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Abstract—Power side-channel attacks exploit variations in
power consumption to extract secrets from a device, e.g., crypto-
graphic keys. Prior attacks typically required physical access to
the target device and specialized equipment such as probes and
a high-resolution oscilloscope.

In this paper, we present PLATYPUS attacks which are novel
software-based power side-channel attacks on Intel server, desk-
top, and laptop CPUs. We exploit unprivileged access to the Intel
Running Average Power Limit (RAPL) interface that exposes
values directly correlated with power consumption, forming a
low-resolution side channel.

We show that with sufficient statistical evaluation, we can
observe variations in power consumption, which distinguish
different instructions and different Hamming weights of operands
and memory loads. This enables us to not only monitor the con-
trol flow of applications but also to infer data and extract cryp-
tographic keys. We demonstrate how an unprivileged attacker
can leak AES-NI keys from Intel SGX and the Linux kernel,
break kernel address-space layout randomization (KASLR), infer
secret instruction streams, and establish a timing-independent
covert channel. We also present a privileged attack on mbed
TLS, utilizing precise execution control to recover RSA keys
from an SGX enclave. We discuss countermeasures and show
that mitigating these attacks in a privileged context is not trivial.

I. INTRODUCTION

The concept of extracting data from a computer system
by monitoring side-channel information, such as its power
consumption or electromagnetic emissions, is known since
World War II [3]. Power analysis attacks were first presented in
an academic context by Kocher et al. [50] for attacks on cryp-
tographic implementations in smart cards. Subsequent research
applied these attacks to different devices and algorithms,
particularly to supposedly side-channel-resistant encryption-
scheme implementations [24], [26]. However, until recently,
power analysis attacks had two limitations. First, they primar-
ily targeted small embedded microcontrollers rather than more
complex high-performance desktop and server CPUs. Second,
software-based attacks relying on the available interfaces [56],
[68], [87] were so far not successfully applied on x86 to leak
fine-grained information, e.g., cryptographic key bits.

Software-based power side-channel attacks have been
demonstrated on mobile devices for website [68] and app
fingerprinting [87], UI inference [87], password length guess-
ing [87], and geolocation estimation [87]. More recently,
O’Flynn [64] recovered secrets processed in the secure world

on an ARM TrustZone-M platform using an onboard ADC,
and Mantel et al. [56] distinguished different RSA keys by
measuring the power consumption on Intel desktop machines.
The experimental results of Mantel et al. on RSA demonstrated
that certain multiply operations of the square-and-multiply
implementation can be detected, but no full key recovery was
achieved. Similarly, Fusi [20] tried to recover RSA-16384 keys
but concluded that the sampling rate of the interface is too low
to mount an attack.

In this work, we present PLATYPUS1 attacks which are
novel software-based power side-channel attacks on Intel
servers, desktops, and laptops by abusing unprivileged access
to Intel’s RAPL interface. By observing changes in power
consumption with a resolution of up to 20 kHz, we show that
different executed instructions and features of their operands
can be distinguished. Furthermore, we observe that when a
register is filled with data from a cache line, the Hamming
weight, i.e., the number of bits set to one, of the loaded value
measurably influences the power consumption. We show how
these power differences between different operands and load
values enable the inference of inputs and intermediate values
used for multiplications or masks in an encryption algorithm.
We present the building blocks to enable the creation of
power traces at instruction-level granularity and develop novel
techniques for RAPL power analysis attacks on enclaved and
non-enclaved execution.

To demonstrate the applicability of these attacks, we suc-
cessfully recover AES-NI keys from an SGX enclave and the
Linux kernel in 26 hours. In a privileged attack context, we
recover RSA private keys from mbed TLS within 100 minutes
by inferring the instructions executed inside SGX from a
power trace with instruction-level granularity. We derandomize
the kernel address space within 20 seconds by observing that
accesses to valid and invalid kernel addresses from user space
expose a different power consumption footprint. Furthermore,
we demonstrate that RAPL enables victims to be observed
at sub-cache-line granularity, and use this to establish a
timing-independent covert channel with a transmission rate
of 18.7 bit/s. While an unprivileged attack can be prevented
by restricting access to the interface, mitigating privileged
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attacks is not trivial. We discuss different countermeasures and
mitigation strategies for the presented attacks.

