encourages non-constant-time processing of the DH secret.
If the server reuses ephemeral keys, this side channel may
allow an attacker to recover the premaster secret by solving an
instance of the Hidden Number Problem. The Raccoon attack
takes advantage of uncommon DH modulus sizes, which
depend on the properties of the used hash functions. We
describe a fully feasible remote attack against an otherwise-
secure TLS configuration: OpenSSL with a 1032-bit DH
modulus. Fortunately, such moduli are not commonly used
on the Internet.

Furthermore, with our large-scale scans we have identified
implementation-level issues in production-grade TLS imple-
mentations that allow for executing the same attack by directly
observing the contents of server responses, without resorting
to timing measurements.

1 Introduction

Diffie-Hellman Key Exchange. In Diffie-Hellman (DH) Key
Exchange, a client A and a server B both use a prime p and a
generator g ∈ Z∗p as public parameters, where g generates a
cyclic subgroup G≤ Z∗p of prime order q. B chooses a secret
b∈Zq and A chooses a secret a∈Zq. B sends the DH “share”

Figure 1: Raccoon attack overview. The attacker passively
observes the public DH shares of a client-server connection
and uses an oracle in the TLS key derivation to calculate
the shared DH secret using a solver for the Hidden Number
Problem.

gb mod p to A, while A sends its share ga mod p to B. Both
parties can then compute (ga)b = (gb)a = gab mod p. If the
parameters p and q are chosen in such a way that the Com-
putational Diffie-Hellman Assumption (CDH) holds for G, a
third party that observes the transmitted values ga,gb mod p
cannot compute this shared secret gab.

TLS-DH(E). Transport Layer Security (TLS) relies on the
DH assumption and adapts the DH key exchange to compute
a shared key (ga)b between a client and a server. The shared
key is used as a premaster secret to derive all necessary cryp-
tographic material for the established connection. In practice,
TLS peers can use two DH key exchange types: TLS-DH and
TLS-DHE. In a TLS-DH connection, the server uses a static
value b. In TLS-DHE, the server uses an ephemeral value b.

Side-channel attacks against TLS. Due to its importance,
the TLS protocol has become a subject to many cryptographic
analyses, including the security of the TLS handshake struc-
ture [13] and TLS-DHE [35]. These analyses confirm the
security of the TLS protocol design, which is essential for its
implementation and deployment. However, models used in
these studies rely on specific assumptions and implementa-

1

tion correctness. For example, they assume that the secret-
processing functions work in constant time and do not leak
any confidential data. Such behavior is not always given in
practice and can be practically exploited by an attacker using
specific side channels.

A typical example of side-channel attacks are timing at-
tacks. In timing attacks, an attacker measures the response
time of an implementation to recover secret information.
There are numerous examples of timing side-channel attacks
that have been successfully applied to TLS. Brumley and
Boneh [20] showed how to recover the private key of a TLS-
RSA server by measuring timing differences in arithmetic
optimizations for different ciphertext lengths. AlFardan and
Paterson [6] were able to recover plaintext bytes from the
TLS Record Layer by observing subtle timing differences in
the computation of the HMAC. Meyer et al. [46] constructed
a Bleichenbacher oracle from timing differences in the han-
dling of valid and invalid PKCS#1 encoded premaster secrets
within the ClientKeyExchange message.

The standard strategy for preventing timing attacks is to
make implementations constant time, i.e., the implementa-
tion’s processing time should always be the same, regardless
of any conditions on the secret. Deploying such a countermea-
sure can be very challenging, especially if the side channel
results from the behavior described in the protocol specifi-
cation. For example, the Lucky 13 attack by AlFardan and
Paterson resulted from the failure in the TLS specification to
process ciphertext in constant time [6]. While the paper de-
scribes concrete countermeasure strategies, we could observe
several resurrections of this attack in the last years [4, 8, 57].

A timing oracle in the TLS-DH(E) KDF. We start our study
with a critical observation that the TLS specification pre-
scribes variable-length secrets as input to the key derivation
function (KDF); all TLS versions up to version 1.2 mandate
that the DH premaster secret must be stripped of leading zero
bytes before it is used to derive connection secrets. Since
the first step of the KDF is to apply a hash function to the
secret, this hash calculation will use less internal iterations
if a critical number of leading zeros has been stripped. For
example, for SHA-384 (cf. Table 1), the internal block size
is 128 bytes. Due to the structure of the length and padding
fields used in SHA-384, the last hash input block can contain
up to 111 bytes. Therefore, inputs with up to 239=128+111
bytes will be processed in two blocks. For inputs with 240
bytes and more, at least three hash blocks are necessary.

Processing an additional hash block results in an additional
hash compression computation. Therefore, for some DH
modulus sizes, the KDF is faster for premaster secrets with
leading zero bytes, since these zero bytes will be stripped. If
an attacker can learn the number of hash compression compu-
tations performed with the premaster secret based on precise
timing measurements, the attacker is also able to learn some
leading bits of the premaster secret. This behavior allows the
attacker to create a most significant bits (MSB) oracle from

a server and to determine the most significant bits of the DH
secret.
The Hidden Number Problem. In 1996, Boneh and Venkate-
san presented the Hidden Number Problem (HNP) [16], orig-
inally to show that using the most significant bits (MSB) of
a Diffie-Hellman secret is as secure as using the full secret.
Their proof includes an algorithm that, given an oracle for
the MSBs of DH shared secrets where one side of the key
exchange is fixed, computes the entire secret for another such
key exchange. The algorithm presented in that seminal work
uses basis reduction in lattices to efficiently solve the Closest
Vector Problem.

While initially presented as part of a positive security result,
the HNP and algorithms for solving it later found use as
components in cryptographic attacks. For example, such
algorithms have been used to break DSA, ECDSA, and qDSA
with biased or partially known nonces [9,11,17,23,48–50,62].

Perhaps surprisingly, the original target of the HNP, Diffie-
Hellman key exchange, remained hitherto unattacked. We
close this gap by presenting the first full HNP-based attack
on TLS-DH(E).
Raccoon attack. The Raccoon attack can recover TLS-
DH(E) premaster secrets from passively-observed TLS-
DH(E) sessions by exploiting a side channel in the server
and solving the Hidden Number Problem using lattice reduc-
tion algorithms. The attack requires that the server reuses
the same Diffie-Hellman share across sessions which is pro-
vided by a server with static TLS-DH or by a server reusing
ephemeral keys in TLS-DHE [61].

On a high level, the attack works as follows (cf. Figure 1):

1. The attacker records the TLS handshake, including both
the client DH share ga and the server share gb.

2. The attacker initiates new handshakes to the same server
(therefore with the same gb), using gri ·ga for some ran-
domly chosen ri. The premaster secret for these new
sessions is (gri ·ga)b = grib ·gab. The attacker can com-
pute the first term, and the second term is the targeted
DH secret.

3. For each handshake, the attacker measures the response
time of the server. For some modulus sizes, DH secrets
with leading zeroes will result in a faster server KDF
computation, and hence a shorter server response time.

4. Assume temporarily that the attacker can perfectly detect
the above case. Each such case can be converted to
an equation in the Hidden Number Problem. When a
sufficient number of equations has been determined, the
HNP can be solved to calculate gab, the secret Diffie-
Hellman value of the original handshake. The attacker
can then decrypt the original TLS traffic to recover its
plaintext.

Contributions. We make the following contributions:

• We present a novel side channel, stemming from the

2

TLS-DH(E) standard that leaks the value of most signifi-
cant bits of a DH shared secret.
• We demonstrate that this side channel can be exploited

in real-world settings, allowing an adversary to decrypt
TLS traffic. More broadly, our findings serve as another
example of the dangers of non-constant-time compu-
tations in cryptography, which are relevant to crypto-
graphic protocols beyond TLS.
• We perform large-scale scans of the most prominent

servers on the Internet to estimate the impact of the
vulnerability. Interestingly, with our scans, we were able
to find servers presenting different behavior based on
the first byte of the premaster secret; this allowed us to
construct a direct form of our Raccoon attack.
• We report the first attack targeting finite-field Diffie-

Hellman using the Hidden Number Problem as a crypt-
analytic tool.

Responsible Disclosure. We responsibly disclosed our find-
ings to large server operators, major TLS implementations,
the IETF, and our national CERT. F5 assigned the issue
CVE-2020-5929. In particular, several F5 products enable
a special version of the attack, without the need for precise
timing measurements.1 OpenSSL assigned the issue CVE-
2020-1968 2. OpenSSL does use fresh DH keys per default
since version 1.0.2f from 2016. To further mitigate the at-
tack, the developers moved all remaining DH cipher suites
into the weak-ssl-ciphers list. In addition, motivated by this
research, the developers also activated the fresh generation
of EC ephemeral keys in OpenSSL 1.0.2w. Mozilla assigned
the issue CVE-2020-12413. It has been solved by disabling
DH and DHE cipher suites in Firefox (which was already
planned before the Raccoon disclosure). Microsoft assigned
the issue CVE-2020-1596.3 BearSSL and BoringSSL are not
affected because they do not support DH(E) cipher suites.
Botan, Mbed TLS and s2n do not support static DH cipher
suites. Their DHE cipher suites never reuse ephemeral keys.
Artifacts Availability. We will publish the source code used
for this paper under an Open Source license.

2 Background

Here we provide a description of the Transport Layer Security
(TLS) handshake protocol and its key derivations.

2.1 Transport Layer Security (TLS)
The TLS protocol (previously known as SSL) provides con-
fidentiality, integrity, and authenticity to many common ap-
plications on the Internet. The latest version of the protocol
is TLS 1.3 [54], while the older versions TLS 1.0, 1.1, and

1https://support.f5.com/csp/article/K91158923
2https://www.openssl.org/news/secadv/20200909.txt
3https://portal.msrc.microsoft.com/en-US/security-guidance/

advisory/CVE-2020-1596

1.2 [26–28] are currently still deployed alongside of it. The
older versions SSLv3 and SSLv2 are not considered to be
safe to use anymore. SSLv3 and TLS versions 1.0 to 1.2 all
share a similar structure. TLS 1.3 overhauled the design of
the protocol and is fundamentally different from the previous
versions. In this work, we focus on SSLv3 and TLS versions
1.0 to 1.2.

The TLS protocol structure consists of two phases. In
the first phase, called the handshake, the client and server
negotiate the cryptographic algorithms and establish session
keys. In the second phase, the peers can securely send and
receive application data using the record protocol, which is
encrypted and authenticated using the keys and algorithms
established in the previous phase.

The aforementioned choice of cryptographic algorithms
is called a TLS cipher suite [28]. More precisely, a cipher
suite is a concrete selection of algorithms for all of the re-
quired cryptographic tasks. For example, the cipher suite
TLS_DHE_RSA_WITH_AES_128_CBC_SHA uses ephemeral DH
key exchange and RSA signatures over server DH shares in
order to establish a shared session key. In order to encrypt and
authenticate data, it uses symmetric AES-CBC encryption
with a 128-bit key and SHA-1-based HMACs.

