
The EMV Standard: Break, Fix, Verify
David Basin, Ralf Sasse, and Jorge Toro-Pozo

Department of Computer Science, ETH Zurich
{basin, ralf.sasse, jorge.toro}@inf.ethz.ch

Abstract—EMV is the international protocol standard for
smartcard payment and is used in over 9 billion cards worldwide.
Despite the standard’s advertised security, various issues have
been previously uncovered, deriving from logical flaws that are
hard to spot in EMV’s lengthy and complex specification, running
over 2,000 pages.

We formalize a comprehensive symbolic model of EMV in
Tamarin, a state-of-the-art protocol verifier. Our model is the
first that supports a fine-grained analysis of all relevant security
guarantees that EMV is intended to offer. We use our model
to automatically identify flaws that lead to two critical attacks:
one that defrauds the cardholder and another that defrauds
the merchant. First, criminals can use a victim’s Visa contact-
less card for high-value purchases, without knowledge of the
card’s PIN. We built a proof-of-concept Android application
and successfully demonstrated this attack on real-world payment
terminals. Second, criminals can trick the terminal into accepting
an unauthentic offline transaction, which the issuing bank should
later decline, after the criminal has walked away with the
goods. This attack is possible for implementations following the
standard, although we did not test it on actual terminals for
ethical reasons. Finally, we propose and verify improvements
to the standard that prevent these attacks, as well as any
other attacks that violate the considered security properties.
The proposed improvements can be easily implemented in the
terminals and do not affect the cards in circulation.

Index Terms—EMV; payment security; credit card fraud; Visa;
PIN bypass; authentication; formal analysis

I. INTRODUCTION

EMV, named after its founders Europay, Mastercard, and
Visa, is the worldwide standard for smartcard payment, devel-
oped in the mid 1990s. As of December 2019, more than 80%
of all card-present transactions globally use EMV, reaching
up to 98% in many European countries. Banks have a strong
incentive to adopt EMV due to the liability shift, which relieves
banks using the standard from any liability from payment
disputes. If the disputed transaction was authorized by a PIN
then the consumer (EMV terminology for the payment-card
customer) is held liable. If a paper signature was used instead,
then the merchant is charged.

EMV: 20 Years of Vulnerabilities

Besides the liability shift, EMV’s global acceptance is
also attributed to its advertised security. However, EMV’s
security has been challenged numerous times. Man-in-the-
middle (MITM) attacks [1], card cloning [2], [3], downgrade
attacks [3], relay attacks [4]–[7], and card skimming [8],
[9] are all examples of successful exploits of the standard’s
shortcomings. The MITM attack reported by Murdoch et
al. [1] is believed to have been used by criminals in 2010–11

in France and Belgium to carry out fraudulent transactions for
ca. 600,000 Euros [10]. The underlying flaw of Murdoch et
al.’s attack is that the card’s response to the terminal’s offline
PIN verification request is not authenticated.

Some of the security issues identified result from flawed
implementations of the standard. Others stem from logical
flaws whose repairs would require changes to the entire EMV
infrastructure. Identifying such flaws is far from trivial due
to the complexity of EMV’s execution flow, which is highly
flexible in terms of card authentication modes, cardholder
verification methods, and online/offline authorizations. This
raises the question of how we can systematically explore
all possible flows and improve the standard to avoid another
twenty years of attacks.

Approach Taken: Break, Fix, Verify

In this paper we focus on weakness of and improvements to
the EMV protocol design. We present a formal, comprehensive
model for the symbolic analysis of EMV’s security. Our model
is written in Tamarin [11], [12], a state-of-the-art verification
tool that has been used to study numerous real-world protocols,
including TLS 1.3 [13] and 5G authentication [14]. Tamarin
supports protocol verification in the presence of powerful ad-
versaries and unboundedly many concurrent protocol sessions.

Our model supports the analysis of all properties that must
hold in any EMV transaction. An informal description of the
three most relevant properties is as follows:

1) Bank accepts terminal-accepted transactions: No trans-
action accepted by the terminal can be declined by the
bank.

2) Authentication to the terminal: All transactions accepted
by the terminal are authenticated by the card and, if
authorized online, the bank.

3) Authentication to the bank: All transactions accepted by
the bank are authenticated by the card and the terminal.

Our model faithfully considers the three roles present in an
EMV session: the bank, the terminal, and the card. Previous
symbolic models merge the terminal and the bank into a
single agent [15]–[17]. This merging incorrectly entails that
the terminal can verify all card-produced cryptographic proofs
that the bank can. This is incorrect as the card and the bank
share a symmetric key that is only known to them.

Using our model, we identify a critical violation of au-
thentication properties by the Visa contactless protocol: the
cardholder verification method used in a transaction, if any, is
neither authenticated nor cryptographically protected against

ar
X

iv
:2

00
6.

08
24

9v
1

 [
cs

.C
R

]
 1

5
Ju

n
20

20

modification. We developed a proof-of-concept Android ap-
plication that exploits this to bypass PIN verification by
mounting a man-in-the-middle attack that instructs the termi-
nal that PIN verification is not required because the cardholder
verification was performed on the consumer’s device (e.g.,
a mobile phone). This enables criminals to use any stolen
Visa card to pay for expensive goods without the card’s
PIN. In other words, the PIN is useless in Visa contactless
transactions!

We have successfully tested our PIN bypass attack on
real-world terminals for a number of transactions with Visa-
branded cards such as Visa Credit, Visa Electron, and V
Pay cards. For example, we performed a transaction of ca.
$190 in an attended terminal in an actual store. As it is now
common for consumers to pay with their smartphones, the
cashier cannot distinguish the attacker’s actions from those of
any legitimate cardholder. For ethical reasons, we carried out
all our tests using our own credit/debit cards. However, we
stress that the attack works for any Visa card that the attacker
possesses, in particular with stolen cards.

Our symbolic analysis also reveals that, in an offline con-
tactless transaction with a Visa or an old Mastercard card,
the card does not authenticate to the terminal the Application
Cryptogram (AC), which is a card-produced cryptographic
proof of the transaction that the terminal cannot verify (only
the card issuer can). This enables criminals to trick the
terminal into accepting an unauthentic offline transaction.
Later on, when the acquirer submits the transaction data as
part of the clearing record, the issuing bank will detect the
wrong cryptogram, but the criminal is already long gone with
the goods. We did not test this attack on actual terminals for
ethical reasons as this would defraud the merchant.

Contributions

First, we present a comprehensive symbolic model of the
EMV standard that accounts for the 3 Offline Data Authenti-
cation methods (SDA, DDA, and CDA), the 5 Cardholder Ver-
ification Methods (no PIN, plaintext PIN, offline enciphered
PIN, online PIN, and CDCVM), the 2 types of Transaction
Authorizations (offline and online), and the 2 (major) types
of contactless transactions (Visa and Mastercard). Our model
considers the three roles present in a transaction, and supports
the fine-grained analysis of all relevant security properties.

Second, we identify and demonstrate, for the first time in
actual terminals, a practical attack that allows attackers to
make fraudulent, high-value purchases, without knowledge of
the card’s PIN. We also identify an attack that allows one
to effectively steal goods by tricking terminals into accepting
unauthentic offline transactions. Our attacks demonstrate that
EMV’s liability shift should be voided because credit card
fraud is not necessarily the result of negligent behavior of
consumers or merchants.

Finally, based on our full-scale, automatic, Tamarin-
supported analysis of EMV’s fundamental security properties,
we identify the EMV configurations that guarantee secure

transactions. Based on these configurations, we propose so-
lutions that can be implemented in the payment terminals and
rule out security breaches.

Note that our focus is on EMV’s design, not implementa-
tions themselves. In this way, we can end the penetrate-and-
patch arms race where attackers continually find and exploit
protocol weaknesses. Of course this is only one part of the
overall picture, as attackers can still exploit implementation
weaknesses; but it is a substantial part and it is also a
prerequisite for any “full stack” effort to formally develop a
verified protocol, down to the level of code

Organization

In Section II we describe related work, focusing on previous
EMV security analyses. In Section III we provide background
on the EMV protocol. In Section IV we present our formal
model of EMV, focusing on how we model EMV’s numerous
configurations and how we define and analyze its security
properties. In Section V we present the results of this analysis.
Later, in Section VI, we describe an Android app that we
developed and used to show that our Tamarin findings can
be turned into real-world attacks. As a result of our analysis,
we suggest improvements to terminals that guarantee secure
transactions. We draw conclusions in Section VII.

Ethical Considerations

We carried out all our tests using our own credit/debit cards.
Furthermore, we have notified Visa of the attacks discovered.

II. RELATED WORK

Given its financial importance, it is not surprising that the
EMV standard has been extensively studied. We review here
the most relevant related work. This previous work concerns
either implementation flaws, or protocol flaws discovered
by analysis of selected and possibly simplified parts of the
EMV specification. In contrast, our analysis integrates all
the different configurations for card authentication, cardholder
verification, and transaction authorization in a single symbolic
model. This provides a basis not only for discovering all
relevant design errors, but also producing correctness proofs.