To summarize, we make the following contributions:
1) We improve software-based power side-channel attacks to

distinguish instructions, operands, and data.
2) We show that the RAPL interface provides sufficient

resolution for practical attacks on Intel CPUs.
3) We demonstrate an attack on a cryptographic implemen-

tation running in Intel SGX, recovering RSA private keys
from mbed TLS within 100 minutes.

4) We show that an unprivileged attacker can use Correlation
Power Analysis to recover keys from an AES-NI imple-
mentation in an SGX enclave and the Linux kernel within
26 hours (when minimal I/O noise is present) to 277 hours
(under real-world conditions).

5) We break kernel address space layout randomization
(KASLR) from user space within 20 seconds, observe
intra-cache-line accesses, and demonstrate a timing-
independent covert channel.

Responsible Disclosure: We responsibly disclosed our
findings to Intel on November 16th, 2019. Intel acknowledged
our findings and verified our experiments. The issues are
tracked under CVE-2020-8694 and CVE-2020-8695 and are
held under embargo until November 10th, 2020. We respon-
sibly disclosed our findings to AMD on June 6th, 2020.

Outline: Section II provides background. Section III ana-
lyzes the information leakage induced by the Intel RAPL in-
terface. Section IV presents the threat model, attack overview,
and building blocks. Section V evaluates these building blocks
and constructs concrete attacks with them. Countermeasures
and related work are discussed in Section VI and Section VII,
respectively. We conclude in Section VIII.

II. BACKGROUND

In this section, we provide background on power analysis,
Intel RAPL, and Intel SGX.

A. Power Analysis

Power analysis attacks are built upon the observation that
the power consumption of CMOS digital circuits is data-
dependent by design. Each bit flip requires one or more
voltage transitions from 0 to high (or vice versa). Different
data values typically entail differing numbers of bit flips and
therefore produce distinct power traces. Equation (1) presents
the primary sources of power consumption, where α is the
probability of a voltage transition, C is the load capacitance,
Vdd is the supply voltage, F is the clock frequency, Isc is the
short-circuit current (when NMOS and PMOS transistors are
active simultaneously) and Ileak is the leakage current [14].

P = (Pswitching) + (Pshort−circuit + Pleakage)
= α ⋅ C ⋅ V 2

dd ⋅ F + Isc ⋅ Vdd + Ileak ⋅ Vdd
(1)

Crucially, Pswitching with its data-dependent α value is sig-
nificantly larger than the other terms. Therefore, any circuit
not explicitly designed to be resistant to power attacks has
data-dependent power consumption. However, in a complex

circuit, the differences can be so slight that they are difficult
to distinguish from a single trace, particularly if an attacker’s
sampling rate is limited. Therefore, it is necessary to use
statistical techniques such as Differential Power Analysis and
Correlation Power Analysis across multiple power traces.

Simple Power Analysis (SPA): In SPA attacks [50], secret-
dependent power consumption differences during an operation,
e.g., a cryptographic signature computation, are directly ana-
lyzed from power traces to determine the underlying secret.
For example, there may be a detectable spike in power
consumption when the key bit multiplied is 1 versus when it is
0 because the implementation executes a different instruction
sequence in each case. Using SPA, the secret can be extracted
with only a small number of traces. However, this is only
possible if the secret has a significant impact on the power
consumption of the device, and the traces are relatively noise-
free. Noise can be averaged out by aligning the traces and
computing the mean of the collected traces.