In the following, we focus on cipher suites using DH(E) as
the key exchange method. To establish a TLS connection, the
client starts the TLS handshake by sending a ClientHello

message, which contains the supported cipher suites, the sup-
ported version(s), and TLS features, as well as a nonce (called
ClientRandom). The server answers this with a ServerHello,
containing a selected cipher suite and version, a nonce (called
ServerRandom), as well as other TLS features, which should
be used in this session. The server follows this message
up with a Certificate message, which contains an X.509
certificate of the server. In static-DH cipher suites, this
certificate contains a long-lived Diffie-Hellman public key
(g, p,gb mod p), while in TLS-DHE cipher suites the cer-
tificate contains an RSA or DSA public signature key. If a
DHE cipher suite is selected, the server sends a server key
exchange message, containing the ephemeral public DH key
(g, p,gb mod p), as well as a signature, generated with the pri-
vate key corresponding to the server’s certificate. The server
then sends a ServerHelloDone message, which signals to the
client that the server has finished sending this flight of mes-
sages. The client then sends a ClientKeyExchange message,
containing the client public key ga. Both parties now have
the cryptographic material to compute a shared secret called
the premaster secret (PMS) as gab = (ga)b = (gb)a (mod p).
The PMS is then used to derive the master secret using a key
derivation function (which we describe below); the master
secret is then used to derive the individual symmetric keys.
The client then sends a ChangeCipherSpec message, indi-
cating to the server that the following messages sent from
the client to the server will be encrypted. The last message
sent by the client within the handshake is a Finished mes-

3

https://support.f5.com/csp/article/K91158923
https://www.openssl.org/news/secadv/20200909.txt
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1596
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1596

sage, which contains a cryptographic checksum over the tran-
script of the connection. The server answers this with its own
ChangeCipherSpec message, indicating that from now on, all
messages are encrypted, followed by the server’s Finished
message.

2.2 Hash Functions

Hash functions are mappings h : {0,1}∗→{0,1}N which are
one-way, collision-free and do not allow to compute second
preimages [24]. A real-world hash function with close to
unbounded input length cannot be evaluated in constant time;
rather, for any reasonable implementation, the running time
for an input of length k is O(k). This can result in a timing side
channel in real-world applications if the hash function is used
with secret inputs of varying lengths [6]. Most common cryp-
tographic hash functions are built using a Merkle-Damgård
construction [24]. In this construction, the input is split into
fixed-size blocks, and each block is mixed into a state of the
computation using a compression function, until all blocks
have been processed. Prior to feeding the blocks to the com-
pression function, the input is extended by a length field, and
then padded to a multiple of the block size of the hash func-
tion; the extension and padding may necessitate creating an
additional input block. In some constructions, the output is
fed to a finalization function, which compresses the internal
state to the final output.

m1 m2 mn-1 mn

f f f f...

........

final Hash

Figure 2: Merkle-Damgård construction of common hash
functions, such as MD5, SHA-1 and SHA-256.

Table 1 gives an overview of hash functions relevant to this
work. The second and third columns indicate the input and
output block size, respectively.4 The fourth column provides
the minimal number of bytes appended to the input. For
example, when using SHA-256 (which uses a block size of
64 bytes), at least 9 bytes have to be appended to the input
message. Therefore, messages of up to 55 bytes will be
processed as one block, using two calls to the compression
function (due to the finalization function). Messages of length
between 56 and 128−9 = 119 bytes will be processed as two
input blocks, using three calls to the compression function.
Table 1 provides further examples for input block boundaries.

4Technically all presented hash functions operate on bits instead of bytes.
However, they are almost universally only used with bit lengths that are a
multiple of 8. Therefore our analysis only focuses on these cases.

Hash
function

Input
block
size

Output
size

Length
and
padding

Input block
borders

MD5 64 16 8+1 55, 119, 183, ...
SHA-1 64 20 8+1 55, 119, 183, ...
SHA-256 64 32 8+1 55, 119, 183, ...
SHA-384 128 48 16+1 111, 239, 367, ...

Table 1: Properties of common hash functions. The second
and third columns indicate the input and output block sizes.
The fourth column indicates the minimum size of the length
field and padding in the last block. The last column indicates
the maximum input sizes fitting into one, two, and three
blocks, respectively. All values are denoted in bytes.

2.3 Key Derivation
Modern DHKE based protocols do not use the shared cryp-
tographic secret K = gab (or parts of it) directly as the key to
symmetric algorithms. Instead, K is used as the input to a
KDF which uses a fixed-size intermediate value seed, from
which then arbitrary many pseudorandom bytes are derived.
TLS (and other typical cryptographic protocols) use a KDF
based on HMAC [41].

HMAC is a mechanism to compute message authentication
codes based on hash functions. The HMAC construction can
be instantiated with any hash function H and then inherits the
parameters of this function. For example, HMAC-SHA1 has
an internal block size of 64 bytes and an output size of 20
bytes.

HMACH(K,M) = H
(
(K⊕opad)||H

(
(K⊕ ipad)||M

))
Here K is a secret key, and opad and ipad are byte arrays
of hash input block size B filled with bytes 0x36 and 0x5C,
respectively. The secret key K must also have a fixed length B.
Therefore, before computing the HMAC, K is either padded
with zeros (if |K| < B) or hashed with the hash function H
(if |K| > B). Note that such an additional hash function in-
vocation on the secret key K can result in measurable timing
differences.

HMAC provides a foundational mechanism to design a
pseudorandom function (PRF) for key derivation and key
expansion. TLS uses such a PRF. The PRF in TLS uses
a single hash function H, a secret K, a label, and a seed to
expand cryptographic material [28]:

PRF(K, label,seed) =HMACH(K,A1 || label || seed) ||
HMACH(K,A2 || label || seed) ||
HMACH(K,A3 || label || seed) || ...

where A0 = label || seed and Ai = HMACH(K,Ai−1). Here
the label is a distinguishing ASCII string constant defined in
the TLS standard. The number of PRF iterations depends on
the desired output length. For example, three iterations can
be used to produce up to 96 output bytes if SHA-256 is used.

4

2.4 The Hidden Number Problem
To solve the Hidden Number Problem (HNP) [16], an adver-
sary must compute a secret integer α (in our case the premas-
ter secret of the TLS-DHE session under attack) modulo a
public prime p with bit-size n, given information about the
k most significant bits (MSBs) of the n-bit representation of
random multiples α · ti mod p of this secret value. From these
MSBs the adversary can construct integers yi (e.g., by setting
the MSBs of yi as the known bits, and all other bits to 0)
such that for each i we have 0≤ α · ti mod p− yi < p/2` for
some ` > 0. Each triple (ti,yi, `) contains ` bits of informa-
tion on α. The number ` := k−n+ log2(p) ∈ [k−1,k] can
be considered the effective number of given MSBs. This num-
ber can also be written as ` = k− ε, where ε = n− log2(p)
represents the bias of the modulus (see Table 3 for the ε of
some well-known DH groups). If ` is not too small and we
have a moderate number of equations, the hidden number α

can be recovered by solving a Closest Vector Problem (CVP)
in a lattice [16, 34, 49]. If ` is small and a large number of
equations is available, Fourier analysis is considered more
promising [3, 47].

3 Raccoon Length Distinguishing Oracles

In this section we describe length distinguishing side channel
oracles which may be used in the Raccoon attack. All of these
oracles exploit the following fact:

The key derivation function KDF strips leading ze-
ros from the computed DH secret gab and performs
further computations based on this stripped value.

These computations can result in different timing behaviors
based on the number of removed bits or different error behav-
ior. An attacker observing the timing behavior can construct
an oracle from the behavior of an application using Diffie-
Hellman (DH) key exchange and use it to leak some of the
most significant bits (MSB) of the shared secret. While such
an attack is not critical in practical scenarios, it already in-
validates the standard indistinguishability assumption of the
cryptographic primitives used (DDH, PRF-ODH, see Ap-
pendix A). In section 4, we show how these oracles can
be constructed from TLS servers, and in section 5 how they
can be used to run a full attack and uncover the complete
premaster secret.

3.1 OH: Hash Function Invocation
In HMAC constructions (RFC 2104 [41]), the shared secret
key gab may either be used directly in the HMAC computation
(if |gab| is smaller than the maximal HMAC key size), or it
must be hashed to a smaller size.

Consider a server that uses a DH prime modulus p with
|p|= 1025 bits and a PRF based on HMAC-SHA384. For this
PRF, the secret key k can at most be 128 bytes long, which is

the input block size of the hash function SHA-384 (Table 1).
For this purpose, the KDF first strips leading zero bits and
then converts K to a byte sequence. Now the KDF program
branches:

1. If the length of the byte sequence is at most 128 bytes,
this byte sequence is used directly as the HMAC key k.

2. If the length of the byte sequence is bigger than 128
bytes, the SHA-384 hash function is invoked once on this
byte sequence, and the resulting hash value, padded with
80 zero bytes, is used as the HMAC key: k = h||0x0...0.

Now assume that a man-in-the-middle (MitM) attacker
observed a DH key exchange. The goal of the attacker is
to learn the first bit of K = gab mod p. As described above,
there are two possibilities for a server-side KDF to process
the shared secret K = gab:

• The most significant bit of K is 0. The server strips the
leading zero bit and converts K to a byte array which
will consist of 128 bytes. Since the byte array is 128
bytes long, it is directly used in the HMAC computation:
HMACSHA−384(K, seed).
• The most significant bit of K is 1. The server converts

K to a byte array, which will consist of 129 bytes. A
129-byte long shared secret cannot be directly used in
the HMAC computation (see also subsection 2.3); before
computing HMAC, the server needs to compute SHA-
384 over K. It can then use the SHA-384 output as an
input for the HMAC computation.

Observe how a shared secret K starting with 1 results in
an additional SHA-384 hash function invocation over K. In
the previous example, the modulus was exactly one bit bigger
than the block size of the hash function and leaked only the
most significant bit of the PMS. If the modulus is k bits bigger
than the block size, the attacker has a chance of 1/2` to leak the
top k bits of the PMS. As we show in section 6, this timing
difference is observable by a remote attacker.

3.2 OC: Compression Function Invocations
This oracle exploits the number of invocations of the internal
compression function if the second branch in OHoccurs, i.e.,
if the shared DH secret K = gab is bigger than the input block
length of the HMAC hash function.

As mentioned in subsection 2.2, hash functions based on
the Merkle-Damgård scheme operate on blocks. The number
of blocks a hash function has to process depends on the input
length (see Table 1). If the DH shared secret K is used as a
key for an HMAC computation, it can have distinct timing
profiles depending on its length.

To give an example for HMAC-SHA384, consider a 1913-
bit DH modulus p, which is encoded in 240 bytes. The server-
side KDF implementation now has to invoke the hash function
over the shared key K, since K is much larger than the allowed

5

128 bytes. We now get a MSB oracle from the number of
compression function invocations:

1. If the most significant bit of K is 0, K will be coded into
239 bytes. Even with the 17 bytes added for length and
padding (cf. Table 1), it will fit into two blocks. Thus,
the server will execute three hash compressions.