In 2010, Murdoch et al. [1] identified a serious flaw
in EMV’s offline Cardholder Verification Methods (CVMs).
Namely, the card’s response to the terminal’s PIN verification
request is not authenticated. Therefore, a man-in-the-middle
(MITM) could reply with the success message to any PIN the
terminal would request verification for. The dummy PIN could
be blocked from reaching the card, which would then assume
that either the chosen CVM was paper signature or no CVM
was required at all. All subsequent steps would be carried out
normally and the transaction would be accepted.

Even though Murdoch et al.’s attack comes with some
engineering challenges, such as miniaturizing the MITM in-
frastructure, these challenges appear to have been overcome
as observed in the aforementioned forgery of credit cards in
France and Belgium [10]. Our analysis demonstrates that this
attack still exists in old cards that support neither asymmetric

cryptography nor online PIN verification (see Section V-A).
Unfortunately, many modern cards that support both features
are still vulnerable to our own PIN bypass attack, which we
present in this paper.

Soon after, De Ruiter and Poll [15] gave a ProVerif [18]
model of a variant of the EMV contact protocol. They sum-
marize over 700 pages of EMV specifications into 370 lines
of F# code, which they transform into the ProVerif language
using the FS2PV tool [19]. Their analysis does not identify
the attack of [1] because the terminal’s selection of the CVM
is over-simplified to always opt for the offline plaintext PIN.
This makes the card always expect a PIN verification request,
with the correct PIN, before continuing with the transaction.

Some of EMV’s flaws have also been identified from
empirical studies in the field [3], [8], [9]. For example, UK
researchers, together with unsatisfied consumers who were
denied refunds for fraud claims, were given access to the bank
logs of the disputed transactions. This, together with reverse-
engineering some ATMs, revealed flawed implementations of
EMV. They noted that the supposedly unpredictable numbers
generated by some terminals were actually pretty predictable,
allowing criminals to pre-play payments and use the retrieved
data for later purchases [8].

Bond et al. [8] also observed that a pre-play attack is still
possible even if the terminal’s random number generator works
correctly. In this case, the pre-play consists of the attacker
replacing the terminal-generated nonce with one used in an
earlier transaction between the attacker and the victim’s card.

Symbolic models consider the Dolev-Yao threat model [20],
where the adversary only knows public knowledge, the data
sent over the network, and the outcome of public functions
on known input. The adversary is also an active attacker, who
can modify, block, and inject data on the network. In this
model, however, random number generators are assumed to be
sound, i.e., random numbers cannot be predicted. Therefore,
attacks of this kind are usually not part of a symbolic analysis
that examines the specification (not the implementation) for
logical errors. Our analysis thus does not uncover Bond et al.’s
attacks [8]. Note that it is possible though to incorporate weak
random generators and compromised channels into symbolic
models, as described in [21].

The EMV contactless protocol’s security has been chal-
lenged multiple times too. For example, Roland and Langer [3]
detected a downgrade attack that exploits Mastercard’s
MagStripe mode, a legacy authentication mode kept for
backward compatibility. They showed that a mobile phone
supporting Near Field Communication (NFC) can collect all
authentication codes that a card could produce in response
to all potential challenges from a terminal. Hence, a clone
card pre-loaded with the codes can be used for fraudulent
payments. This attack is feasible because the MagStripe mode
reduces the terminal’s pool of unpredictable numbers to 1000
values only. In this paper we do not consider the MagStripe
mode because the random generators are assumed sound (as
explained above) and this mode has been deprecated in many
countries worldwide.

Other attacks demonstrated against EMV contactless pay-
ment protocols are well-known relay attacks [4], [6], [7]. The
works [4], [7] suggest using distance bounding protocols [22],
[23] as a countermeasure to such attacks. Although distance
bounding does prevent relay attacks, only Mastercard seems to
be inclined to use it. Relay attacks are usually ignored because
they are presumably feasible only for small transactions, since
larger transactions require cardholder verification.

In 2014, Emms et al. [9] observed that some UK-issued
contactless Visa credit cards drop the PIN verification for
transactions in foreign currencies. The authors developed a
proof-of-concept implementation of the attack, where they
faked a transaction of almost one million US dollars. We
reproduced the experiments of [9] but all modern cards we
tested did ask for PIN verification for large-value transactions
in both domestic and foreign currencies.

There exist various symbolic models that showcase the
EMV contactless protocols [16], [17], [24]–[26]. All of these
focus on verifying proximity between the card and the termi-
nal. They also consider the terminal and the bank as a single
agent and consequently do not observe the pre-play attack [3].

Galloway and Yunusov [27] recently presented a man-in-
the-middle attack that also circumvents Visa’s PIN verification.
Their attack is similar to ours in that it modifies a card-sourced
message that instructs the terminal that cardholder verification
was performed on the consumer’s device. In contrast to our at-
tack, Galloway and Yunusov’s attack also modifies a terminal-
sourced message in which the cardholder verification request is
encoded. According to EMV’s (generic) cryptogram definition,
such message should be protected against modification. Their
attack works because Visa’s proprietary cryptograms do not
prevent such modification, or at least not the ones implemented
by the cards they tested. Interestingly, and worrisome, our own
attack demonstrates that the strongest cryptogram proposed by
EMV still does not suffice to correctly verify the cardholder.
Details are given in Section VI.

III. EMV DESCRIPTION

The EMV specification runs over 2,000 pages split across
several books. Moreover, many of the statements in these
books are quite complex and cross-reference other books. In
this section we give a detailed description of the standard.
Given its complexity, creating this specification and its formal
model in Tamarin was a major undertaking that took over
six months of full-time work. Our methodology included not
only carefully reading the standard, but also cross-checking
and disambiguating its statements with data from over 30 real-
world transaction logs that we obtained using the Android app
we developed, described in later sections.

An EMV transaction consists of a series of Application
Protocol Data Unit (APDU) command/response exchanges and
can be divided into four phases:

1) Initialization: the card and the terminal agree on the appli-
cation to be used for the transaction and exchange static
data such as the card’s records containing information

about the card and the issuing bank (or simply the bank
from now on, unless otherwise specified).

2) Offline Data Authentication (ODA): the terminal performs
a PKI-based validation of the card. Once the card has
provided the terminal with the Certificate Authority (CA)
index, the CA-issued bank’s PK certificate, and the bank-
issued card’s PK certificate, the terminal validates the
card’s signature on the transaction details.

3) Cardholder Verification: the terminal determines whether
the person presenting the card is the legitimate cardholder.
This is done using a method that the card and the
terminal both support. The most common method is
online enciphered PIN verification, in which the terminal
sends (an encryption of) the entered PIN to the bank for
verification. The card is not involved.

4) Transaction Authorization (TA): the transaction is de-
clined offline, accepted offline, or sent to the issuing bank
for online authorization.

An overview of the full EMV transaction flow is depicted
in Figure 1 and the details of each phase are given next.

A. Initialization

The first step of an EMV transaction is the application
selection. The terminal issues the SELECT command with the
string 1PAY.SYS.DDF01 (in bytes), which refers to the contact
Payment System Environment (PSE), or 2PAY.SYS.DDF01
for contactless. The card responds with the sequence of
Application Identifiers (AIDs). In the response, the card may
also request the Processing Data Object List (PDOL), which is
a list of terminal-sourced transaction data. The PDOL typically
includes the amount, the country code, the currency, the date,
the transaction type, and the terminal’s random number UN
(called Unpredictable Number in EMV’s terminology).

The terminal issues the GET PROCESSING OPTIONS
command along with the PDOL data, if requested by the card.
The card responds with the 2-byte Application Interchange
Profile (AIP, which indicates the supported authentication
methods and whether cardholder verification is supported)
and the Application File Locator (AFL, which points to a
list of files and records that the terminal should read from
the card). The terminal then learns these records using the
READ RECORD command. The records typically include:
• the Primary Account Number (PAN, commonly known

as the card number), the card’s expiration date, and other
static data;

• the index of the used CA, the CA-issued certificate of the
bank’s PK, and the bank-issued card’s PK certificate, if
the card supports asymmetric encryption;

• the first and second Card Risk Management Data Object
Lists (CDOL1 and CDOL2, respectively), which typically
include the PDOL and further transaction data; and

• the list of the supported CVMs.
From the CA’s index, the terminal retrieves the CA’s PK

from an internal data base and then verifies the bank’s cer-
tificate. Afterwards, from the bank’s certificate, the terminal

acquires the bank’s PK and verifies the card’s certificate, if
applicable. Finally, the terminal acquires the card’s PK from
the card’s certificate.

B. Offline Data Authentication

For Offline Data Authentication (ODA), also known as Card
Authentication, there exist three methods:

1) Static Data Authentication (SDA): the card supplies the
terminal with the Signed Static Authentication Data
(SSAD), which is the bank’s signature on the card’s static
data such as the PAN, the card’s expiration date, and op-
tionally the AIP. The SDA method prevents modification
of the card’s static data, but it does not prevent cloning.

2) Dynamic Data Authentication (DDA): the terminal trans-
mits the INTERNAL AUTHENTICATE command whose
payload is the Dynamic Data Object List (DDOL). The
DDOL must contain the terminal’s Unpredictable Num-
ber. In response to this challenge, the card transmits the
Signed Dynamic Authentication Data (SDAD), which is
the card’s signature on the card’s dynamic data (a fresh
number NC) and the received DDOL. The DDA method
protects against modification of card data and cloning.