Differential Power Analysis (DPA) and Correlation
Power Analysis (CPA): DPA attacks [50] are based on a
statistical analysis of a large number of traces with varying
input data. Rather than analyzing individual power traces along
the time axis as in a typical SPA attack, DPA analyzes how the
power consumption at fixed moments in time is a function of
the secret data being processed [55]. DPA is significantly more
powerful than SPA, as small secret-dependent biases can be
detected even in the presence of noise. In our measurement
context for power attacks against the CPU, this is relevant
for the analysis of operand-dependent power consumption, as
these differences are much smaller than the power differences
between instructions and can be hidden by measurement
error and noise. However, using DPA, these differences can
still be identified and used to recover the underlying secret
data. CPA [11] is an extension of DPA, which examines the
correlation between variations in the set of traces and a leakage
model depending on the value of intermediate values [49]. We
further explain the inner workings of CPA in Section V-B.

B. Intel RAPL

The Intel Running Average Power Limit (RAPL) mecha-
nism was introduced with the Sandy Bridge microarchitecture
to ensure the CPU remains within desired thermal and power
constraints [27]. Since Haswell, it has provided three distinct
capabilities for controlling average power over timescales of
multiple seconds, ˜10ms, and <10ms (PL1, PL2, and PL3,
respectively). These three control loops dynamically adjust the
CPU frequency to maximize performance while ensuring the
running power average is within each of their (configurable)
limits. By design, this modifies the voltage and power con-
sumption. To implement these control loops, it is necessary
to provide power-measurement feedback [27]. This can be
done with an analog circuit, e.g., voltage regulator current
monitoring, or by estimating the energy consumption in the
core, as done in Sandy Bridge and Ivy Bridge [27].

Intel defines four different domains for RAPL [40]: package
(PKG), power planes (PP0 and PP1), and DRAM. The package



domain estimates energy consumption for the entire socket.
PP0 contains the energy consumption estimates of the cores
while, on client systems, the PP1 domain refers to a specific
device’s power plane in the uncore. In this work, PP0 is
subsequently referred to as the core domain. On Skylake, Intel
has introduced the PSys domain covering the entire SoC.

Intel CPUs also provide other functionality for dynamic
frequency and voltage scaling (DFVS). For example, they
support configurable processor performance states (P-states),
as defined in the Advanced Configuration and Power Interface
(ACPI) specification [78]. Each state specifies a frequency and
voltage operating point [16]. When enabled, the Intel Turbo
Boost feature adjusts each core’s P-state automatically.

C. Intel SGX

Intel SGX (Software Guard Extensions) is an instruction
set extension that provides a mechanism for confidentially ex-
ecuting code on a system, isolated from other software on the
CPU [40]. The SGX threat model assumes that even privileged
software such as the operating system, administrative users,
and peripheral hardware may be compromised and behave
maliciously. An application using SGX is split into two distinct
parts, an untrusted part (which launches enclaves as needed to
process secrets) and a trusted part (within an enclave). Each
enclave operates within an encrypted and isolated memory
region to protect application secrets from hardware attackers.
As neither the operating system nor any other application is
trusted under the SGX threat model, the processor guarantees
that the enclave’s memory cannot be accessed by anything
but the enclave itself. Additionally, encryption ensures that
enclave memory cannot be read directly from the DRAM
module, as even peripheral hardware may be malicious. Intel
generally considers physical side-channel attacks on SGX out
of scope. Side channels [9], [73], race conditions [85], [72],
and memory-safety violations [51] are not in the threat model,
and it is the developer’s responsibility to defend against these.

III. INTEL RAPL LEAKAGE ANALYSIS

In this section, we analyze the power side-channel infor-
mation leakage from Intel RAPL data, considering both user-
space and SGX-enclave targets. We experimentally evaluate
that we can distinguish and fingerprint both individual in-
structions (Section III-C) and the influence of their operand
values (Section III-D). Furthermore, we evaluate the influence
of concrete data values on energy consumption (Section III-E)
as well as the influence of the cache status of a memory
address in a load operation (Section III-F).

While energy-consumption interfaces also exist on non-Intel
CPUs, we focus on Intel’s RAPL implementation and briefly
discuss other architectures in Section VII-B.