2. If the most significant bit of K is 1, K will be decoded
into 240 bytes. Appending padding and the length field
will fit into three blocks; the server will execute four
hash compressions.

Analogously to the previous oracle, if the modulus is k bits
bigger than a critical block border, the attacker has a chance
of 1/2` to leak the top k bits of the PMS, where `= k− ε (see
subsection 2.4).

3.3 OP: Key Padding
Another side channel arises based on the number of padding
bytes used to pad the DH shared key. The HMAC inter-
face [41] pads keys to the block size of the hash function. The
padding of the shared key can result in a timing side chan-
nel as different key lengths will lead to different amount of
padding applied, and therefore to a different number of calls
to the hash compression function. We show a practical attack
based on this side channel in Appendix E.

3.4 OD: Direct Side Channels
Until now, we discussed side channels based on small timing
differences in the processing of the shared DH secret. How-
ever, it is possible that an implementation provides a direct
oracle which does not rely on timing differences but relies
on direct differences in behavior, such as error messages,
handling of the connection state (like closing the underlying
socket), or otherwise. If an implementation behaves differ-
ently depending on the shared secret, it provides an attacker
with a direct side channel. The reason why these direct oracles
might be plausible is that, for example, the zero byte is consid-
ered a special character in many programming languages. For
example, in C the zero byte is used to terminate strings. This
can result in programming errors, which can, in return, lead
to observable differences in response to network queries. We
show in section 7 that a large number of real-world servers
indeed present such directly observable behavior differences.
In all observed cases, this side channel only leaked the most
significant byte of the PMS, which is equivalent to a leak of
k = n mod 8 bits for a prime p of bit-size n.

3.5 Further Oracle Considerations

Big number libraries. Even if a protocol does maintain lead-
ing zero bytes of the shared secret, the big number library
used might introduce one of the oracles OH, OC, OP, or OD,
which leaks the most significant bits. If the big number li-
brary does not maintain fixed-size big numbers internally, the

resulting shared secret has to be padded by the application to
the modulus size if the shared secret has fewer bytes than the
modulus. An example of this side channel in OpenSSL can
be found in Appendix B.

Hitting the block boundaries with dangerous modulus
sizes. In our examples above, we used unusual modulus
sizes of 1025 and 1913 bits to instantiate the length distin-
guishing oracles. We arrived at these numbers by comput-
ing the input lengths for a given hash function that leak the
top x leading zero bits of the potential input at the critical
block border of the nth block, using the following formula:
cbb(x,b, p,n) = n∗b− p+x, where b is the block size of the
hash function in bits, and p is the fixed padding part of the
hash function, also in bits.

On the reliability of timing side channels. If the attacker
uses a timing side channel, likely, the oracle will occasionally
give wrong results, as timing measurements are inherently
noisy. Thus, any classifier will exhibit some probability of
false classification. The distinguishing attack can be made
practical if the attacker can send several queries to the target.
The attacker can then use a standard statistical test to build
an efficient, reliable oracle out of the noisy oracle OH(Hash
Function Invocation Oracle). We give more details in subsec-
tion 6.1.

4 Raccoon Length Distinguishing Oracles in
TLS

SSLv3, TLS 1.0, TLS 1.1, and TLS 1.2 prescribe stripping
leading zero bytes of the computed DH shared secret. The
DH shared secret in TLS is called premaster secret and is
directly used as an input into a key derivation function, which
makes the protocol vulnerable to the Raccoon attack (if the
implementation took no special precautions).

In this section, we first describe the high-level attack sce-
nario. The main contribution of this section is a detailed analy-
sis of the different TLS key derivation functions, which results
in different critical block boundaries (cf. subsection 3.5 and
Table 2) to trigger the length distinguishing oracles. We con-
centrate our analysis on OHand OC, which are provided by the
TLS design combined with the hash function properties (e.g.,
different timing profiles for inputs of different block lengths).
We stress that OPand ODare implementation-dependent and
can potentially be found exploitable at any block boundaries.

4.1 TLS Attack Scenarios
For both attack scenarios described below, the attacker needs
access to a functional oracle from section 3, and a TLS-DHE
or a connection with a static TLS key share in a vulnerable
TLS version has to be negotiated by the honest client and
server.

Raccoone: Length distinguishing attack on ephemeral
keys. The goal of the Raccoone attack is to detect the leading

6

bits in the DH shared secret in a MitM attacker model with
ephemeral keys. If the attacker wants to perform the attack, it
can measure the presented side channels in section 3 at two
different positions within a TLS connection:

• The attacker can target the server and measure the time
the server used to compute the premaster secret. The
attacker can do this by measuring the time between the
server receiving the ClientKeyExchange message and
the server sending its Finished message.
• Or, the attacker can target the client and measure the

time the client used to compute the premaster secret. The
attacker can do this by measuring the time the client took
to read the ServerKeyExchange message up to sending
the Finished message by the client.

By repeatedly observing TLS-DHE handshakes between
an honest client A and an honest server B the attacker can
learn typical timing values. After this, the attacker will be
able to detect if leading zero bytes are present in the unknown
pms by observing faster response times.

This length distinguishing attack is applicable even if the
server does not reuse ephemeral DH values.
Raccoons: Length distinguishing attack on a static key. In
this scenario, the attacker has recorded a previous TLS-DH(E)
session, and the goal is to recover the length of the premaster
secret used in this session between two honest peers. In
contrast to Raccoone, in this scenario, the server uses a static
key, or is reusing the same ephemeral DH secret for a certain
period of time, covering the recorded TLS-DHE session and
the full duration of the attack.

To perform the attack, the attacker selects an appropri-
ate oracle of OH, OC, OPand OD from section 3, con-
nects to the server and sends a Diffie-Hellman share in a
ClientKeyExchange message. For the length distinguishing
attack, this ClientKeyExchange message contains the origi-
nally observed key share from the honest client. Note that
an attacker can also send related key shares here to retrieve
the MSB of related premaster secrets (see subsection 5.1 for
the details). Note that the attacker cannot construct a valid
Finished message since the secret key is unknown to the at-
tacker. The server receiving a message crafted by the attacker
will, therefore, terminate the connection by either sending a
fatal Alert message or closing the TCP connection. However,
the server always needs to compute the premaster secret and
derive the master secret using the PRF. Therefore, the server’s
response will depend on the leading bits of the premaster se-
cret.

If the attacker uses a timing side channel, the reliability
of the side channel can be improved as described in subsec-
tion 3.5.

4.2 Analysis of TLS Key Derivations
Since the TLS key derivation is of special interest for this
paper, we will analyze it in detail. The starting point for the

key derivation is the PMS. For TLS-DH(E), this value is
computed as the result of a DHKE in Z∗p with prime modulus
p, with leading zero bytes stripped. In a two-step key deriva-
tion, first a master secret is computed from this premaster
secret, and then two sets of keys (one for each communication
direction) are derived from the master secret.

How exactly the master secret is derived from the pre-
master secret depends on the negotiated protocol version
and cipher suite. Note that an attacker can observe the
ClientKeyExchange message on any version or cipher suite
and then send it as part of a different protocol version and
cipher suite to a server (as long as the server supports it). We
now analyze different TLS versions and how they use the
premaster secret to derive further keys with their PRFs. Our
analysis of critical block borders is summarized in Table 2.

Protocol version /
Cipher suites

Key derivation Critical pms comp.
block borders

TLS 1.2 (_SHA384) SHA-384 PRF 128, 239, 367, ...
TLS 1.2 (others) SHA-256 PRF 64, 119, 183, ...
TLS 1.0 and 1.1 MD5/SHA-1 PRF 110, 238, 366, ...
SSLv3 Custom MD5/SHA-1 45, 54, 55, 56, 99, 118,

119, 120, ...

Table 2: Key derivation properties of non-PSK cipher suites.
The first and second column provide the protocol version,
cipher suite, and the hash algorithms used in the key derivation
function. The last column provides critical block borders for
premaster secrets pms. For example, a 239-byte long pms
consumes one less SHA-384 hash compression than a 240
bytes long pms. The values are in bytes.

TLS 1.2. In TLS 1.2 the master secret is derived from an
HMAC-based PRF construction. The master secret is com-
puted as:

ms = PRF(pms, label,ClientRandom || ServerRandom) .

The premaster secret will be used as a key for HMAC op-
erations within the PRF. The used HMAC depends on the
selected cipher suite. Per default, SHA-256 is used, but the
cipher suite could also specify the usage of SHA-384 (if the
cipher suite name ends with _SHA384). For TLS 1.2 the side
channel analysis of section 3 can be directly applied. The
premaster secret maximum size is the size of the DH key.
In configurations with recommended DH key sizes larger
than 2000 bits, the computed premaster secret will with over-
whelming probability be larger than the block border (64 bytes
for SHA-256 and 128 bytes for SHA-384). If the premaster
secret is larger than the block size of the hash function, it must
be hashed before using it in the HMAC computation. This
potentially enables a side channel based on the number of
hash compression function invocations (cf. subsection 3.2).

Note that in the case of SHA-384-PRFs with DH key sizes
slightly bigger than 1024 bits, the hash function invocation

7

side channel and the resulting oracle OHcan be used (cf. sub-
section 3.1).

TLS 1.0 and TLS 1.1. These two protocol versions use the
same PRF, which is based on a combination of SHA-1 and
MD5. In this PRF, the premaster secret is split into two halves:
The first half enters an expansion function based on MD5,
while the second half enters a distinct PRF based on SHA-1.
The final output of the TLS 1.0 and 1.1 PRF is the XOR of
these two expansion functions. If the premaster secret has an
odd number of bytes, the byte in the middle of the PMS will
be used by both halves.

Since TLS 1.0 and TLS 1.1 split the shared secret into
two halves, the computations for inputs that reach the block
borders changes in comparison to TLS 1.2, as each hash
function adds its own padding and length bytes internally.
Note that since two hash functions are used at the same time
(with identical input lengths and hash function properties such
as input block size, length, and padding, see Table 1), the
created side channel is amplified. For TLS 1.0 and TLS 1.1
the size of inputs which leak the top x leading zero bytes at
the nth block border can be computed with the formula

cbbTLS1.0/1.1(x,n) = (64n−9) ·2+ x , (1)

where x is the number of most significant bytes to be leaked.