3) Combined Dynamic Data Authentication (CDA): this is
similar to DDA but it includes the transaction details in
the SDAD, e.g., the transaction amount.

C. Cardholder Verification

A Cardholder Verification Method (CVM) can be paper sig-
nature, PIN verification, Consumer Device CVM (CDCVM),
or a combination of these. For PIN verification, there are three
specific methods:

1) Offline Plaintext PIN (or simply plain PIN): the terminal
sends the VERIFY command along with the entered PIN
and the card responds with the success message 9000 if
the PIN is correct, or the failure message 63Cx, where
the digit x is the number of tries left. When no tries
remain, i.e., x = 0, then the card must respond with the
PIN-blocked message 6983 to any subsequent VERIFY
requests.

2) Offline Enciphered PIN (or simply enciphered PIN): the
terminal sends the GET CHALLENGE command and the
card responds with a random number. Then the terminal
issues the VERIFY command whose payload is an en-
cryption, with the card’s PK, of the entered PIN, and the
received random number, and random padding generated
by the terminal. Upon reception, the card decrypts the
payload and responds accordingly, using the messages
described in the plain PIN method.

3) Online Enciphered PIN (or simply online PIN): the card
is not involved. Instead, the terminal sends the entered
PIN encrypted to the issuing bank, when requesting the
transaction authorization.

The Consumer Device CVM is intended to be performed
by devices such as mobile phones, which authenticate the
cardholder through fingerprint or face recognition. How the
terminal and the device conduct CDCVM is out of EMV’s

Card

C

Terminal

T

Bank

B

s = f (mk,ATC), random NC random UN s = f (mk,ATC)

SELECT, 1PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,AIDx

PDOL tags & lengths

GET PROCESSING OPTIONS,PDOL

AIP,AFL

READ RECORD

PAN,expDate,...,certprivCA(B,pubB),
[certprivB(C,pubC,CVM list,AIP),]
CDOLs tags & lengths,CVM list

ODA starts
SSAD = signprivB(PAN,expDate,AIP)

INTERNAL AUTHENTICATE,UN

SDAD = signprivC(NC,UN)

[Offline PIN verification]

TA starts
GENERATE AC, CDOL1

X = 〈PDOL,CDOL1〉
AC = MACs(X ,AIP,ATC, IAD)

T = h(X ,CID,ATC,AC, IAD)
SDAD = signprivC(NC,CID,AC, [T,]UN)

CID,ATC,AC/SDAD, IAD PAN,AIP,X ,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC⊕ p8(ARC)
ARPC = MAC′

s(Y)

CDOL2 = 〈ARC,ARPC, . . . 〉GENERATE AC,CDOL2

X ′ = 〈PDOL,CDOL1,CDOL2〉
TC = MACs(X ′,AIP,ATC, IAD′)
T ′ = h(X ′,CID′,ATC,TC, IAD′)
SDAD′ = signprivC(NC,CID′,TC, [T ′,]UN)

CID′,ATC,TC/SDAD′, IAD′
IAD′,TC

Fig. 1. An overview of the EMV transaction. Dashed messages and bracketed terms are either optional, or depend on previous steps, or de-
pend on the parties’ choices. For simplicity, this chart only shows the execution flow in which the card responses have the success trailer 9000.
Notation: ⊕ is exclusive-OR; f is a one-way function; (privC , pubC), (privB , pubB), and (privCA, pubCA) are the PKI pairs of the card, the bank, and
the CA, respectively; certk(cont) is the PKI certificate on cont signed with the private key k; signk(m) is the signature on m with the key k; aenck(m)
is the asymmetric encryption of m with the key k; MACk(m) and MAC ′

k(m) are MACs on m with the key k; pb(m) is the right-padding of m with b
zero bytes.

scope. Nevertheless, this method is the fundamental cause of
one of the new attacks that we report on in this paper.

D. Transaction Authorization

The terminal can decide either to decline the transaction
offline, to authorize the transaction offline, or to request online
authorization from the issuing bank. This decision is made
based on various checks such as the offline ceiling limit, above
which transactions should be processed online.

The terminal sends the GENERATE AC command to the
card, along with the CDOL1. This command instructs the card
to supply the 8-byte Application Cryptogram (AC) which is:
• a Transaction Cryptogram (TC), if the terminal decided

for offline approval,
• an Authorization Request Cryptogram (ARQC), if the

terminal decided for online authorization, or
• an Application Authentication Cryptogram (AAC), if the

terminal decided to decline the transaction.
The requested type of cryptogram is encoded in the com-

mand payload. The card then issues the AC whose type can
be either the requested one, or an ARQC (which forces the
transaction to go online), or an AAC (which indicates the
transaction is declined). The card cannot generate a TC when
an ARQC was requested.

The cryptogram is a MAC computed over the transaction de-
tails, the AIP, and the Application Transaction Counter (ATC),
which is a 2-byte counter incremented on every transaction.
The key for this MAC is a session key s derived from the
ATC and a symmetric master key mk shared by the bank
and the card. Along with the cryptogram itself, the card sends
other data such as the 1-byte Cryptogram Information Data
(CID), which indicates the type of cryptogram being sent; the
transaction counter ATC, and if CDA was requested in the
command payload, the Signed Dynamic Authentication Data
(SDAD). In this case, the SDAD is a signature on the card’s
random number NC, the CID, the cryptogram, a hash of the
transaction details, and the terminal’s UN.

If the card responds with a TC and the chosen CVM was
not online PIN, then the transaction is approved and the TC
serves as a settlement to instruct the bank to transfer the funds
to the merchant’s account.

If the transaction must be authorized online, then the
terminal forwards to the bank the transaction details, the
ARQC, and if online PIN verification was the selected CVM,
the entered PIN. The bank authorizes or declines the trans-
action by sending back to the terminal the 2-byte Autho-
rization Response Code (ARC, authorize/decline and further
data) and the Authorization Response Cryptogram (ARPC).
The latter is a MAC generated over the exclusive-OR of
the ARC (padded to 8 bytes) and the received cryptogram
ARQC, using the session key s. The terminal then issues the
EXTERNAL AUTHENTICATE command (or equivalently a
second GENERATE AC) to inform the card of the bank’s
decision. The card constructs the response analogously to its
response to the (first) GENERATE AC command, only this
time no ARQC is sent, but instead either a TC or an AAC.

IV. MODELING AND ANALYSIS METHODOLOGY

To model and analyze the EMV standard, we use the pro-
tocol verification tool Tamarin [11], [12]. Tamarin is a state-
of-the-art model-checker for security protocol verification. It
features an expressive language for specifying protocols, their
properties, and adversaries, as well as powerful inference
procedures for automating much of protocol verification. We
first provide some background on Tamarin and then present
the properties we analyze and our analysis methodology.

A. Tamarin Background

In Tamarin’s underlying theory, cryptographic messages are
terms in an order-sorted term algebra (S,≤, TΣ(V)) where S
is a set of sorts, ≤ a partial order on S, Σ is a signature, and V
is a countably infinite set of variables. For example, the term
pk(k), with pk ∈ Σ, denotes the public key associated to the
private key k ∈ TΣ(V). Similarly, the term aenck(m), with
aenc ∈ Σ, denotes the asymmetric encryption of the message
m ∈ TΣ(V) with the public key k ∈ TΣ(V). The algebraic
properties of the cryptographic functions are defined by equa-
tions over terms. For example, adeck(aencpk(k)(m)) = m
specifies the semantics of asymmetric decryption.

Tamarin models a protocol’s set of executions as a labeled
transition system (LTS). The states of the LTS are multisets of
facts, which formalize the local states of the agents running
the protocol, the adversary’s knowledge, and messages on the
network. Facts are of the form F(a1, a2 . . . , an) where F is
a symbol from an unsorted signature Γ of predicate symbols
and ai ∈ TΣ(V).

Transitions between states are determined by transition
rules (or simply rules). A rule is a triple (l, a, r), also written
as

[
l
]
−
[
a
]
−→
[
r
]
, where l, a, and r are multisets of facts. For

example, the following rule specifies the transmission of the
hash of a received message:[

In(m)
]
−
[
SentHash(A,m)

]
−→
[
State1(A,m),Out(h(m))

]
.

This rule states that, if there is a term m input on the network,
then update the local state of A to State1(A,m), remove m
from the network, and output the term h(m) on the network,
possibly for reception by A’s communication partner. The
transition is labeled with SentHash(A,m), meaning that A
sent the hash of m.

In what follows, let F be the universe of facts and R the
universe of rules. Whereas P(.) denotes the power set of a
set, we use M(.) to refer to the power multiset of a set.
We define the function linear : M(F) → M(F) that yields
all linear facts from the input multiset of facts. Linear facts
annotate resources that can be consumed just once, such as
messages on the network. Facts that are not linear are called
persistent and can be reused arbitrarily often without being
consumed. We also define the function gins : P(R)→ P(R)
that yields the set of all ground instances of the input set of
rules. A ground instance of a rule is the rule resulting from
the substitution of all variables with ground terms (i.e., terms
from TΣ). Also, let A ⊆ R be the set of global rules modeling

a network controlled by a Dolev-Yao adversary [20] as well
as the generation of random, fresh values.