Note that while we primarily refer to runtime energy
consumption rather than power consumption throughout this
work, these are directly related, as power = energy ÷ time.

TABLE I: RAPL register update intervals if accessed directly
in the kernel or via the powercap driver.

Register Measurement Unit Kernel Driver

MSR PKG ENERGY STATUS µJ 1000 µs 1000 µs
MSR DRAM ENERGY STATUS µJ 1000 µs 1000 µs
MSR PP0 ENERGY STATUS µJ 50 µs 50 µs
MSR PERF STATUS (core voltage) V 150 µs -

A. RAPL Interface

RAPL provides an interface both for controlling the core
frequency and voltage and for monitoring the power consump-
tion of the socket and memory domain (see Section II-B). To
date, Intel RAPL has typically been used to model energy
consumption on a system level [67] or in benchmarks [47].

We can read the RAPL register values to measure energy
consumption, i.e., the cumulative power consumption over a
sampling period, in two ways:
• Unprivileged Access: On Linux, the power capping frame-

work powercap provides unprivileged access to Intel
RAPL by exposing the MSRs through the sysfs inter-
face. This allows an unprivileged attacker to directly read
the value of the individual packages from a file located in
the /sys/devices/virtual/powercap tree.

• Privileged Access: A privileged attacker targeting Intel
SGX can load a kernel module to read the RAPL MSRs.

While measuring the update intervals of the values provided by
both the Linux RAPL user-space driver and by accessing the
MSRs directly, we observed that several values update faster
than the documented RAPL update rate of 1ms. We observe
that the MSR_PP0_ENERGY_STATUS (core energy consump-
tion) and MSR_PERF_STATUS (core voltage) values update
substantially faster, at 50 µs and 150 µs intervals, respectively.
The results of this evaluation are shown in Table I. These rates
were consistent across the different tested microarchitectures.

B. Experimental Setup

Throughout this work, we tested on Intel mobile, desktop,
and server CPUs. Table II provides details of each Intel CPU
used in our experiments. In the mobile setting, we tested on a
Lenovo Thinkpad T480s and T495s, both using Core i7-8650U
CPUs, on a Lenovo Thinkpad T460s with a Core i7-6600U and
an Intel NUC7I3BNH using a Core i3-7100U. For the desktop
setting, we evaluated a system using a Core i5-3230M, a Core
i7-6700K, and a Core i9-9900K. Finally, for the cloud server
setting, we evaluated 3 systems, with Xeon E3-1240 v5, Xeon
E3-1275 v5, and Xeon Silver 4214 CPUs. All tested devices
run Ubuntu Linux, with versions from Ubuntu 16.04 to Ubuntu
20.04, and kernels 4.15.0 to 5.4.0. Different Ubuntu versions
and kernels did not appear to influence the results, and we
would only expect this to occur if there were a substantial
update to the behavior of the powercap driver.

Unless stated otherwise, all systems were used using the
default system configuration, and all mobile systems were
connected to an AC power source. For example, we did not
fix the CPU frequency or disable Intel Turbo Boost.



TABLE II: CPU type, model, and microarchitecture for each
device under test, and whether it leaks data of operands, type
of instructions, and the target of memory loads.

Type CPU Microarchitecture Leakage
Data Instr. Target

Mobile Core i7-6600U Skylake 3 3 3
Mobile Core i3-7100U Kaby Lake 3 3 3
Mobile Core i7-8650U Kaby Lake-R 3 3 3
Desktop Core i5-3230M Ivy Bridge 7 3 3
Desktop Core i7-6700K Skylake-S 3 3 3
Desktop Core i9-9990K Coffee Lake-R 3 3 3
Server Xeon E3-1240 v5 Skylake 3 3 3
Server Xeon E3-1275 v5 Skylake 3 3 3
Server Xeon Silver 4214 Cascade Lake 3 3 3
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Fig. 1: A histogram of the power consumption of various
instructions on the i7-6700K (desktop) system.