SSLv3. Even though SSLv3 is deprecated, there still exist
servers on the web which support it.5 SSLv3 key derivation is
strictly different from the key derivation used in TLS. While
the leading zero bytes from the premaster secret are stripped,
the master secret is then computed as

ms :=MD5(pms || SHA1(pms || ”A” || r1 || r2)) ||
MD5(pms || SHA1(pms || ”BB” || r1 || r2)) ||
MD5(pms || SHA1(pms || ”CCC” || r1 || r2)) ,

(2)

where r1 := ClientRandom and r2 := ServerRandom.
This computation results in more opportunities for an at-

tacker to construct a possible side channel from an additional
hash function compression invocation. The outer MD5 func-
tions hash the shared secret in concatenation with the output
of the inner SHA-1 function. The outer function adds an off-
set of 20 bytes to the shared secret. As this operation is done
three times, the side channel within the MD5 computation
is amplified by a factor of three. The inner SHA-1 computa-
tion hashes different inputs each time. The first call hashes
a label of length 1, while the second call hashes a label of
length 2, and the last call hashes a label of length 3. Each time
two (32-byte long) random values of the client and server are
hashed as well. This generates a total offset of 65, 66 and 67
bytes, respectively. The resulting inputs (in bytes) which leak
the top x leading zero bytes at the nth block in SSLv3 can

5According to the SSL pulse measurements of September 2020, SSLv3
is supported by 4.4% of the servers from the Alexa top 150k list.

therefore be computed as:

cbbSSL(x,n) = 64n− (9+20)+ x

cbbSSL−A(x,n) = 64n− (9+65)+ x ; n > 1
cbbSSL−BB(x,n) = 64n− (9+66)+ x ; n > 1

cbbSSL−CCC(x,n) = 64n− (9+67)+ x ; n > 1

(3)

TLS DHE-PSK. Although not as widespread, TLS also of-
fers a variety of cipher suites that allow the usage of preshared
keys (PSK) [31]. In DHE-PSK, the client basically performs
the same handshake as a normal DHE handshake, resulting in
the shared DH value gab mod p. Then, both client and server
authenticate using a premaster secret which is computed based
on the preshared key PSK as

pms := len(gab mod p) || gab mod p || len(PSK) || PSK ,
(4)

where len(x) indicates a two-byte length value of x (in bytes).
Since DHE-PSK changes the way the premaster secret is

computed, the block borders for the Raccoon attack change
as well. Interestingly, the block borders depend on the length
of the preshared key PSK. DHE-PSK shifts the length of
the PMS, which enters the PRF by 4+ |PSK| bytes. This
can bring modulus sizes that are far away in proximity to the
critical block border for the attacker. An attacker being able to
set a PSK for an arbitrary, attacker-controlled identity could
also use precise PSK values resulting in advantageous critical
block boundaries. A related side channel exists in SSH and is
described in section 8.

If the attacker is not an authenticated user, they could use
the DHE-PSK premaster secret processing within the PRF to
perform another attack. Since the PSK length also directly
influences the PRF computation time, the server response
time could be used to determine the length of the preshared
key. Note that this attack is possible even if the server does
not repeat the DH public keys and strictly uses ephemeral
keys in DHE-PSK.

4.3 Dangerous TLS Modulus Sizes
Since the server chooses the modulus size and the attacker
has no variable-size inputs to the PRF (except for DHE-PSK
cipher suites), the attacker cannot influence the block borders
of the hash function and thus optimize their usability as a
side channel. Usually servers choose moduli whose lengths
are of the form 2n, like 210 = 1024, 211 = 2048 or 212 =
4096. The server is free to deviate from these and move to
arbitrary sizes. For common bit lengths 2n, the block border
will never realistically reach a critical block border as the
PMS would require too many leading zero bits. However,
if a server deviates from these common modulus sizes, it
can become possible for an attacker to hit the critical block
borders. For example, LibTomCrypt6 used to create 1036 bit

6https://github.com/libtom/libtomcrypt

8

moduli, which would make OH feasible. A list of dangerous
modulus sizes is given in the appendix in Table 5.

5 Raccoon Premaster Secret Recovery Attack

Until now, we have discussed a distinguishing attack on TLS,
which allows an attacker to determine leading zero bytes
of the premaster secret. If the server reuses the DH values
for multiple connections (cf. [61]), the distinguishing attack
can be turned into a full premaster secret recovery attack.
This is the case for TLS-DH and for TLS-DHE if the server
disrespects best practices and reuses ephemeral keys. Our
attack is based on the well-known Hidden Number Problem
described by Boneh and Venkatesan [16].

5.1 Attack Scenario

We use the attack scenario Raccoons from subsection 4.1
which leaks the top k bits of the PMS. We assume the server
reuses the same secret DH exponent b; this reuse does usually
not depend on the TLS version or cipher suite (besides not
considered export cipher suites), so our Raccoons attacker
can choose a beneficial TLS version and cipher suite for the
attack, as long as it is supported by the server. The attack
proceeds in two phases:

Phase 1: Passive MitM. In this phase, the attacker records
a complete TLS-DH(E) session and extracts ga from
the ClientKeyExchange message as well as gb from the
ServerKeyExchange or Certificate message.

Phase 2: Active web attacker. In this phase, the attacker
interacts as a client with the server. However, instead of
choosing a secret ephemeral DH value a′ and sending ga′

in the ClientKeyExchange message, the attacker chooses
random values ri ∈ Zq and includes the value xi = gagri in
the ClientKeyExchange message (cf. Figure 3). To fin-
ish this part of the TLS handshake, the attacker sends a
ChangeCipherSpec and the client’s Finished message, where
the content of the Finished message is chosen randomly be-
cause the attacker lacks the keys (master secret and the sym-
metric keys) to compute a valid Finished message correctly.

After sending ClientKeyExchange, the attacker starts mea-
suring a chosen length distinguishing oracle OH, OC, OP,
or OD, until some Alert message arrives from the server.
The attacker repeats the measurement by sending the same
value ri to the server until some statistical test (e.g., Mann-
Whitney [44]) indicates that a sufficiently high probability
level has been reached. If the measurement indicates that the
leading k bits have been stripped, we have found another can-
didate ri for an HNP equation. However, this only happens
with probability 1/2`, where ` is the effective number of leaked
bits, which depends on the modulus p (see subsection 5.2).
The chosen value ri is then used to construct another equation
for the HNP instance to be solved. If the measured time indi-
cates that less than k bits have been stripped, which happens

with probability 1− 1/2`, a new random value r′i is chosen by
the attacker.

We describe another attack scenario against the unused
static-DH client authentication in Appendix D.

5.2 Constructing an Instance of HNP

For a given DH group G with modulus p of bit-size n and
generator g of order q, we define our instance of the Hidden
Number Problem (HNP) as follows. Let Ok,b(x) be one of the
oracles out of OH, OC, OP, and OD that reveals if the k most
significant bits of the n-bit number xb mod p are zero:

Ok,b(x) =

{
True if MSBk(xb mod p) = 0 ,
False otherwise .

To attack a DH key exchange (ga mod p,gb mod p) be-
tween Alice and Bob with shared secret gab mod p and
key reuse by Bob, the attacker chooses random values
ri ∈ Zq and initiates key exchanges with Bob by sending
xi = gagri mod p. If the attacker has access to an ora-
cle Ok,b(x) and if Ok,b(xi) = True, the attacker learns that
0 < xi

b mod p = gabgbri mod p < 2n−k. Subtracting 2n−k−1,
we obtain the centered equation∣∣α · ti mod p− yi

∣∣< 2n−k−1 = p/2`+1 , (5)

where α := gab mod p is unknown (the hidden number) and
ti := (gb)ri mod p, yi := 2n−k−1 are known to the attacker.

Equation 5 corresponds to the randomized version of HNP
as defined by Boneh and Venkatesan [16], except that in our
case the oracle does not reveal the MSBs directly, but only
whether they are zero or not. Moreover, we center the equation
around zero and take the bias of p into account, as described
by [49].

5.3 Computing the Premaster Secret

Once the attacker has constructed an instance of the HNP, the
attacker can solve the equation system to retrieve the hidden
number gab, which is the premaster secret of the connection
the attacker observed in phase 1 of the attack. We will show in
subsection 6.2 that this is indeed possible. With the premaster
secret the attacker can then derive the master secret; with
the master secret the attacker can proceed to compute the
symmetric keys and decrypt the connection.

6 Evaluation

In this section, we will analyze if the requirements of the Rac-
coon attack can actually be fulfilled by a real-world attacker,
namely, measuring the timing difference by the created side
channel and solving the HNP for real modulus sizes with
realistic leak lengths.

9

Figure 3: Processing time to compute HMAC-SHA-256 and
HMAC-SHA-384 with keys of varying lengths for inputs
1KB in length, measured in CPU cycles. Reported values are
medians across 10,000 experiments per key length, performed
with OpenSSL version 1.1.1.

6.1 Timing Measurements
As demonstrated by the Lucky Thirteen attack [6], applying a
hash function to inputs of varying lengths results in a measur-
able difference in processing times. We now shortly revisit
this finding by evaluating the OpenSSL library (version 1.1.1),
before putting it in the context of our attack.

Figure 3 plots the processing time, measured in cycles,
to compute HMAC with SHA-256 and SHA-384 for keys
of varying lengths, on 1024-byte messages. To simplify the
presentation, we report the median processing time across
10,000 experiments per input length. The step-like increase in
processing time as the key size increases can clearly be seen.
The first step in the increase of processing time is due to oracle
OH, the hash function invocation oracle. The subsequent,
slightly smaller steps are due to oracle OC, the compression
function invocation oracle. The smallest visible steps (for
SHA-256, when the input length is 128 · k− i,1≤ i≤ 8, and
similarly for SHA-384) are due to oracle OP; we analyze the
cost of exploiting this side channel in Appendix E.
Is the difference in processing times measurable in a re-
mote setting? To measure if the side channel is big enough
for a remote attacker, we created a test setup consisting of
two (non-virtual) machines, one simulating the attacker ma-
chine and one simulating a victim server. The machines are
directly connected with a 1 Gbit/s connection. The attacker
machine used an Exablaze ExaNIC HPT network adapter.
This network card is specifically built to generate high preci-
sion hardware timestamps.

For the evaluation, a tool on the attacker machine repeatedly
handshaked with the victim TLS server. The tool generated

a DH private value and computed the resulting DH shared
secret, alternating between handshakes where the DH secret
starts with a single leading zero byte or no leading zero bytes.
For each handshake, the tool recorded if the MSB of the DH
secret is zero, and the server’s response time. To analyze
whether the side channel is measurable we used a modulus
size of 1032 bits, as this creates the hash function invocation
side channel OH (see subsection 3.1). We collected 100,000
measurements each for premaster secrets with a leading zero
byte and without a leading zero byte.

In broad terms, the attacker would use a classifier to ap-
proximate the oracle’s response. That is, the attacker collects
server response times when handshaking with client DH share
ga, and attempts to deduce from these measurements the ora-
cle response OH(ga). Any classifier will exhibit some proba-
bility of false classification. False negatives occur when the
classifier concludes that OH(x) = False when OH(x) = True.
Similarly, false positives occur when the classifier wrongly
concludes OH(x) = True when OH(x) = False.

In our experiments, the Mann-Whitney test [44] performed
very well for distinguishing between the two cases. This test
can be configured with a desired false positive probability,
which then determines the (empirical) false negative probabil-
ity. With 100 samples per case, and a 10% false positive rate,
the false negative rate is 10.4% (we have also empirically
confirmed that the false positive rate is 10%). To estimate
these false-reporting rates, we conduct 200,000 experiments,
where in each experiment the samples for each set are ran-
domly selected from the pool of 100,000 collected samples.
Increasing the number of samples to 1,000 allows achieving
a false positive rate of 0.009200% and a false negative rate of
0.000795%.7

An attacker would have to account for the false reporting
rates when performing the attack. In order to deal with false
positives, the attacker re-measures timings for any reported
positive. That is, the attacker first performs 100 measure-
ments for each x value. For values where the classifier outputs
OH(x) = True, the attacker re-measures the processing time
for x, obtaining 1,000 more samples, and re-runs the classifier.