A protocol P ⊆ R is a set of rules. The associated LTS
is (S,Λ,−→), where S = M(F), Λ = M(F), and −→ ⊆
S × Λ× S is defined by:

s
a−→ s′ ⇐⇒ ∃(l, a, r) ∈ gins(P ∪ A).

l ⊆ s ∧ s′ = (s \ linear(l)) ∪ r.

A transition consumes the linear facts of l from the current
state, adds the facts from r, and labels the transition with a.
An execution of P is a finite sequence (s0, a1, s1, . . . , an, sn)
such that s0 = ∅ and si−1

ai−→ si for all 1 ≤ i ≤ n. The
sequence (a1, . . . , an) is a trace of P and the set of all of P ’s
traces is denoted traces(P). Security properties are specified
using first-order logic formulas on traces. Further details on
Tamarin’s syntax and semantics can be found in [11], [12].

B. Security Properties

As we have seen, EMV involves three parties: the con-
sumer’s card, the merchant’s terminal, and the cardholder’s
bank. Its central security properties concern the parties au-
thenticating each other, guarantees on transaction information,
and the secrecy of sensitive data. We formalize these properties
next.

The first property we examine is that no terminal-accepted
transaction will be declined by the bank. This property is par-
ticularly relevant for offline-capable terminals, which typically
do not request online authorization for low-value transactions.
Such terminals can be cheated if the property fails.

Definition 1 (Bank accepts). A protocol P satisfies the prop-
erty that the bank accepts terminal-accepted transactions if for
every α ∈ traces(P):

∀t , i. TerminalAccepts(t) ∈ αi =⇒
@j. BankDeclines(t) ∈ αj ∨
∃A, k. Honest(A) ∈ αi ∧ Compromise(A) ∈ αk.

In our model, the TerminalAccepts(t) fact is added to the
trace only if the terminal is satisfied with the transaction
t and the associated cryptographic proofs provided by the
card. That is, when the terminal issues a purchase receipt.
The BankDeclines(t) fact is produced when the bank receives
an authorization request for the transaction with a wrong
Application Cryptogram. The last line rules out transactions
where an agent, presumed honest, has been compromised. For
example, a bank that maliciously rejects a correct transaction
should not make the property fail.

Our second property corresponds to the authentication prop-
erty commonly known as injective agreement [28], [29].

Definition 2 (Authentication to terminal). A protocol P satis-
fies authentication to the terminal if for every α ∈ traces(P):

∀T, P, r, t , i.
Commit(T, P, 〈r, ′Terminal′, t〉) ∈ αi =⇒(
∃j. Running(P, T, 〈r, ′Terminal′, t〉) ∈ αj ∧
@i2, T2, P2.

Commit(P2, T2, 〈r, ′Terminal′, t〉) ∈ αi2 ∧ i2 6= i
)
∨

∃A, k. Honest(A) ∈ αi ∧ Compromise(A) ∈ αk.

The above property, with ′Terminal′ ∈ TΣ and 〈〉 ∈ Σ,
states that whenever the terminal T commits to a transaction
t with its communication partner P , then either P , in role
r ∈ {′Card′, ′Bank′} ⊆ TΣ, was running the protocol with T
and they agree on t , or an agent, presumed honest, has been
compromised. Additionally, there is a unique Commit fact for
each pair of accepted transaction and accepting agent, which
means that replay attacks are prevented.

The facts Commit and Running, introduced in [28], are used
to specify authentication properties. A Commit fact represents
an agent’s belief about its communication partner’s local
state, whereas Running represents the partner’s actual state.
Authentication properties are therefore expressed in terms of
matching pairs of such facts. In our models, Commit facts
occur whenever the committing agent is in a satisfactory state
when the transaction is ready to be accepted.

Our third property is also an authentication property and is
very similar to the second, except that the agent who commits
is the bank. That is, the definition is the same except the
ground term ′Terminal′ is now ′Bank′ ∈ TΣ.

Another property relevant for formal protocol analysis is
secrecy (a.k.a. confidentiality). The secrecy of a term x holds
when x is not known to the attacker. The attacker’s knowledge
of a term x is written as KU(x), where KU ∈ Γ is a fact
symbol defined by Tamarin’s built-in rules that model how
the attacker acquires knowledge. The definition of secrecy also
assumes that the agents involved are not compromised.

Definition 3 (Secrecy). A protocol P satisfies secrecy if for
every α ∈ traces(P):

∀x, i. Secret(x) ∈ αi =⇒
@j. KU(x) ∈ αj ∨
∃A, k. Honest(A) ∈ αi ∧ Compromise(A) ∈ αk.

In an EMV transaction, terms that should be secret include
the PIN number, the PAN (i.e., the card number), and the keys
(i.e., private keys and symmetric shared keys).

We also consider other properties such as executability,
which allows one to assess whether a protocol execution
reaches a state where the bank and the terminal have ac-
cepted a transaction and no compromises have occurred. This
represents a sanity check showing that the protocol modeled
behaves as expected and allows executions of protocol runs
without adversary involvement. This ensures that there are
no modeling errors that would make the specified protocol
inoperable and lead to false results.

Definition 4 (Executability). A protocol P is executable if
α ∈ traces(P) exists such that:

∃t , C,B, nc, i, j, k, l.
Running(C, nc, 〈′Card′, ′Terminal′, t〉) ∈ αi ∧
Commit(nc, C, 〈′Card′, ′Terminal′, t〉) ∈ αj ∧
Running(C,B, 〈′Card′, ′Bank′, t〉) ∈ αk ∧
Commit(B,C, 〈′Card′, ′Bank′, t〉) ∈ αl ∧
@A, a. Compromise(A) ∈ αa.

C. Analysis Methodology

We construct our model in a way that accounts for all pos-
sible protocol flows and interactions, but gives us a structured
analysis of which kinds of executions are vulnerable to attacks.
We start by formalizing the EMV standard in two generic
models:

1) one for the EMV contact protocol, modeling the full
execution space of a contact transaction, and

2) one for the EMV contactless protocol, modeling the
full execution space of a Mastercard [30] or Visa [31]
contactless transaction.

Each of these two models captures all possible executions
of the corresponding Payment System Environment (contact
or contactless), including simultaneous transactions with dif-
ferent cards, terminals, types of authentication, cardholder
verification methods, and all the other settings. For example,
the contactless protocol model allows for executions between
a terminal, which believes to be in a Visa transaction, and
three cards, which may be different from Visa cards. Clearly,
whether the system can reach a state where the transaction is
accepted depends on the actual messages and cryptographic
proofs that the terminal and the bank receive.

Tamarin exhibits a property violation by constructing a trace
that contradicts the given property. Clearly, Tamarin cannot
output all such traces as there are infinitely many (simply by
adding unrelated steps), if one exists. Running Tamarin on
the generic models will therefore either lead to a successful
verification or one attack trace, violating the property, with the
“least secure” type of card and authentication method, among
other settings. However, one might be interested, for example,
in the property of authentication to the bank specifically
for transactions where the card used Combined Dynamic
Data Authentication (CDA, recall from Section III-B) and the
transaction value was high, i.e., above the CVM-required limit.

With this in mind, we employed a modeling strategy that
automatically generates specific Tamarin models from the two
generic models. To automatically generate the specific models,
we use target configurations. A target configuration is a choice
of arguments that selects the transactions for which we want
to verify the security properties. A generic model and a target
configuration determine what we call a target model. For
example, Visa DDA Low is a target model generated from the
contactless protocol (generic) model with the target arguments:
• DDA: referring to the offline data authentication method

(known as fast DDA in [31]), and

• Low: indicating a low-value transaction.
We automated the generation of target models and the

interested reader can find the technical details in Appendix A
as well as in our Tamarin theories and their README [32].

In our models, we consider the following transaction data
to be agreed upon for the authentication properties (i.e., the
term t in the definitions of Section IV):
• the Primary Account Number (PAN);
• the Application Interchange Profile (AIP);
• the Cardholder Verification Method (CVM) used;
• the Application Transaction Counter (ATC);
• the Application Cryptogram (AC) data input (X and X ′

in Figure 1);
• the Application Cryptogram (AC) itself; and
• the Issuer Application Data (IAD).
For both the contact and contactless models, between the

terminal and the card (and vice versa) we modeled a channel
controlled by the Dolev-Yao adversary, who can listen, block,
inject, and modify the transmitted data. Between the bank and
the terminal (and vice versa) we modeled a secure channel
that offers authentication and secrecy.

We assumed that physical Mastercard cards have the second
bit of AIP’s first byte cleared. This bit describes whether
the Consumer Device CVM is supported. This assumption is
reasonable since only “virtual” cards (i.e., cards registered in
mobile apps such as ApplePay or Google Pay) have this bit
set. Note that this does not mean that an adversary cannot try
to set this bit. Visa’s AIPs are transaction-dependent and the
selection of the Consumer Device CVM is not determined by
the AIP, but by the Card Transaction Qualifiers (CTQ).

We also assumed that terminals do not complete high-
value, contactless transactions with cards that (apparently) do
not support cardholder verification. In such transactions, the
common practice of terminals is to reject the attempt and
instruct the cardholder to switch to the contact interface.

V. ANALYSIS RESULTS

We conducted a full-scale, automated security analysis of
40 configurations of EMV, including both types of transac-
tions: contact and contactless. We describe the results of this
comprehensive analysis in this section and afterwards show
how some of these flaws can be exploited in practical attacks.