C. Distinguishing Instructions

With our first experiment, we demonstrate that Intel’s RAPL
interface enables distinguishing different instructions via their
energy consumption. To measure the energy consumption of
an instruction, we record its energy consumption over 10 000
consecutive executions and take the median value to eliminate
system-level noise, e.g., erroneous high values caused by in-
terrupt handling or the process being descheduled. We observe
the energy consumption across the entire CPU package to
ensure that non-core activity, e.g., DRAM access, is included.

Table III lists the measured energy consumption of different
instructions on our i7-6700K (desktop), Xeon Silver 4214
(server), and i7-8650U (mobile) systems. We can clearly
observe inter-instruction differences in energy consumption.
This enables an attacker to identify which instructions are
executed, provided they can profile the energy consumption of
the victim microarchitecture. For instance, the rdtsc instruc-
tion consumes 0.1189 nJ on the i7-6700K, versus 0.1864 nJ
on the Xeon Silver 4214 and 0.0848 nJ on the i7-8650U.
As illustrated in Figure 1, this clearly distinguishes it from
rdrand and clflush, which have much lower average
energy consumption. However, as some instructions have
similar energy consumption, this method may identify multiple
instruction candidates. For example, on the Xeon Silver 4214,
nop, inc, and xor are indistinguishable at this measurement
granularity. While the table only shows the values for when
the mobile system (i7-8650U) is connected to an AC power
source, we also observed these differences when running on
battery power. As not every instruction sequence has the
same probability, it may be possible to recover individual
instructions using heuristics for typical instruction sequences,

TABLE III: Average observed energy consumption (package
domain) of different instructions on our i7-6700K (desktop),
Xeon Silver 4214 (server), and i7-8650U (mobile) systems.

Instruction Xeon Silver 4214 i7-6700K i7-8650U

nop 0.1795nJ 0.1189nJ 0.0843nJ
inc r64 0.1795nJ 0.1208nJ 0.0858nJ
xor r64, r64 0.1795nJ 0.1209nJ 0.0849nJ
mov r64, mem 0.1868nJ 0.1247nJ 0.0840nJ
imul r64, r64 0.1798nJ 0.1169nJ 0.0887nJ
fscale 0.1867nJ 0.1182nJ 0.0877nJ
rdrand r64 0.1797nJ 0.1129nJ 0.0982nJ
rdtsc 0.1864nJ 0.1189nJ 0.0848nJ
clflush mem 0.1865nJ 0.1129nJ 0.1018nJ
aesenc xmm, xmm 0.1794nJ 0.1188nJ 0.0946nJ
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Fig. 2: A histogram of the power consumption of various
instructions inside an SGX enclave on our i7-8650U (mobile).

or by leveraging existing research regarding distinguishing x86
code sequences from data bytes [84].

These results align with those of prior work, in which the
different energy consumption of instructions was identified
using either Intel RAPL [36], [20], [59], [31] or dedicated
hardware [77], [74], [7], [82].

Differing power consumption can also be observed for
instructions executed inside SGX enclaves, as shown in Fig-
ure 2. The enclave’s isolation is no protection here: just
like with execution outside the enclave, instructions can be
clearly distinguished. Interestingly, energy consumption for the
clflush instruction is higher inside an SGX enclave, which
we attribute to the transparent memory encryption. With other
instructions, we do not observe such a difference.

D. Distinguishing Operands

In addition to the energy-consumption differences of in-
structions, the energy consumption of some instructions further
depends on their operand value. Intuitively, e.g., integer mul-
tiplication should use more energy if more operand bits are
set. We measure the imul instruction with different operand
values in user space on our Xeon E3-1240 v5 system with
a fixed core frequency. For the 64-bit operand, we used
Hamming weights of 0, 16 (a quarter of the bits), 32 (half
of the bits), 48 (three-quarters of all the bits), and 64 (all of
the bits). The second operand remains fixed to the value 8. In
Figure 3, it can be seen that the power consumption differs
based on the Hamming weight. While we cannot deduce the
exact value of the operand, it reduces the range of potential
values, and it can be used in CPA attacks (cf. Section V-B).