Iterating over a total of m DH values, in expectation at
most m · 255/256 values are true negatives,8 of which m ·
255/256 · 10% · 0.009200% = m · 9.1 · 10−6 will be falsely
labeled as positives in both classification rounds. Similarly,
m/256 are true positives, of which m/256 ·(1−10.4%) ·(1−
0.000795%)=m ·0.35% will be correctly labeled as positives
in both classification rounds.

The attacker needs to collect roughly 180 true positive
values to solve the HNP problem for a 1024 bit modulus (see
Section 6.2). Choosing m = 55,000 results in 192 correctly

7To estimate these lower rates, we ran our classifier on 20 million sets of
randomly-sampled 1,000 measurements.

8If we denote the most significant byte of the modulus as v, then v−1/256

shared secrets are true negatives. It is common for v to be smaller than 256,
slightly lowering the attack cost, but we prefer to give a worst-case analysis.

10

identified positives in expectation, and 0.5 false positives. The
overall required number of timing samples is therefore 22.34
million. These numbers are not necessarily optimal.
Other classification methods and scenarios. Estimating the
cost of performing the attack over the public Internet is an in-
teresting challenge, but outside the scope of this work. Crosby
et al. have examined the feasibility of performing such timing
attacks and found significant variability that depends on the
attacker and victim hosts and the distance between them [22].
They have also suggested a different classifier than the one we
use, the “Box Test”. We have in fact, initially used this test as
our classifier, but it significantly underperformed the Mann-
Whitney test. Surprisingly, Crosby et al. have also considered
the Mann-Whitney test, but reported that it underperformed
their Box Test [22] (their test setup includes measurements
on the same LAN, similarly to ours, as well as measurements
over the Internet). The reason for this discrepancy is unclear
to us. At any rate, providing a comprehensive comparison of
classifiers is again an interesting task, but also out of scope
for this work.

6.2 Solving the HNP
We simulated and solved the HNP problem for DH groups
G with 1024, 1036, and 2048 bits and varying oracle sizes
k = 8,12,16,20,24.

To reduce the number of exponentiations and impact on
climate change we do not simulate querying the oracle, be-
cause the oracle for varying bit lengths only has a very low
success probability. In order to avoid a large number of false
guesses, we choose values 0 < y′i < 2n−k, which we inter-
pret as a value y′i = gabgbri with MSBk(gabgbri mod p) = 0
for some unknown ri. We then calculate ti := (gab)−1y′i =
gbri mod p, 1≤ i≤ d, and assume that we could have guessed
a corresponding ri with probability 1/2` in the first place.
We take y1 = y2 = . . . = yd = 2n−k−1 and get d equations
|gabti mod p− yi|< p/2`+1, where `= k− ε is the effective
number of bits leaked (see subsection 5.2). To solve this
instance of the HNP, we consider the lattice L(B) in Zd+2

generated by the column vectors of

B =



1
dp/2e

d2`et1 d2`ey1 d2`ep
d2`et2 d2`ey2 d2`ep

...
...

. . .
d2`etd d2`eyd d2`ep


.

This lattice contains the vector v1 = (p,0, . . . ,0)>, which is
usually a shortest non-zero vector. More importantly, the
lattice contains the hidden vector v2 = (α,∗, . . . ,∗)>, where
α = min{gab mod p, p− gab mod p}. The first component
of that vector reveals the secret gab.

The expected length of the hidden vector v2 is approxi-
mately

√
(d +2)/12 · p. On the other hand, by the Gaus-

sian heuristic, the length of a typical vector in L(B) is ap-
proximately

√
(d +2)/(2πe)(detB)1/(d+2), where detB ≈

2`d−1 pd+1. If the number d of equations is sufficiently large
and ` is not too small, v2 is expected to be smaller than typi-
cal vectors in L(B) and we may hope to recover ±v2 as the
second vector (after ±v1) in a reduced basis of L(B).

For our experiments we used the BKZ 2.0 [21] version
of the Block-Korkine-Zolotareff [58] lattice basis reduction
algorithm with two different block sizes β = 40,60. We used
the implementation of the fplll/fpylll library [25] provided by
the SageMath [63] computer algebra system. The results are
shown in Table 3.

6.3 Putting It All Together

As we have shown in subsection 6.1, it generally is possible to
measure the timing difference from the presented side channel.
Depending on the modulus size, the supported version and
cipher suites, an attacker might be able to measure the timing
difference in a remote setup. An attacker can then use the
measurements to solve an instance of the HNP, as described
in subsection 6.2. We showed that for real modulus sizes
(around 1024 bits), we could solve the equations with an 8-bit
leak. This demonstrates that it is generally possible to perform
the Raccoon secret recovery attack against TLS, therefore,
compute the PMS and decrypt the session. Currently deployed
TLS servers also commonly use 2048-bit moduli. Solving the
HNP for those sizes and an 8-bit leak is yet unsolved, and it
is still an open question how hard it actually is. Nevertheless,
note that an attacker can potentially leak more than 8 bits,
making the attack feasible against bigger moduli. As of now,
we did not yet perform the full attack with all the components
combined.

7 Alexa Top 100k Scan

To estimate the impact of the vulnerability on currently de-
ployed servers, we conducted a scan among the Alexa Top-
100k on port 443. We evaluated how common static-DH
cipher suites are by trying to negotiate them. Additionally, we
evaluated how prevalent key reuse is in TLS-DHE. We also
tried to find servers that are vulnerable to a direct oracle by
sending ClientKeyExchange messages, which either resulted
in a PMS with a leading zero byte or not and by observing
the server’s behavior. For this purpose, we used techniques
from [15,45] and carefully observed the TCP connection state
and tried omitting messages.

DH & DHE support. The results of our scan are shown
in Table 4. In total, 86607 servers of the scanned servers
supported SSL/TLS. 32% of the scanned servers supported
DHE cipher suites. Only a single server advertised support
for static-DH cipher suites.

Key reuse. Note that in order to validate if a server reuses
ephemeral keys, it is not enough to monitor the ephemeral

11

DH group n ε k

24 20 16 12 8

RFC 5114 1024 0.532
β = 40, d = 50

T = 6s±0s
β = 40, d = 60
T = 10s±1s

β = 40, d = 80
T = 26s±4s

β = 40, d = 100
T = 111s±4s

β = 60, d = 200
T = 9295s±467s

LibTomCrypt 1036 0.000
β = 40, d = 50

T = 6s±0s
β = 40, d = 60
T = 10s±1s

β = 40, d = 80
T = 28s±1s

β = 40, d = 100
T = 52s±5s

β = 60, d = 180
T = 5613s±205s

SKIP 2048 0.056
β = 40, d = 100
T = 112s±5s

β = 40, d = 120
T = 207s±18s

β = 60, d = 160
T = 977s±46s

Table 3: Our parameter choices and calculation costs to recover gab in a Raccoon attack for three common DH groups, using
BKZ 2.0 with block size β, number of equations d and average calculation time T . We aborted the BKZ reductions as soon as the
hidden number was found (up to BKZ loop completion). Each simulation was repeated 8 times with random secrets on a vCPU
with 2 GHz clock speed. The bit-size n of the modulus and its bias ε = n− log2 (p) are also given. Note that for k = 8, we had to
use more equations for the RFC 5114 group than for the LibTomCrypt group, mainly due to the larger bias (`= 7.468� 8).

key in two consecutive handshakes as many servers are us-
ing load balancing setups in which multiple different TLS
servers are handling incoming connections. Usually, each
server manages its own ephemeral keys, and these keys are
not shared across servers. Since we do not know how many
potential servers are within a load balancing setup, we do
not know how many handshakes we have to perform to make
sure that we can detect key reuse. To overcome this issue, we
observed all public keys which were transmitted to us during
the whole scanning process. If we observed at least one reuse,
we considered the server as a server reusing ephemeral keys.
Our scans showed that a total of 3.33% of the scanned servers
reused their ephemeral DH keys. This is considerably lower
than the 7.4% reported by Springall et al. in 2016 [61]. A
potential explanation for the decrease of servers reusing keys
could be the removal of ephemeral key reuse in OpenSSL
at the beginning of 2016. It is, therefore, likely that the ob-
served difference follows the changes in the default behavior
of OpenSSL.

Perfect direct oracles. A total of 87 servers were exhibiting
a perfect direct oracle as described in subsection 3.4, meaning
that they were reliably showing different behavior based on
the leading zero byte of the PMS. Almost all of these servers
were reusing their ephemeral keys. We fingerprinted this
vulnerability and were able to attribute most of the discovered
oracles to F5. F5 confirmed the vulnerability and released
a patch on the 9th of September 2020 in Security Advisory
K91158923 (CVE-2020-5929).

Total With key reuse

DH 1 -
DHE 32071 3333
Perfect direct oracle 87 84
Imperfect direct oracle 815 0

Table 4: The results of our scan of the Alexa-Top100k servers.

Imperfect direct oracles. We found 815 servers which did
not show a perfect oracle, meaning that they did not allow
for a distinction with every executed handshake, but only
occasionally showed a distinguishing behavior. We assume
that we observe this behavior because of another factor that
we did not control (or cannot control), which influences the
behavior difference. These factors may include CDN setups,
where only parts of the CDN are vulnerable, internal memory
allocations, or network issues, and resource shortages. We
did not exclude those hosts from our study but investigated
if the behavior difference correlates with a leading zero byte
in the PMS or not. Any behavior difference unrelated to a
leading zero byte is expected to happen with roughly the
same probability on all executed handshakes. If the differ-
ence is somehow related to a leading zero byte, we should
see a non-uniform distribution of the responses, which can
be used by an attacker to distinguish if the PMS for a given
ClientKeyExchange message will start with a zero byte or
not. To check if the behavior difference is sufficiently cor-
relating, we used Fisher’s Exact test [32] in the cases where
we observed only two different responses, while we used the
Chi-square [33] test if we had more than two different re-
sponses from a server. These tests compute a p-value, which
indicates whether a null hypothesis is correct. In our case, the
null hypothesis was that the observed behavior difference was
appearing by chance, and is unrelated to a leading zero byte.
For each host, we tested each cipher suite in each protocol
version individually and accepted all hosts as vulnerable for
which the p-value on one of the executed tests was smaller
than 10−9. Given these tests, we discovered that a total of
815 servers (excluding perfect oracles) showed an observable
difference based on a leading zero byte in the PMS, however,
none of these servers was reusing ephemeral public keys. As
of the time of writing, we do not know which implementation
is responsible for this behavior.

12

8 Impact on Other Cipher Suites and Crypto-
graphic Standards

Attacking ECDH and ECDHE Cipher Suites. ECDH(E)
cipher suites are generally not affected by the Raccoon attack,
as TLS mandates that leading zero bytes to be preserved.
However, we identified some implementations which strip
leading zero bytes from the coordinates, and then add those
bytes back. This may result in a small timing side channel
that leaks the MSB of the x-coordinate of the shared point.
The EC-HNP [37] is related to the HNP and could potentially
be applied here. However, a full analysis of this potential
vulnerability is outside the scope of this work.