A. Analysis Results for the EMV Contact Protocol

Our analysis results for the 24 configurations of the EMV
contact protocol are summarized in Table I. Although there
are no major surprises here, the results illustrate the benefits
of a comprehensive formalization and analysis. In particular,
we both rediscovered existing, known attacks on the contact
protocols as well as attacks that, to our knowledge are new,
but relatively difficult to carry out in practice and therefore
have limited practical relevance. Note that we have omitted the
results for secrecy from the table because they are identical for
all models. All of our models and proofs are available at [32].

Our analysis revealed disagreement, both between the ter-
minal and the card and between the bank and the card, on the

TABLE I
ANALYSIS RESULTS FOR THE EMV CONTACT PROTOCOL. ALL TARGET MODELS HAVE 55 RULES. THE LAST TWO COLUMNS INDICATE, IN THAT ORDER,

THE NUMBER OF LINES OF TAMARIN CODE THAT THE MODEL COMPRISES, AND THE TIME TAKEN FOR OUR TAMARIN ANALYSIS, USING 10 THREADS AND
AT MOST 20GB OF RAM PER MODEL, ON A COMPUTING SERVER RUNNING UBUNTU 16.04.3 WITH TWO INTEL(R) XEON(R) E5-2650 V4 @ 2.20GHZ
CPUS (WITH 12 CORES EACH) AND 256GB OF RAM. THE MODEL(S) FOR WHICH ALL FOUR PROPERTIES WERE VERIFIED ARE HIGHLIGHTED IN BOLD.

No. Target model
Properties

LoC Time
executable bank accepts auth. to terminal auth. to bank

1 Contact SDA PlainPIN Online X ×(2) ×(1,2) ×(1) 758 13m07s

2 Contact SDA PlainPIN Offline X ×(2) ×(1,2) ×(1) 761 11m39s

3 Contact SDA OnlinePIN Online X ×(2) ×(1,2) ×(1) 758 13m02s

4 Contact SDA OnlinePIN Offline – – – – 731 11m48s

5 Contact SDA NoPIN Online X ×(2) ×(1,2) ×(1) 752 8m21s

6 Contact SDA NoPIN Offline X ×(2) ×(1,2) ×(1) 755 6m37s

7 Contact SDA EncPIN Online – – – – 758 12m21s

8 Contact SDA EncPIN Offline – – – – 761 11m36s

9 Contact DDA PlainPIN Online X ×(2) ×(1,2) ×(1) 766 13m48s

10 Contact DDA PlainPIN Offline X ×(2) ×(1,2) ×(1) 769 12m20s

11 Contact DDA OnlinePIN Online X ×(2) ×(2) X 775 16m04s

12 Contact DDA OnlinePIN Offline – – – – 739 12m27s

13 Contact DDA NoPIN Online X ×(2) ×(2) X 769 12m15s

14 Contact DDA NoPIN Offline X ×(2) ×(2) X 772 8m43s

15 Contact DDA EncPIN Online X ×(2) ×(1,2) ×(1) 766 14m07s

16 Contact DDA EncPIN Offline X ×(2) ×(1,2) ×(1) 769 12m59s

17 Contact CDA PlainPIN Online X X ×(1) ×(1) 763 1h55m31s

18 Contact CDA PlainPIN Offline X X ×(1) ×(1) 766 14m10s

19 Contact CDA OnlinePIN Online X X X X 781 6h03m05s

20 Contact CDA OnlinePIN Offline – – – – 739 12m15s

21 Contact CDA NoPIN Online X X X X 775 2h31m23s

22 Contact CDA NoPIN Offline X X X X 778 12m16s

23 Contact CDA EncPIN Online X X ×(1) ×(1) 763 1h59m44s

24 Contact CDA EncPIN Offline X X ×(1) ×(1) 766 14m00s

Legend:
X: property verified ×: property falsified –: not applicable

(1): disagrees with the card on the CVM used (2): disagrees with the card on the last AC

selected CVM for transactions using SDA or offline (plain or
enciphered) PIN verification (Table I, Remark 1).

For transactions where the terminal performed offline PIN
verification, our analysis identifies a trace that represents the
PIN bypass attack first observed by Murdoch et al. [1] for
transactions using SDA. In this attack, a man-in-the-middle
sends the success response to the terminal’s PIN verification
request. The actual request is blocked and so the card believes
that no PIN verification was required, ergo the disagreement
between the terminal and the card. The terminal forwards
the transaction to the bank (either for online authorization or
to collect the funds), which then leads to the disagreement
between the bank and the card.

A prerequisite for this attack to succeed is that, even if the
terminal sends to the card the Cardholder Verification Method
Results field (CVMR, tag 9F34), which encodes the terminal’s
view of the CVM used, and the card detects the mismatch with
its own view of the CVM used, the card does not abort the
transaction. This appears to be the case in practice (although

EMV’s specification is not explicit about this) and has been
successfully tested with three different Mastercard cards using
our Android app. Such tests, even though they were conducted
contactless, give us a fair degree of confidence that it also
occurs with contact transactions.

Our analysis also exhibits that all transactions using SDA
or DDA are vulnerable to a Transaction Cryptogram (TC)
modification. This is because in neither of these methods the
card authenticates the TC to the terminal (Table I, Remark 2).

In terms of secrecy, the results are identical for all models.
The keys (private and shared) are secret, whereas the PAN
is not. Interestingly, our analysis reports that the PIN is not
secret. A man-in-the-middle attack between the card and the
terminal can use a compromised bank’s private key to produce
the card records needed to make the terminal believe that
the only CVM the card supports is plain PIN. These (fake)
records are twofold: a list of supported CVMs composed of
plain PIN only, and either an SSAD or a card’s PKI certificate
validating such a CVM list. The terminal thus downgrades to

plain PIN verification and consequently the PIN entered by the
cardholder can be intercepted and learned by the attacker. This
is a non-trivial attack though, as carrying this out in practice
requires that the attacker:

1) knows a compromised bank’s private key, and
2) inconspicuously controls the terminal’s contact interface.

Our model considers these two conditions to be possible, at
least in theory. However, in practice they are fairly difficult to
achieve. We note that a single compromised bank is sufficient,
and it needs not be the one that issued the victim’s card.

Summary: We show that only three configurations of the
EMV contact protocol guarantee secure transactions in terms
of the three main properties we considered. These configu-
rations all use CDA as the authentication method and are
typeset in bold in Table I. In combination with online PIN
as the cardholder verification method, the resulting target
configuration allows all transactions (high and low value) and
is secure. It is also the only one of these three that effectively
checks that the person presenting the card is the legitimate
cardholder. Instead, the other two configurations delegate this
check to the cashier, e.g., by paper signature (whose actual
verification is out of EMV’s scope). This makes these two
configurations not usable for high-value transactions in many
countries.

B. Analysis Results for the EMV Contactless Protocol

Our analysis results for the 16 configurations of the EMV
contactless protocol are summarized in Table II. Here Tamarin
uncovered new, potentially high-valued attacks.

Our analysis shows that the Mastercard contactless protocol
provides security for all high-value transactions. During trans-
actions using SDA or DDA, the card does not authenticate
the Application Cryptogram (AC) to the terminal (Table II,
Lines 5, 7, 9, and 11, Remark 2). Therefore, during offline
transactions using either of these methods, a man-in-the-
middle can modify the AC (or Transaction Cryptogram due
to being offline), which the terminal accepts given that it
cannot verify its correctness. The mismatching AC will later
be detected by the issuing bank. This violates both properties
formalized in Definitions 1 and 2.

To our surprise, all-but-one of the Visa contactless pro-
tocol’s configurations fail to provide security (the protocol
is shown in Figure 2). For example, transactions authorized
offline (Table II, Line 3, Remark 2) can be abused similarly to
the aforementioned issue with Mastercard. Particularly critical
are the violations of authentication in high-value transactions
in EMV mode (Table II, Line 2, Remark 1). Our Tamarin
analysis identifies a trace for an accepted transaction where
neither the terminal nor the bank agree with the card on
the Card Transaction Qualifiers (CTQ). The CTQ is a card-
sourced data field that tells the terminal which CVM is to be
used. The trace shows that, whereas the card’s view of the
CTQ is a request for online PIN verification, the terminal’s
view indicates that the Consumer Device CVM (CDCVM) was
performed, which makes the terminal consider the cardholder
verification process to be successfully completed. This is

possible because no cryptographic protection of the CTQ is
offered. This flaw is critical since it allows an attacker to
bypass PIN verification for high-value transactions with a
victim’s card, as pointed out in the introduction.

In terms of secrecy, the results are identical for all models
and are as expected. The keys (private and shared) and the
PIN are secret, whereas the PAN is not.

Summary: Our analysis verifies that transactions with CDA-
capable Mastercard cards that support online PIN verification
are secure. Fortunately, this is the most common kind of
Mastercard cards that banks are currently issuing. In contrast,
critical flaws were encountered in common, currently used
configurations of Visa cards. These flaws can be turned into
practical attacks, which we describe in the next section.