The distinction is not limited to the imul instruction. Fig-
ure 4, for example, shows the differences in power consump-
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Fig. 3: Measured energy consumption of the imul instruction
with one operand fixed to 8 and the other varying in its
Hamming weight.
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with a register set to different Hamming weights.
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Fig. 5: Energy consumption of the movb instruction for all
byte values, ordered by Hamming Weight (HW) and value.
The circle marks values where the most-significant bit is set.

tion for shr on our i7-8650U system with a clear difference in
power consumption depending on the Hamming weight of the
shifted register. We reproduced these results on an i7-6600U,
i7-6700K, and i9-9900K and Xeon 4214 CPU. For the vpand
instruction, the distributions of the energy consumption differs
if one of the operands is zero or not. Ivy Bridge and Sandy
Bridge estimate the power consumption [27] and do not rely
on hardware probes. Thus, we cannot distinguish operands and
data, as we verified on an i5-3230M (cf. Table II).

E. Distinguishing Data

We showed that it is possible to fingerprint different instruc-
tions and the Hamming weight of their operands. In the third
experiment, we evaluate the influence of data values loaded
from the cache on the energy consumption. We set up a cache
line with alternating 1 and 0 bits to achieve an even Hamming
weight. We then set the value of the first byte in the cache line
and measure the energy consumption of a memory load of that
specific byte, using the movb instruction for all 256 value
possibilities. To prevent a possible measurement side-effect
introduced by the order of the different values measured, we
set the value in a pseudo-random order.

We performed the experiment on our Intel Xeon E3-1240 v5
(server) system, collecting measurements for all possible byte
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Fig. 6: Using RAPL to distinguish whether the target of a
memory load is cached (cache hit) or not (DRAM access).

values for 627 hours. While the obtained measurements show a
trend of increasing energy consumption with increasing value,
a power model was not observable. When sorting the values
based on their Hamming weight and value, as illustrated in
Figure 5, the increasing power consumption is clearly visible.
However, one can measure a different power consumption
within values of the same Hamming weight (separated in the
plot by the white background or gray pattern). These spikes
correlate to exactly those values where the most-significant bit
is set (data points with circle marks).

To verify the results on other microarchitectures, we per-
formed a reduced experiment with fewer different Hamming
Weights (Section III-D). On the i7-6600U (mobile) system set
to a fixed frequency, we observed a similar increasing energy
consumption with the Hamming Weight of the byte being read
after measuring for 5 minutes.

While we cannot deduce the exact data value that is loaded,
one can clearly infer information about the Hamming weight
and whether the most-significant bit is set by measuring its
energy consumption. Similarly to the varying power consump-
tion, we observed with instruction operands, this allows us to
constrain the range of potential values.

F. Distinguishing Load Targets

To get an even finer granularity when distinguishing instruc-
tions, we demonstrate further that it is possible to distinguish
the cache status of a load destination. When a memory
load accesses data that is already cached, DRAM consumes
significantly less energy than when a data access misses the
cache and must be first fetched from the main memory.

We evaluated this experiment on several CPUs, as shown
in Table II. Figure 6 shows a histogram of data fetched from
the cache and DRAM on our i7-8650U (mobile) system. When
recording power consumption using RAPL on the DRAM
domain, there is a clear difference in power consumption for
cache hits and cache misses, both when connected to a power
supply and when running on battery. Hence, code sequences
which are vulnerable to cache attacks can also be exploited
using power measurements. This allows an attacker to build
a timer-free cache attack, similar to the timer-free attacks
presented by Diesselkoen et al. [18] and Gruss et al. [28].

IV. ATTACK OVERVIEW & BUILDING BLOCKS

In this section, we introduce the basic concept of PLATY-
PUS attacks based on the observations from Section III. We
describe the necessary building blocks and their applicability



in various scenarios and attacker models before demonstrating
several attacks in Section V.