Downgrading TLS Sessions to DHE. Typical TLS connec-
tions are established with TLS ECDHE cipher suites. If
an attacker can perform the attack in full within the hand-
shake timeout, the attacker could perform a downgrade at-
tack, and target TLS sessions that would otherwise not use
Diffie-Hellman. The attacker acts as a MitM, and removes
any non-DHE cipher suites from the cipher suite list in the
ClientHello message. Assuming both the client and server
support at least one common DHE cipher suite, they will then
attempt to handshake with it. The primary defense mechanism
in TLS against such attacks is the Finished Message, which
includes a hash over the entire session transcript, but if the
attacker learns the shared secret within the handshake timeout,
the attacker can forge a valid Finished Message, leading to a
full break in security.

However, performing the attack fast enough is likely in-
feasible. The typical handshake timeout is 30 seconds or
similar durations. The attacker needs to handshake with the
victim server millions of times within this short period while
performing accurate timing measurements for each server
response. Furthermore, the attacker then needs to solve an
instance of the HNP problem, which we were only able to
accomplish with hours of computation time.

One caveat is that some TLS libraries exhibit behavior that
allows an attacker to stall TLS handshakes indefinitely [2].
Such behavior would make the online downgrade plausible.

Moreover, TLS False Start [43] allows the client to send
encrypted application-layer data before receiving the server’s
Finished message. In principle, if the client is willing to
use DHE with False Start, the attacker does not need to learn
the shared secret within the handshake timeout, but rather
at any point in the future. The data sent under False Start is
typically particularly sensitive, such as authentication cookies;
compromise of this data at any point in the (short) future
typically leads to a full break in security. The False Start
standard explicitly allows DHE cipher suites, but only with
well-known groups with moduli of length at least 3072 bits;
however, typical TLS client implementations disallow DHE
use with False Start altogether. As none of the well-known
groups use dangerous modulus sizes, this concern is mostly

theoretical.

TLS 1.3. In TLS 1.3 the leading zero bytes are preserved for
DHE cipher suites (as well as for ECDHE ones). However,
there exists a variant of TLS 1.3, which explicitly allows key
reuse (or even encourages it), called ETS or eTLS [59]. If
ephemeral keys get reused in either variant, they could lead
to micro-architectural side channels.

DTLS. The DTLS KDF is analogous to that of TLS, and has
the same properties. However, an attacker may not be able to
measure the timing difference, as DTLS does not necessarily
send an error message when sessions are ungracefully termi-
nated: DTLS is UDP-based, so it does not send TCP RST
or FIN packets, and some implementations do not send alert
messages at all. This may prevent an attacker from beeing
able to measure the side channel. An attacker may be able
to overcome these difficulties using techniques similar to [7],
but we consider this outside the scope of this work.

SSH. In SSH, ephemeral key reuse is far less common than
in TLS (as shown by [64] in 2017). This is probably due to
the more homogeneous deployment of SSH, and the raised
security requirements as a break in SSH could lead to remote
code execution. In SSH, the shared secrets are encoded as
mpint, which explicitly removes leading zero bytes. This
can be exploited with the presented attack to guarantee that
the difference of a stripped zero byte always results in less
processed blocks within the hash function. The reason for
this is that the entire transcript is hashed together with the
shared secret to generate the ‘exchange hash’. Since attacker-
controlled messages with non-fixed length are included in
the computation, the attacker can anticipate the length of the
other inputs to the computation, and choose the length of his
own messages accordingly.

Interestingly, SSH also strips the leading zero bytes of the
shared secret for X25519. RFC 8731 [1] explicitly mentions
that this is a potential problem as it leaks the leading zero
byte of the shared secret but decided not to address the issue
for backwards compatibility reasons:

The way the derived binary secret string is en-
coded into a mpint before it is hashed (i.e., adding
or removing zero-bytes for encoding) raises the po-
tential for a side channel attack which could deter-
mine the length of what is hashed. This would leak
the most significant bit of the derived secret, and/or
allow detection of when the most significant bytes
are zero. For backwards compatibility reasons it
was decided not to address this potential problem.

Other protocols. XML Encryption [30] and IPsec [39, Sec-
tion 2.14] preserve leading zero bytes.

JSON Web Encryption [38] only offers ECDH key agree-
ment. The established shared secret should be processed as
described in the NIST Special Publication 800-56A [52]. This

13

document recommends to preserve leading zero bytes, see
Appendix C.1 and C.2.

9 Related Work

Timing side-channels caused by hash functions. In 2013,
AlFardan and Paterson showed that tiny timing differences
by processing inputs of different lengths can be used for
the Lucky13 attack [6]. Albrecht et al. showed that years
later, the same vulnerability was still affecting real-world
implementations and common (but not recommended) miti-
gation techniques are ineffective [5]. Some developers have
changed the interface of HMAC functions to mitigate flaws
like Lucky13 [53]. These interfaces now also take the max-
imum amount of data that could have been passed to the
HMAC function as an input.

Attacking the TLS premaster secret. Daniel Bleichen-
bacher was the first to describe a real-world attack on TLS
recovering the premaster secret [14]. His attack relied on a di-
rect oracle where the server revealed if the decrypted plaintext
was PKCS#1 compliant or not. Klíma et al. then discovered
a second-level oracle which revealed the same information,
but on checking a different value, namely the TLS version
number embedded in the PMS [40]. ROBOT showed that
years later, many modern TLS servers are still vulnerable
to variations of the attack from Daniel Bleichenbacher [15].
Recent work by Ronen et al. [55] showed that the original
attack still works if the attacker can measure leakages through
a micro-architectural side channel. They also provide a tech-
nique based on lattices and the HNP to perform the attack in
parallel. Countermeasures to Bleichenbacher’s attack are ad-
dressed in the TLS specification [28]. Another line of attacks
exploited the usage of export-grade cryptography and obsolete
protocols to break TLS. DROWN recovered premaster secrets
from secure TLS-RSA connections, by exploiting public-key
reuse and instances of the (deprecated) protocol SSL 2.0 [10].
Logjam [2] and FREAK [12] targeted 512-bit key sizes used
in DHE-EXPORT and RSA-EXPORT cipher suites to recover
the PMS based on weak export keys. Raccoon attack does not
rely on the presence of outdated cryptographic mechanisms.

Timing attacks against the TLS handshake. Brumley and
Boneh measured the timing differences in TLS-RSA decryp-
tion on different ciphertexts [20]. From these timing differ-
ences, they were able to compute the private key of the server.
Meyer et al. constructed a Bleichenbacher oracle from timing
differences in the handling of valid and invalid PKCS#1 mes-
sages, which they used to compute the PMS of a previously
recorded TLS-RSA session [46].

Attacks using HNP solvers. The HNP has been applied in
many attacks against DSA, ECDSA with partially known
nonces and signatures in zero-knowledge proofs, using a
variety of side channels [11, 23, 34, 49, 51]. Breitner and
Heninger used a lattice-based HNP solver to compute private

ECDSA signing keys generated by cryptocurrency code [17].
Some previous attacks on the TLS protocols also have

made use of lattice techniques and HNP solvers. Brumley
and Tuveri exploited a timing side channel in the ECDSA
signature generation during the TLS handshake [19]. Ronen
et al. [56] apply HNP as an intermediate step in a variaton of
the Manger attack on PKCS#1.
Attacks against TLS Diffie-Hellman. In addition to the
above-mentioned Logjam attack [2], there exist several stud-
ies on the security of TLS Diffie-Hellman. The impact of
small-subgroup attacks was analyzed in [64]. Dorey et al. an-
alyzed how plausibly deniable backdoored parameters could
be generated [29]. Additionally, they performed a study to
analyze the prevalence of such parameters.
Proofs on TLS-DH(E). TLS-DHE and TLS-DH have been
proven secure under the PRF-ODH assumption by [36] and
[42], respectively. As this work has shown, this assumption
is not met by current real-world TLS implementations.
Crypto shortcuts. [61] analyzed the implications of cryp-
tographic shortcuts, like TLS session resumption, session
tickets, and key reuse on forward secrecy in the real world.

10 Conclusions

Beyond the specifics of the attack, we argue that its existence
can also teach us broader lessons for cryptographic protocols.
Forgoing forward secrecy is dangerous. Forward secrecy
is a well-known security goal for cryptographic protocols and
was intensively analyzed in the context of TLS in [61]. Our
attack exploits the fact that servers may reuse the secret DH
exponent for many sessions, thus forgoing forward secrecy.
In this context, Raccoon teaches a lesson for protocol secu-
rity: For protocols where some cryptographic secrets can be
continuously queried by one of the parties, the attack surface
is made broader. The Raccoon attack showed that we should
be careful when giving attackers access to such queries.
Secrets should be constant-size. The dangers of non-
constant-time implementations are well-known. For example,
they have been repeatedly demonstrated to break ECDSA as
used in TLS. One of the reasons for these breaks is that the
processing of variable-length secret values within the imple-
mentation usually results in non-constant execution time. We
argue that future protocol designs should make sure that all
their secrets (including intermediate values and their internal
number representation) are of fixed size.
Countermeasures. The most straightforward mitigation for
the Raccoon attack against TLS is to remove support for TLS-
DH(E) entirely. Besides that, server operators can disable
DHE key reuse. Then the attacker cannot compute the shared
secret even with perfect measurements, as one equation does
not give enough information to recover the shared secret. To
prevent timing-based side channels in legacy applications
with length-varying secrets, the implementation must ensure

14

that the execution of the function is still constant time. This
can be done as in the Lucky13 mitigation or by computing the
values for different fake parameters and discarding the fake
ones afterwards. However, one has to be very careful when
implementing such mitigations; previous research has shown
that this kind of mitigations adds code complexity and may
still leave the side channel open [5] or introduce even more
severe vulnerabilities [60].

References

[1] A. Adamantiadis, S. Josefsson, and M. Baushke. Secure
Shell (SSH) Key Exchange Method Using Curve25519 and
Curve448. RFC 8731 (Proposed Standard), February 2020.

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Na-
dia Heninger, Drew Springall, Emmanuel Thomé, Luke Va-
lenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. Imperfect forward secrecy:
How Diffie-Hellman fails in practice. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd
Conference on Computer and Communications Security, pages
5–17, Denver, CO, USA, October 12–16, 2015. ACM Press.

[3] Adi Akavia. Solving hidden number problem with one bit
oracle and advice. In Shai Halevi, editor, Advances in Cryp-
tology – CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 337–354, Santa Barbara, CA, USA,
August 16–20, 2009. Springer, Heidelberg, Germany.

[4] Martin R. Albrecht and Kenneth G. Paterson. Lucky microsec-
onds: A timing attack on amazon’s s2n implementation of TLS.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 622–643, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[5] Martin R. Albrecht and Kenneth G. Paterson. Lucky microsec-
onds: A timing attack on Amazon’s s2n implementation of
TLS. In Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I, pages 622–643, 2016.