VI. ATTACK AND DEFENSE

Our analysis of EMV’s security uncovered numerous serious
shortcomings. Particularly critical are the issues encountered
in EMV contactless, because of their practical relevance given
that tampering with the card-terminal contactless channel over
NFC is much simpler than tampering with this channel over
the contact chip. In this section we show how these issues can
be exploited by an attacker to carry out fraudulent transactions.
We also suggest fixes that lead to verified, secure contactless
transactions.

A. Setup

We developed a proof-of-concept Android application to
demonstrate the practical impact of the shortcomings uncov-
ered by our formal analysis. Our application supports man-in-
the-middle attacks on top of a relay attack [5]–[7] architecture,
depicted in Figure 3. In this architecture, the attacker employs
two mobile devices: one running our app in Point-Of-Sale
(POS) emulator mode and the other in card emulator mode.
Both devices must have NFC support and run Android 4.4
KitKat (API level 19) or later. The card emulator device must
support Android’s Host-based Card Emulation (HCE) [34].

To conduct the attacks, the POS emulator must be held near
the card to be attacked and the card emulator must be held
near the payment terminal. The two emulators communicate
wirelessly through a TCP/IP socket channel over WiFi. A man-
in-the-middle attack modifies, as appropriate:
• the inbound commands read from the wireless channel

before delivering them to the card through the NFC
channel, and

• the card’s responses before transmitting them to the card
emulator through the WiFi channel.

B. Bypassing Cardholder Verification

In a Visa contactless transaction, the card’s response to the
terminal’s GET PROCESSING OPTIONS command carries
the Card Transaction Qualifiers (CTQ). The CTQ is a 2-
byte data field that instructs the terminal which Cardholder
Verification Method (CVM) is to be used. As explained in
Section V-B, our analysis revealed that the card authenticates
the CTQ neither to the terminal nor to the bank (Table II,

TABLE II
ANALYSIS RESULTS FOR THE EMV CONTACTLESS PROTOCOL. ALL TARGET MODELS HAVE 60 RULES. THE LAST TWO COLUMNS INDICATE, IN THAT

ORDER, THE NUMBER OF LINES OF TAMARIN CODE THAT THE MODEL COMPRISES, AND THE TIME TAKEN FOR OUR TAMARIN ANALYSIS ON A
MACBOOK PRO LAPTOP RUNNING MACOS 10.15.4 WITH A QUAD-CORE INTEL CORE I7 @ 2.5 GHZ CPU AND 16 GB OF RAM. THE MODEL(S) FOR

WHICH ALL FOUR PROPERTIES WERE VERIFIED ARE HIGHLIGHTED IN BOLD.

No. Target model
Properties

LoC Time
executable bank accepts auth. to terminal auth. to bank

1 Visa EMV Low X X ×(1) ×(1) 822 2m02s

2 Visa EMV High X X ×(1) ×(1) 822 2m10s

3 Visa DDA Low X ×(2) ×(2) X 832 5m49s

4 Visa DDA High X X X X 840 28m57s

5 Mastercard SDA OnlinePIN Low X ×(2) ×(2) X 830 4m36s

6 Mastercard SDA OnlinePIN High X X X X 839 12m36s

7 Mastercard SDA NoPIN Low X ×(2) ×(2) X 824 4m27s

8 Mastercard SDA NoPIN High –(3) – – – 792 53s

9 Mastercard DDA OnlinePIN Low X ×(2) ×(2) X 836 8m40s

10 Mastercard DDA OnlinePIN High X X X X 845 27m07s

11 Mastercard DDA NoPIN Low X ×(2) ×(2) X 830 8m22s

12 Mastercard DDA NoPIN High –(3) – – – 798 1m02s

13 Mastercard CDA OnlinePIN Low X X X X 845 22m00s

14 Mastercard CDA OnlinePIN High X X X X 845 44m00s

15 Mastercard CDA NoPIN Low X X X X 839 18m22s

16 Mastercard CDA NoPIN High –(3) – – – 798 1m13s

Legend:
X: property verified ×: property falsified –: not applicable (1): disagrees with the card on the CVM used

(2): disagrees with the card on the AC (3) high-value transactions without CVM are not completed over the contactless interface

Line 2, Remark 1). Our app exploits this and implements a
man-in-the-middle attack that:

• clears the 8th bit of CTQ’s first byte, which tells the
terminal that online PIN verification is not required; and

• sets the 8th bit of CTQ’s second byte, which tells the
terminal that the Consumer Device CVM was performed.

Using our app, we have successfully carried out a number
of real-world, PIN-less transactions above the domestic CVM-
required limit with Visa credit as well as debit cards. Figure 4
shows screenshots of our app and the transaction log displayed
in the POS emulator screen corresponds to one of such
transactions.

Our attack should also work for the EMV Contactless
Kernels 6 [35] (Discover) and 7 [36] (UnionPay), but these
have not been tested yet. To avoid defrauding others, all of
our tests were carried out with our own debit/credit cards, and
in all attacks the purchased goods were paid for in full.

As discussed in Section II, Galloway and Yunusov [27]
recently presented at BlackHat Europe another man-in-the-
middle attack that also bypasses Visa’s PIN verification. In
contrast to our PIN bypass attack, their attack does not clear
the 8th bit of CTQ’s first byte. Instead, it clears the 7th bit of
the second byte of the Terminal Transaction Qualifiers (TTQ).
This bit tells the card whether the terminal requires cardholder
verification for the transaction.

The TTQ is a terminal-sourced data field passed onto the
card within the payload of the GET PROCESSING OPTIONS

command. The TTQ is part of the Processing Data Object List
(PDOL). According to the EMV Security and Key Manage-
ment book [33], the Application Cryptogram (AC) is a MAC
computed on the data referenced by the card’s data object lists,
namely the PDOL, the CDOL1, and the CDOL2, if applicable.
Therefore, this (generic) cryptogram should defend against
modification of the PDOL and of the TTQ in particular. Visa’s
proprietary cryptogram does not, as noted in [27]. Clearly, our
attack works even if the TTQ is authenticated as it needs no
modification.

Another noticeable difference between our attack and that
of [27] is on the implementation side. Their attack prototype
is composed of two wired Raspberry Pi boards. This setup is
rather conspicuous and could not be easily used outside of a
lab environment. In contrast, our proof-of-concept implemen-
tation is an innocent-looking phone app that can, and has been,
easily used in live, attended terminals. Moreover, as opposed
to Galloway and Yunusov’s attack, ours does not require that
the card and the payment terminal are physically close. In fact,
one can extend our app so that the relay channel covers even
overseas distances. Surprisingly, Visa has shown no intention
to fix such vulnerabilities, as noted in [27].

Observe that our attack, as well as that of [27], presume
that the attacker’s device is physically within NFC proximity
of the victim’s card. These attacks can therefore be carried
out by acquiring the actual card (e.g., stealing it or finding it
if lost) or by holding the POS emulator near the card in the

Card

C

Terminal

T

Bank

B

s = f (mk,ATC)
random NC

random UN s = f (mk,ATC)

SELECT, 2PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,A000000003....

PDOL tags & lengths

PDOL=〈TTQ,amount,country,TVR,
currency,date,type,UN〉

GET PROCESSING OPTIONS,PDOL

AC = MACs(PDOL,AIP,ATC, IAD)
d = 〈ATC,UN,amount,currency,NC,CTQ,AIP〉
SDAD = signprivC(d)

AIP,AFL, IAD,AC,CID,ATC,CTQ

READ RECORD

PAN,expDate,...[,certprivCA(B,pubB),
certprivB(C,pubC),SDAD,NC,CTQ]

PAN,AIP,PDOL,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC⊕ p8(ARC)
ARPC = MAC′

s(Y)

ARC,ARPC

Fig. 2. The Visa contactless protocol. The terminal’s request for cardholder verification and online authorization is encoded in the PDOL, specifically in the
Terminal Transaction Qualifiers (TTQ, tag 9F66). The card’s response to the TTQ requests is encoded in the Card Transaction Qualifiers (CTQ, tag 9F6C).
The input to the AC represented here includes the full PDOL as per [33]; proprietary cryptograms might use fewer data objects [27].

1 2 3 4WiFi

APDU commands

APDU responses
NFC NFC

Fig. 3. A relay attack on contactless payment, where (1) is a payment terminal,
(4) is a contactless card, and the attacker’s equipment are the devices (2) and
(3), which are the card emulator and the POS emulator, respectively.

victim’s possession.
Mastercard implements cardholder verification more in line

with the traditional contact version of EMV. The card’s support
for the Consumer Device CVM is defined by the 2nd bit of
AIP’s first byte. Physical cards have this bit cleared. Hence,
given that the AIP is included in the cryptogram, setting this
bit will result in a declined transaction.

C. Unauthenticated Offline Transactions

For all low-value transactions of Visa as well as Mastercard
with either SDA or DDA offline authentication, our Tamarin
analysis uncovers a trace that violates the property that the
bank accepts all terminal-accepted transactions (Table II, Re-
mark 2). The trace represents a transaction where the attacker
modifies the Transaction Cryptogram (TC) before delivering it
to the terminal. The terminal reaches a state where the transac-
tion is accepted given that the Signed Dynamic Authentication
Data (SDAD), if produced and returned by the card, passes the
terminal’s verification. However, the issuing bank should later
decline the transaction due to the wrong TC. Recall that the
terminal can only verify the correctness of the SDAD but not
of the TC since the latter is verified using a symmetric key
only known to the card and the bank.