[6] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In 2013 IEEE
Symposium on Security and Privacy, pages 526–540, Berkeley,
CA, USA, May 19–22, 2013. IEEE Computer Society Press.

[7] N.J. AlFardan and K.G. Paterson. Plaintext-Recovery Attacks
Against Datagram TLS. In Network and Distributed System
Security Symposium (NDSS 2012), February 2012.

[8] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisen-
barth, and Berk Sunar. Lucky 13 strikes back. In Feng Bao,
Steven Miller, Jianying Zhou, and Gail-Joon Ahn, editors,
ASIACCS 15: 10th ACM Symposium on Information, Com-
puter and Communications Security, pages 85–96, Singapore,
April 14–17, 2015. ACM Press.

[9] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-
Gabriel Kammerer, Mehdi Tibouchi, and Jean-Christophe Za-
palowicz. GLV/GLS decomposition, power analysis, and

attacks on ECDSA signatures with single-bit nonce bias. In
Lecture Notes in Computer Science, pages 262–281. Springer
Berlin Heidelberg, 2014.

[10] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia
Heninger, Maik Dankel, Jens Steube, Luke Valenta, David
Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper,
Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval
Shavitt. DROWN: Breaking TLS using SSLv2. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016: 25th
USENIX Security Symposium, pages 689–706, Austin, TX,
USA, August 10–12, 2016. USENIX Association.

[11] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval
Yarom. “ooh aah... just a little bit” : A small amount of side
channel can go a long way. In Advanced Information Systems
Engineering, pages 75–92. Springer Berlin Heidelberg, 2014.

[12] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
messy state of the union: taming the composite state machines
of TLS. In IEEE Symposium on Security & Privacy 2015
(Oakland’15). IEEE, 2015.

[13] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Santiago Zanella
Béguelin. Proving the TLS handshake secure (as it is). In
Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture
Notes in Computer Science, pages 235–255, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Ger-
many.

[14] Daniel Bleichenbacher. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS
#1. In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 1–12, Santa Barbara, CA, USA, August 23–27,
1998. Springer, Heidelberg, Germany.

[15] Hanno Böck, Juraj Somorovsky, and Craig Young. Return
of bleichenbacher’s oracle threat (ROBOT). In 27th USENIX
Security Symposium (USENIX Security 18), pages 817–849,
Baltimore, MD, 2018. USENIX Association.

[16] Dan Boneh and Ramarathnam Venkatesan. Hardness of com-
puting the most significant bits of secret keys in diffie-hellman
and related schemes. In Advances in Cryptology — CRYPTO

’96, pages 129–142. Springer Berlin Heidelberg, 1996.

[17] Joachim Breitner and Nadia Heninger. Biased nonce sense:
Lattice attacks against weak ECDSA signatures in cryptocur-
rencies. In Financial Cryptography and Data Security, pages
3–20. Springer International Publishing, 2019.

[18] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Chris-
tian Janson. Prf-odh: Relations, instantiations, and impossi-
bility results. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017 - 37th International Cryptology Conference,
pages 651–681. Springer, August 2017.

[19] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks
are still practical. In Vijay Atluri and Claudia Díaz, editors,
Computer Security - ESORICS 2011 - 16th European Sym-
posium on Research in Computer Security, Leuven, Belgium,

15

September 12-14, 2011. Proceedings, volume 6879 of Lecture
Notes in Computer Science, pages 355–371. Springer, 2011.

[20] David Brumley and Dan Boneh. Remote timing attacks are
practical. In USENIX Security 2003: 12th USENIX Secu-
rity Symposium, Washington, DC, USA, August 4–8, 2003.
USENIX Association.

[21] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice
security estimates. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology - ASIACRYPT 2011 - 17th
International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, De-
cember 4-8, 2011. Proceedings, volume 7073 of Lecture Notes
in Computer Science, pages 1–20. Springer, 2011.

[22] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi.
Opportunities and limits of remote timing attacks. ACM Trans.
Inf. Syst. Secur., 12(3):17:1–17:29, January 2009.

[23] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
Cachequote: Efficiently recovering long-term secrets of sgx
epid via cache attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, Volume 2018:Issue 2–,
2018.

[24] Ivan Damgård. A design principle for hash functions. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89,
volume 435 of Lecture Notes in Computer Science, pages 416–
427, Santa Barbara, CA, USA, August 20–24, 1990. Springer,
Heidelberg, Germany.

[25] The FPLLL development team. fplll, a lattice reduction library.
Available at https://github.com/fplll/fplll, 2016.

[26] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC
2246 (Proposed Standard), January 1999. Obsoleted by RFC
4346, updated by RFCs 3546, 5746, 6176, 7465, 7507, 7919.

[27] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.1. RFC 4346 (Proposed Standard), April
2006. Obsoleted by RFC 5246, updated by RFCs 4366, 4680,
4681, 5746, 6176, 7465, 7507, 7919.

[28] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), August
2008. Obsoleted by RFC 8446, updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919, 8447.

[29] Kristen Dorey, Nicholas Chang-Fong, and Aleksander Essex.
Indiscreet logs: Diffie-hellman backdoors in TLS. In 24th
Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017. The Internet Society, 2017.

[30] Donald Eastlake, Joseph Reagle, Frederick Hirsch, Thomas
Roessler, Takeshi Imamura, Blair Dillaway, Ed Simon, Kelvin
Yiu, and Magnus Nyström. XML Encryption Syntax and
Processing 1.1. W3C Candidate Recommendation, 2012.
http://www.w3.org/TR/2012/WD-xmlenc-core1-20121018.

[31] P. Eronen (Ed.) and H. Tschofenig (Ed.). Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS). RFC 4279
(Proposed Standard), December 2005.

[32] Ronald A Fisher. On the interpretation of χ 2 from contingency
tables, and the calculation of p. Journal of the Royal Statistical
Society, 85(1):87–94, 1922.

[33] Karl Pearson F.R.S. X. on the criterion that a given system
of deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably supposed
to have arisen from random sampling. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science,
50(302):157–175, 1900.

[34] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks
on digital signature schemes. Des. Codes Cryptogr., 23(3):283–
290, 2001.

[35] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk.
On the security of TLS-DHE in the standard model. Cryptol-
ogy ePrint Archive, Report 2011/219, 2011. http://eprint.

iacr.org/2011/219.

[36] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk.
On the security of TLS-DHE in the standard model. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 273–293, Santa Barbara, CA, USA,
August 19–23, 2012. Springer, Heidelberg, Germany.

[37] David Jao, Dimitar Jetchev, and Ramarathnam Venkatesan. On
the bits of elliptic curve Diffie-Hellman keys. In K. Srinathan,
C. Pandu Rangan, and Moti Yung, editors, Progress in Cryp-
tology - INDOCRYPT 2007: 8th International Conference in
Cryptology in India, volume 4859 of Lecture Notes in Com-
puter Science, pages 33–47, Chennai, India, December 9–13,
2007. Springer, Heidelberg, Germany.

[38] M. Jones and J. Hildebrand. JSON Web Encryption (JWE).
RFC 7516 (Proposed Standard), May 2015.

[39] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key
Exchange Protocol Version 2 (IKEv2). RFC 5996 (Proposed
Standard), September 2010. Obsoleted by RFC 7296, updated
by RFCs 5998, 6989.

[40] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa. Attacking
RSA-based sessions in SSL/TLS. In Colin D. Walter, Çetin
Kaya Koç, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2003, volume 2779 of Lecture
Notes in Computer Science, pages 426–440, Cologne, Ger-
many, September 8–10, 2003. Springer, Heidelberg, Germany.

[41] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104 (Informa-
tional), February 1997. Updated by RFC 6151.

[42] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On
the security of the TLS protocol: A systematic analysis. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 429–448, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[43] A. Langley, N. Modadugu, and B. Moeller. Transport Layer
Security (TLS) False Start. RFC 7918 (Informational), August
2016.

[44] H. B. Mann and D. R. Whitney. On a test of whether one
of two random variables is stochastically larger than the other.
Ann. Math. Statist., 18(1):50–60, 03 1947.

[45] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig
Young, Janis Fliegenschmidt, Jörg Schwenk, and Yuval Shavitt.

16

https://github.com/fplll/fplll
http://www.w3.org/TR/2012/WD-xmlenc-core1-20121018
http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219

Scalable scanning and automatic classification of TLS padding
oracle vulnerabilities. In Nadia Heninger and Patrick Traynor,
editors, USENIX Security 2019: 28th USENIX Security Sympo-
sium, pages 1029–1046, Santa Clara, CA, USA, August 14–16,
2019. USENIX Association.

[46] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg
Schwenk, Sebastian Schinzel, and Erik Tews. Revisiting SS-
L/TLS implementations: New Bleichenbacher side channels
and attacks. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014: 23rd USENIX Security Symposium, pages 733–
748, San Diego, CA, USA, August 20–22, 2014. USENIX
Association.

[47] Elke De Mulder, Michael Hutter, Mark E. Marson, and Pe-
ter Pearson. Using Bleichenbacher’s solution to the hidden
number problem to attack nonce leaks in 384-bit ECDSA.
In Guido Bertoni and Jean-Sébastien Coron, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2013,
volume 8086 of Lecture Notes in Computer Science, pages 435–
452, Santa Barbara, CA, USA, August 20–23, 2013. Springer,
Heidelberg, Germany.

[48] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter
Pearson. Using bleichenbacher’s solution to the hidden number
problem to attack nonce leaks in 384-bit ECDSA: extended
version. Journal of Cryptographic Engineering, 4(1):33–45,
feb 2014.

[49] Nguyen and Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. Journal of Cryptology,
15(3):151–176, jun 2002.

[50] Phong Q. Nguyen. The dark side of the hidden number
problem: Lattice attacks on DSA. In Cryptography and Com-
putational Number Theory, pages 321–330. Birkhäuser Basel,
2001.

[51] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity
of the elliptic curve digital signature algorithm with partially
known nonces. Des. Codes Cryptogr., 30(2):201–217, 2003.

[52] NIST. Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography. Special
Publication 800-56A Rev. 3, April 2018.

[53] Thomas Pornin. BearlSSL, a small SSL/TLS library. https:

//bearssl.org.

[54] Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, 2018.

[55] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir,
David Wong, and Yuval Yarom. The 9 lives of bleichen-
bacher’s CAT: New cache ATtacks on TLS implementations.
In 2019 IEEE Symposium on Security and Privacy, pages
435–452, San Francisco, CA, USA, May 19–23, 2019. IEEE
Computer Society Press.

[56] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir,
David Wong, and Yuval Yarom. The 9 Lives of Bleichen-
bacher’s CAT: New Cache ATtacks on TLS Implementations.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
may 2019.

[57] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir. Pseudo
constant time implementations of TLS are only pseudo secure.

In David Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang, editors, ACM CCS 2018: 25th Conference on
Computer and Communications Security, pages 1397–1414,
Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[58] C. P. Schnorr. A hierarchy of polynomial time lattice basis
reduction algorithms. Theoretical Computer Science, 53(2-
3):201–224, 1987.