This constitutes a “free lunch” attack in that the criminal
can purchase low-value goods or services without actually
being charged at all. This however is unlikely to be an

(a) Card emulator (b) POS emulator
Fig. 4. Screenshots of our app. The card emulator may display the card-
holder’s signature, in which case, it should match the attacker’s signature.
The log displayed in the POS emulator corresponds to a real transaction of
ca. $190 in the local currency.

attractive business model for criminals for two reasons. First,
the fraudulent transactions are of low value. Second, the
criminal’s bank will likely not ignore the defrauded merchant’s
complaints indefinitely. For ethical reasons, we did not test this
attack as it would constitute actual fraud.

D. Defenses against Attacks on Visa

As reported in Section V-B, the most common configu-
ration of the Mastercard contactless protocol in current use
(namely CDA in conjunction with online PIN) is secure. Visa’s
configurations, on the other hand, are not. Fortunately, Visa’s
problems can be fixed by implementing the three changes that
we describe next. These changes can be realized by Visa and
the banks in a reasonable amount of time and effort, without
affecting those cards currently in circulation.

The Visa contactless protocol [31] specifies that special-
purpose readers may perform Dynamic Data Authentication
(DDA) for online transactions. This is indeed the only con-
figuration of this protocol where all three security properties
hold (Table II, Line 4). This is not a common configuration
though, as indicated by our tests. We performed tests on over
ten different live terminals at different merchants, and none
of them used this configuration. Therefore, to prevent the PIN
bypass attack described in Section VI-B, we recommend that
terminals should use DDA for online transactions. That is, all
the terminals must, for all transactions:

1) set the 1st bit of TTQ’s first byte, and
2) verify the SDAD.
If implemented, these two measures would make high-value

transactions be processed with Visa’s secure configuration.

This is of course assuming that the cards used for such
transactions are capable of producing digital signatures, which
modern cards are. Furthermore, to prevent the offline attack
of Section VI-C, we propose that either:
3a) all terminals set the 8th bit of TTQ’s second byte for all

transactions; or
3b) 〈NC,CID,AC,PDOL,ATC,CTQ,UN, IAD,AIP〉 is the

input to the SDAD, i.e., d in Figure 2.
The fix 3(a) makes all transactions be processed online and

is preferable over 3(b) because 3(a) does not require changes
to the standard and therefore does not affect the consumer
cards in circulation. Furthermore, offline transactions are rarely
supported nowadays; none of the transactions we carried out
during our tests were authorized offline. However, if the
capability to process certain transactions offline is imperative
(e.g., in transit systems or street parking meters) then more
aggressive fixes would be needed such as that of 3(b).

We have verified the three fixes recommended here. To-
gether, they defend against the attacks reported in this paper
as well as any other attacks that might try to violate the
considered security properties. These fixes, except for 3(b), can
be deployed on the terminals’ software/firmware and so they
are attractive in terms of implementation because terminals’
software updates should be significantly less expensive and
faster than other, more aggressive actions such as blocking
cards in circulation and issuing new ones.

VII. CONCLUSIONS

We have presented a formal model of the latest version of
the EMV standard that features all relevant methods for offline
data authentication, cardholder verification, and transaction
authorization. Using the Tamarin tool, we conducted a full-
scale, automatic, formal analysis of this model, uncovering
numerous security flaws. These flaws violate fundamental
security properties such as authentication and other guarantees
about accepted transactions. We also used our model to
identify EMV configurations that lead to secure transactions,
and proved their correctness.

Our analysis revealed surprising differences between the
security of the contactless payment protocols of Mastercard
and Visa, showing that Mastercard is more secure than Visa.
We found no major issues with the Mastercard protocol version
running in modern cards. Our analysis revealed only minor
shortcomings arising from older authentication modes (SDA
and DDA) that seem hard to exploit in practice. In contrast,
Visa suffers from several critical issues. The shortcomings we
report on lead to serious, practical attacks, including a PIN
bypass for transactions that surpass the cardholder verification
limit. Using our proof-of-concept Android application, we
successfully tested this attack on real-world transactions in
actual stores. Our attack shows that the PIN is useless for Visa
contactless transactions. As a result, in our view, the liability
shift from banks to consumers or merchants is unjustified
for such transactions: Banks, EMVCo, Visa, or some entity
other than the consumer or merchant should be liable for such
fraudulent transactions.

As part of our analysis we suggested and verified fixes that
banks and Visa can deploy on existing terminals to prevent
current and future attacks. The good news is that these fixes do
not require changes to the EMV standard itself or to consumer
cards currently in circulation and they can therefore be feasibly
deployed by software updates.

REFERENCES

[1] S. J. Murdoch, S. Drimer, R. J. Anderson, and M. Bond, “Chip and
PIN is broken,” in 31st IEEE Symposium on Security and Privacy, S&P
2010, 16-19 May 2010, Berleley/Oakland, California, USA, pp. 433–
446, 2010.

[2] T. S. Heydt-Benjamin, D. V. Bailey, K. Fu, A. Juels, and T. O’Hare,
“Vulnerabilities in first-generation rfid-enabled credit cards,” in Finan-
cial Cryptography and Data Security, 11th International Conference, FC
2007, and 1st International Workshop on Usable Security, USEC 2007,
Scarborough, Trinidad and Tobago, February 12-16, 2007. Revised
Selected Papers, pp. 2–14, 2007.

[3] M. Roland and J. Langer, “Cloning credit cards: A combined pre-play
and downgrade attack on EMV contactless,” in 7th USENIX Workshop
on Offensive Technologies, WOOT ’13, Washington, D.C., USA, August
13, 2013, 2013.

[4] S. Drimer and S. J. Murdoch, “Keep your enemies close: Distance
bounding against smartcard relay attacks,” in Proceedings of the 16th
USENIX Security Symposium, Boston, MA, USA, August 6-10, 2007,
2007.

[5] L. Francis, G. P. Hancke, K. Mayes, and K. Markantonakis, “Practical
relay attack on contactless transactions by using NFC mobile phones,”
IACR Cryptology ePrint Archive, vol. 2011, p. 618, 2011.

[6] L. Sportiello and A. Ciardulli, “Long distance relay attack,” in Radio
Frequency Identification - Security and Privacy Issues 9th International
Workshop, RFIDsec 2013, Graz, Austria, July 9-11, 2013, Revised
Selected Papers, pp. 69–85, 2013.

[7] T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thomp-
son, “Relay cost bounding for contactless EMV payments,” in Financial
Cryptography and Data Security - 19th International Conference, FC
2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected
Papers, pp. 189–206, 2015.

[8] M. Bond, O. Choudary, S. J. Murdoch, S. P. Skorobogatov, and R. J.
Anderson, “Chip and skim: Cloning EMV cards with the pre-play
attack,” in 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014, pp. 49–64, 2014.

[9] M. Emms, B. Arief, L. Freitas, J. Hannon, and A. P. A. van Moorsel,
“Harvesting high value foreign currency transactions from EMV con-
tactless credit cards without the PIN,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pp. 716–726, 2014.

[10] H. Ferradi, R. Géraud, D. Naccache, and A. Tria, “When organized
crime applies academic results: a forensic analysis of an in-card listening
device,” J. Cryptographic Engineering, vol. 6, no. 1, pp. 49–59, 2016.

[11] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in Computer
Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, pp. 696–701, 2013.

[12] B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin, “Automated
analysis of Diffie-Hellman protocols and advanced security properties,”
in 25th IEEE Computer Security Foundations Symposium, CSF 2012,
Cambridge, MA, USA, June 25-27, 2012, pp. 78–94, 2012.

[13] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A comprehensive symbolic analysis of TLS 1.3,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pp. 1773–1788, 2017.

[14] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stet-
tler, “A formal analysis of 5g authentication,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pp. 1383–1396,
2018.

[15] J. de Ruiter and E. Poll, “Formal analysis of the EMV protocol suite,”
in Theory of Security and Applications - Joint Workshop, TOSCA 2011,
Saarbrücken, Germany, March 31 - April 1, 2011, Revised Selected
Papers, pp. 113–129, 2011.

[16] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua, “Distance-
bounding protocols: Verification without time and location,” in 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-
23 May 2018, San Francisco, California, USA, pp. 549–566, 2018.

[17] A. Debant, S. Delaune, and C. Wiedling, “A symbolic framework to
analyse physical proximity in security protocols,” in 38th IARCS Annual
Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad,
India, pp. 29:1–29:20, 2018.

[18] B. Blanchet, “An efficient cryptographic protocol verifier based on
Prolog rules,” in 14th IEEE Computer Security Foundations Workshop
(CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada,
pp. 82–96, 2001.

[19] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified interop-
erable implementations of security protocols,” in 19th IEEE Computer
Security Foundations Workshop, (CSFW-19 2006), 5-7 July 2006, Venice,
Italy, pp. 139–152, 2006.

[20] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Trans. Information Theory, vol. 29, no. 2, pp. 198–207, 1983.

[21] D. A. Basin and C. Cremers, “Know your enemy: Compromising
adversaries in protocol analysis,” ACM Trans. Inf. Syst. Secur., vol. 17,
no. 2, pp. 7:1–7:31, 2014.

[22] T. Beth and Y. Desmedt, “Identification tokens - or: Solving the chess
grandmaster problem,” in Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1990, Proceedings, pp. 169–177, 1990.

[23] S. Brands and D. Chaum, “Distance-bounding protocols (extended
abstract),” in Advances in Cryptology - EUROCRYPT ’93, Workshop
on the Theory and Application of of Cryptographic Techniques, Lofthus,
Norway, May 23-27, 1993, Proceedings, pp. 344–359, 1993.

[24] T. Chothia, J. de Ruiter, and B. Smyth, “Modelling and analysis of
a hierarchy of distance bounding attacks,” in 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-
17, 2018., pp. 1563–1580, 2018.

[25] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua, “Post-collusion
security and distance bounding,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019., pp. 941–958, 2019.

[26] A. Debant and S. Delaune, “Symbolic verification of distance bounding
protocols,” in Principles of Security and Trust - 8th International
Conference, POST 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, pp. 149–174, 2019.

[27] L.-A. Galloway and T. Yunusov, “First contact: New vulnerabilities in
contactless payments,” in Black Hat Europe 2019, 2019.

[28] G. Lowe, “A hierarchy of authentication specification,” in 10th Com-
puter Security Foundations Workshop (CSFW ’97), June 10-12, 1997,
Rockport, Massachusetts, USA, pp. 31–44, 1997.

[29] C. Cremers and S. Mauw, Operational Semantics and Verification of
Security Protocols. Information Security and Cryptography, Springer,
2012.

[30] EMVCo, EMV Contactless Specifications for Payment Systems, Book
C-2, Kernel 2 Specification, Version 2.8. April 2019.

[31] EMVCo, EMV Contactless Specifications for Payment Systems, Book
C-3, Kernel 3 Specification, Version 2.8. April 2019.

[32] Anonymous, “A Tamarin model of EMV.” https://github.com/EMVrace/
EMVerify, 2020. Accessed: June 2020.

[33] EMVCo, “EMV Integrated Circuit Card Specifications for Payment Sys-
tems, Book 2, Security and Key Management, Version 4.3,” November
2011.

[34] Google, “Host-based card emulation overview.” https://developer.
android.com/guide/topics/connectivity/nfc/hce, 2019. Accessed: Decem-
ber 2019.

[35] EMVCo, EMV Contactless Specifications for Payment Systems, Book
C-6, Kernel 6 Specification, Version 2.8. April 2019.

[36] EMVCo, EMV Contactless Specifications for Payment Systems, Book
C-7, Kernel 7 Specification, Version 2.8. April 2019.

ACRONYMS

AAC Application Authentication Cryptogram. 6
AC Application Cryptogram. 2, 6, 8–12
AFL Application File Locator. 4

https://github.com/EMVrace/EMVerify
https://github.com/EMVrace/EMVerify
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce

AID Application Identifier. 4
AIP Application Interchange Profile. 4, 6, 8, 12
APDU Application Protocol Data Unit. 3, 12
ARC Authorization Response Code. 6
ARPC Authorization Response Cryptogram. 6
ARQC Authorization Request Cryptogram. 6
ATC Application Transaction Counter. 6, 8

CDA Combined Dynamic Data Authentication. 2, 4, 6, 8, 10,
13

CDCVM Consumer Device CVM. 2, 4, 8, 10–12
CDOL Card Risk Management Data Object List. 4, 6, 11
CID Cryptogram Information Data. 6
CTQ Card Transaction Qualifiers. 8, 10–12
CVM Cardholder Verification Method. 2–4, 6, 8–12, 15
CVMR Cardholder Verification Method Results. 9

DDA Dynamic Data Authentication. 2, 4, 8–10, 12, 13
DDOL Dynamic Data Object List. 4

HCE Host-based Card Emulation. 10

IAD Issuer Application Data. 8

NFC Near Field Communication. 3, 10–12

ODA Offline Data Authentication. 2, 4

PAN Primary Account Number. 4, 7–10
PDOL Processing Data Object List. 4, 11, 12
POS Point-Of-Sale. 10, 12
PSE Payment System Environment. 4, 8

SDA Static Data Authentication. 2, 4, 9, 10, 12, 13
SDAD Signed Dynamic Authentication Data. 4, 6, 12, 13
SSAD Signed Static Authentication Data. 4, 9

TA Transaction Authorization. 2, 4
TC Transaction Cryptogram. 6, 9, 10, 12
TTQ Terminal Transaction Qualifiers. 11–13

UN Unpredictable Number. 4, 6

APPENDIX

A. Target Models Generation

We construct the target models from the rules of a generic
model as well as extra rules that produce the Commit facts
used for the (in)validation of properties. We have written a
Makefile script that generates the target models by instan-
tiating the following variables:
• generic: defines the generic model. Valid instances are:

– Contact, and
– Contactless.

• kernel: defines the kernel of the contactless transaction.
Valid instances are:
– Mastercard, and
– Visa.

1 /*if(Visa)
2 rule Terminal_Commits_ARQC_Visa:
3 let PDOL = <TTQ, $amount, country, currency,

date, type, ˜UN>
4 /*if(DDA) AIP = <’DDA’, data> endif(DDA)*/
5 /*if(EMV) AIP = <’EMV’, data> endif(EMV)*/
6 /*if(Low) value = ’Low’ endif(Low)*/
7 /*if(High) value = ’High’ endif(High)*/
8 transaction = <˜PAN, AIP, CVM, PDOL, ATC,

AC, IAD>
9 in

10 [Terminal_Received_AC_Visa($Terminal, $Bank,
11 $CA, nc, ’ARQC’, transaction, ˜channelID),
12 !Value($amount, value),
13 Recv($Bank, $Terminal,
14 <˜channelID, ’Visa’, ’2’>, <’ARC’, ARPC>)

]
15 --[TerminalAccepts(transaction),
16 Commit(nc, ˜PAN,
17 <’Card’, ’Terminal’, transaction>),
18 Commit($Terminal, $Bank,
19 <’Bank’, ’Terminal’, transaction>),
20 Honest($CA), Honest($Bank),
21 Honest($Terminal), Honest(˜PAN)]->
22 []
23 endif(Visa)*/

Fig. 5. Tamarin code snippet from the EMV contactless protocol model.

• auth: defines the Offline Data Authentication (ODA)
method. Valid instances are:
– SDA,
– DDA,
– CDA, and
– EMV (for contactless transactions only).

• CVM: defines the cardholder verification method used/-
supported. Valid instances are:
– NoPIN,
– PlainPIN (for contact transactions only),
– EncPIN (enciphered PIN, for contact transactions

only), and
– OnlinePIN.

• value: defines the value of the contactless transaction.
Valid instances are:
– Low (below the CVM-required limit), and
– High (above the CVM-required limit).

• authz: defines the type of authorization of the contact
transaction. Valid instances are:
– Offline, and
– Online.

The execution of make with a choice of variable instances
determining a target configuration generates the target model
and analyzes it with Tamarin. To understand how we instru-
ment the actual target models auto-generation, consider the
code snippet depicted in Figure 5, taken from our generic
model of the EMV contactless protocol.

This piece of code is activated (uncommented), and so the
rule becomes part of the target model, if the target configu-
ration includes kernel=Visa. Furthermore, depending on

1 rule Terminal_Commits_ARQC_Visa:
2 let PDOL = <TTQ, $amount, country, currency,

date, type, ˜UN>
3 AIP = <’DDA’, data>
4 value = ’High’
5 transaction = <˜PAN, AIP, CVM, PDOL, ATC,

AC, IAD>
6 in
7 [Terminal_Received_AC_Visa($Terminal, $Bank,
8 $CA, nc, ’ARQC’, transaction, ˜channelID),
9 !Value($amount, value),

10 Recv($Bank, $Terminal,
11 <˜channelID, ’Visa’, ’2’>, <’ARC’, ARPC>)

]
12 --[TerminalAccepts(transaction),
13 Commit(nc, ˜PAN,
14 <’Card’, ’Terminal’, transaction>),
15 Commit($Terminal, $Bank,
16 <’Bank’, ’Terminal’, transaction>),
17 Honest($CA), Honest($Bank),
18 Honest($Terminal), Honest(˜PAN)]->
19 []

Fig. 6. Tamarin code snippet from the Visa DDA High target model.

the rest of the target configuration, the AIP and value are
activated. For example, if our target configuration includes
auth=DDA and value=High, then the rule becomes the one
depicted in Figure 6. This (new) rule models the terminal’s
acceptance of an online-authorized transaction and produces
the corresponding Commit and TerminalAccepts facts.

	I Introduction
	II Related Work
	III EMV Description
	III-A Initialization
	III-B Offline Data Authentication
	III-C Cardholder Verification
	III-D Transaction Authorization

	IV Modeling and Analysis Methodology
	IV-A Tamarin Background
	IV-B Security Properties
	IV-C Analysis Methodology

	V Analysis Results
	V-A Analysis Results for the EMV Contact Protocol
	V-B Analysis Results for the EMV Contactless Protocol

	VI Attack and Defense
	VI-A Setup
	VI-B Bypassing Cardholder Verification
	VI-C Unauthenticated Offline Transactions
	VI-D Defenses against Attacks on Visa

	VII Conclusions
	References
	Appendix
	A Target Models Generation