[59] ETSI Technical Committee Cyber Security. ETSI TS
103 523-3 V1.2.1. https://www.etsi.org/deliver/

etsi_ts/103500_103599/10352303/01.02.01_60/ts_

10352303v010201p.pdf.

[60] Juraj Somorovsky. Systematic fuzzing and testing of tls li-
braries. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 1492–1504.
ACM, 2016.

[61] Drew Springall, Zakir Durumeric, and J. Alex Halderman.
Measuring the security harm of tls crypto shortcuts. In Pro-
ceedings of the 2016 Internet Measurement Conference, IMC
’16, page 33–47, New York, NY, USA, 2016. Association for
Computing Machinery.

[62] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New
bleichenbacher records: Fault attacks on qdsa signatures. IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, Volume 2018:Issue 3–, 2018.

[63] The Sage Developers. SageMath, the Sage
Mathematics Software System (Version 9.1), 2020.
https://www.sagemath.org.

[64] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney,
Joshua Fried, Marcella Hastings, J. Alex Halderman, and Nadia
Heninger. Measuring small subgroup attacks against Diffie-
Hellman. In ISOC Network and Distributed System Security
Symposium – NDSS 2017, San Diego, CA, USA, February 26 –
March 1, 2017. The Internet Society.

A PRF-Oracle-Diffie-Hellman

Both TLS-DHE [36] and TLS-DH [42] have been shown to be se-
cure under the PRF-Oracle-Diffie-Hellman (PRF-ODH) assumption.
PRF-ODH requires that no adversary can distinguish PRF(gab) from
a randomly chosen value from the same distribution. Formally, the
PRF-ODH problem is defined as follows:
Let G be a group with generator g. Let PRF be a deterministic func-
tion z = PRF(X ,m), taking as input a key X ∈G and some bit string
m, and returning a string z∈ {0,1}a. Consider the following security
experiment played between a challenger C and an adversary A .

1. The adversary A outputs a value m.
2. The challenger samples u,v $← [q],z1

$←{0,1}µ uniformly ran-
dom and sets z0 := PRF(guv,m). Then it tosses a coin b ∈ 0,1
and returns zb,gu and gv to the adversary.

3. The adversary may query a pair (X ,m′) with X 6= gu to the
challenger. The challenger replies with s = PRF(Xv,m′).

4. Finally the adversary outputs a guess b′ ∈ {0,1}.
The PRF-ODH problem is considered hard in respect to G and PRF,
if for all adversaries A that run in time t it holds that:∣∣Pr

[
b = b′

]
− 1/2

∣∣≤ εprfodh (6)

17

https://bearssl.org
https://bearssl.org
https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.02.01_60/ts_10352303v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.02.01_60/ts_10352303v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.02.01_60/ts_10352303v010201p.pdf

The original definition of PRF-ODH [36] was introduced to model
the security of TLS-DHE. Therefore, it only allowed for a single
query to the oracle, as this would model the ephemeral keys used by
the server. [42] required a definition of PRF-ODH, which allowed
multiple queries to the oracles. This allowed them to model TLS-
DH and also models TLS-DHE if the server decides to reuse the
ephemeral key for more than one connection. The different variants
of PRF-ODH mentioned in the literature were systematized in [18].
In the notation of [18], TLS-DH uses mnPRF-ODH while TLS-DHE
uses snPRF-ODH.

B Example of a Side Channel in OpenSSL

An example for a micro-architectural side channel which also affects
protocols which do not strip leading zero bytes can be found in
OpenSSL. OpenSSL has two functions to compute the shared se-
cret of a Diffie-Hellman operation: DH_compute_key_padded() and
DH_compute_key(). The big number library of OpenSSL does not
preserve leading zero bytes, therefore DH_compute_key_padded()

internally calls DH_compute_key() and then pads the leading zero
bytes afterwards, creating a side channel (see Figure 4).

int DH_compute_key_padded(unsigned char *key,

const BIGNUM *pub_key, DH *dh)

{

int rv, pad;

#ifdef FIPS_MODULE

rv = compute_key(key, pub_key, dh);

#else

rv = dh->meth->compute_key(key, pub_key, dh);

#endif

if (rv <= 0)

return rv;

pad = BN_num_bytes(dh->params.p) - rv;

if (pad > 0) {

memmove(key + pad, key, rv);

memset(key, 0, pad);

}

return rv + pad;

}

Figure 4: DH shared key computation in OpenSSL 1.1.1g.

C Dangerous Modulus Sizes

Lists of dangerous modulus sizes can be found in Table 5.

D Attacking Static-DH Client Authentication

Although not used in practice, TLS also offers the possibility of client
authentication with static-DH certificates. If the server requests
client authentication and the client has a static-DH client certificate
that matches the parameters the server has chosen, the client will
not send a fresh public key in the ClientKeyExchange message.
Instead, the long-term public key from the certificate will be used
for the PMS generation. This enables a variation of the presented
attack that could be executed by an attacker if the client is using
the same certificate with an attacker-controlled server. In this attack

Figure 5: Running time of the SHA-256 finalize function for
inputs of varying lengths, measured in CPU cycles. Reported
values are medians across 10,000 experiments per key length,
performed with OpenSSL version 1.1.1.

scenario, the attacker observes a static-DH client authentication
he wants to decrypt. In the second stage, he forces the client to
repeatedly connect to his own server and negotiate static-DH with
client authentication. Similar to the original Raccoon attack, the
attacker now chooses this server’s static-DH public key to be gb ·
gr mod p. This time, the client computes gba ·gbr mod p and sends
his Finished message. The attacker measures the time the client
took to compute the PMS. He can then use one of the MSB-oracles
to retrieve the MSB of the shared secret and create and solve an
instance of the HNP.

E Exploiting OP

Following subsection 6.1 (see Figure 3), we now discuss mount-
ing the attack using OP, the Key Padding Oracle. To recap: The
computation time of HMAC-SHA256 exhibits small “steps” when
the input key length is 128 · k− i,1 ≤ i ≤ 8. In particular, when
using a 1024-bit (128 bytes) DH modulus, there is a measurable
timing difference when the MSB is zero. Unlike previous oracles
discussed in this work, this oracle allows attacking commonly-used
modulus sizes, albeit at a much larger cost due to the smaller timing
difference.

This timing difference stems from the “finalize” function of the
hash implementation. Figure 5 presents the (median) running time
of this function, for each input length. In broad terms, for inputs
which are slightly shorter than a full block, the call to “finalize”
must execute an additional internal call to the hash compression
function. Contrast with Figure 6 which shows the running time
of the “update” function; Figure 3 shows the total running time
for computing HMAC-SHA-256, which includes both functions as
internal calls, and therefore shows both step-like behaviors.

We now repeat the calculation from subsection 6.1 for this smaller
side channel. With 1,000 samples per case, and a 20% false positive

18

TLS 1.2
(SHA-384)

TLS 1.2
(others)

TLS 1.0/1.1
(MD5/SHA1)

SSLv3
(outer)

SSLv3
(A)

SSLv3
(BB)

SSLv3
(CCC)

1025 - 1056 513 - 544 1025 - 1056 281 - 312 433 - 464 425 - 456 417 - 448
1913 - 1944 953 - 984 1905 - 1936 793 - 824 945 - 976 937 - 968 929 - 960
2937 - 2968 1465 - 1496 2929 - 2960 1305 - 1336 1457 - 1488 1449 - 1480 1441 - 1472
3961 - 3992 1977 - 2008 3953 - 3984 1817 - 1848 1969 - 2000 1961 - 1992 1953 - 1984
4985 - 5016 2489 - 2520 4977 - 5008 2329 - 2360 2481 - 2512 2473 - 2504 2465 - 2496
6009 - 6040 3001 - 3032 6001 - 6032 2841 - 2872 2993 - 3024 2985 - 3016 2977 - 3008
7033 - 7064 3513 - 3544 7025 - 7056 3353 - 3384 3505 - 3536 3497 - 3528 3489 - 3520
8057 - 8088 4025 - 4056 8049 - 8080 3865 - 3896 4017 - 4048 4009 - 4040 4001 - 4032

... 4537 - 4568 ... 4377 - 4408 4529 - 4560 4521 - 4552 4513 - 4544
5049 - 5080 4889 - 4920 5041 - 5072 5033 - 5064 5025 - 5056
5561 - 5592 5401 - 5432 5553 - 5584 5545 - 5576 5537 - 5568
6073 - 6104 5913 - 5944 6065 - 6096 6057 - 6088 6049 - 6080
6585 - 6616 6425 - 6456 6577 - 6608 6569 - 6600 6561 - 6592
7097 - 7128 6937 - 6968 7089 - 7120 7081 - 7112 7073 - 7104
7609 - 7640 7449 - 7480 7601 - 7632 7593 - 7624 7585 - 7616
8121 - 8152 7961 - 7992 8113 - 8144 8105 - 8136 8097 - 8128

...

Table 5: A list of dangerous TLS modulus sizes (in bits). A modulus has to be considered as dangerous if the mentioned
parameter combination is supported by the server. It is not important which parameter combination was negotiated by the
attacked connection. The list considers an attacker who wants to leak 1-32 bits at a block border.

Figure 6: Running time of the SHA-256 update function for
inputs of varying lengths, measured in CPU cycles. Reported
values are medians across 10,000 experiments per key length,
performed with OpenSSL version 1.1.1.

rate, the false negative rate is 7.72%.9 Increasing the number of
samples to 10,000 achieves a false positive rate of 0.004170% and
a false negative rate of 0.012530% 10. Repeating the same calcula-
tion from subsection 6.1, the attack therefore requires roughly 302
million handshakes with the target server in total (compared to 22
million handshakes when exploiting the easier case of exploiting OH,
as described in subsection 6.1). These numbers are not necessarily
optimal and can be improved, for example, when using more precise
side channels.

9As before, we estimate these rates using 200,000 experiments.
10We estimate these rates using 10 million sets of randomly-sampled

10,000 measurements. We further note that we configured the test with a
false positive rate of 0.01%, but obtain a lower false positive rate. This could
be an artifact of the approximations the test uses internally.

19

	Introduction
	Background
	Transport Layer Security (TLS)
	Hash Functions
	Key Derivation
	The Hidden Number Problem

	Raccoon Length Distinguishing Oracles
	OH: Hash Function Invocation
	OC: Compression Function Invocations
	OP: Key Padding
	OD: Direct Side Channels
	Further Oracle Considerations

	Raccoon Length Distinguishing Oracles in TLS
	TLS Attack Scenarios
	Analysis of TLS Key Derivations
	Dangerous TLS Modulus Sizes

	Raccoon Premaster Secret Recovery Attack
	Attack Scenario
	Constructing an Instance of HNP
	Computing the Premaster Secret

	Evaluation
	Timing Measurements
	Solving the HNP
	Putting It All Together

	Alexa Top 100k Scan
	Impact on Other Cipher Suites and Cryptographic Standards
	Related Work
	Conclusions
	PRF-Oracle-Diffie-Hellman
	Example of a Side Channel in OpenSSL
	Dangerous Modulus Sizes
	Attacking Static-DH Client Authentication
	Exploiting OP