A. Attack Scenarios & Attacker Model

We consider two different attacker models for our attacks,
namely an unprivileged user-space attacker and a privileged
kernel-space attacker. For all our attacks, we assume native
code execution on an Intel CPU and no software bugs or
hardware vulnerabilities.

Unprivileged User-space Attacker: A user-space attacker
can run native unprivileged code. Hence, the user-space at-
tacker only has access to power interfaces provided by kernel
drivers, e.g., the RAPL sysfs interface from powercap. In
addition, the user-space attacker can communicate with other
interfaces, e.g., ioctl, to the kernel, and interfaces exposed
by other applications, e.g., sockets. Furthermore, the user-
space attacker could, to some extent, influence other running
applications, e.g., by attempting to slow down another process
by exhausting its resources [4].

Privileged Kernel-space Attacker: The kernel-space at-
tacker can execute native privileged code. Hence, the kernel
space has direct access to Intel RAPL’s MSRs. The privileged
kernel-space attacker has full control over the operating system
and, thus, direct access to the memory of running applications.
Therefore, we assume an attack setting on SGX enclaves
(see Section II-C) where the memory is encrypted and cannot
be inspected by the operating system. For the SGX enclave, a
malicious operating system is in the threat model [17].

B. Building Blocks

In this section, we describe the necessary building blocks.
We describe how a privileged attacker can achieve precise ex-
ecution control, enabling them to overcome the low sampling
rate faced by an unprivileged attacker. We characterize the
documented power interfaces we use for our attacks.

1) Power Information: To mount PLATYPUS attacks, it is
necessary to obtain a power consumption measurement within
the software. While throughout this work, we focus on Intel
RAPL, these attacks are, in general, not restricted to the Intel
platform. We discuss other microarchitectures and interfaces
in Section VII-B.

One inherent challenge of software-based power analysis
is the low update rate of power data sources in contrast
to the frequency of the execution stream under attack (see
Section V). When attempting to reconstruct a signal, it is
crucial to sample at a sufficiently high rate. While measuring
the PP0 MSR directly from kernel space, the sample rate is a
bit higher; it is still suboptimal. For other attacks, the relevant
values are from other domains, e.g., PKG and DRAM, which
do update at the documented slower rate (e.g., Section III-C).

In general, undersampling means that we cannot obtain
samples at a sufficient number of points over the time axis,
e.g., because the time axis is very short when sampling only
for a few nanoseconds. However, if the attacker can conduct
repeated attacks, then multiple traces can be combined to
recover an averaged but more complete trace.

Moreover, note that Intel RAPL does not provide the energy
consumption per core but per processor package. Thus, code
executed on other cores have a direct influence on the mea-
surement of a specific piece of code running on one core and,
thus, the number of overall measurements increases to average
out the noise introduced by the other cores. In the case of a
privileged attacker, the noise introduced by other cores can be
limited as the attacker can disable them or control what code
is executed on which core. In contrast, AMD’s implementation
of RAPL provides per-core counters (cf. Section VII-B).

Note that while factors such as frequency and P-state do
influence the raw energy consumption values measured, it is
not necessary to fix them, as the data-dependent differences
which our attacks exploit remain observable.

2) Alignment and Execution Control: In the attack sce-
nario where the attacker measures power consumption in
parallel to the victim’s execution, the attacker needs to align
the recorded traces. The trace needs to contain a distinctive
feature, e.g., a distinct peak in power consumption, so that
traces can be shifted into alignment with each other. While
a privileged attacker can precisely control the victim’s execu-
tion and interrupt it at will, an unprivileged attacker cannot.
However, if the attacker can control when the execution of
the attacked code begins, or use a trigger signal such as a
cache-based side channel [72], then the collected traces can
be aligned based on that timing information.

Precise execution control is the capability to control the
victim’s execution at instruction-level granularity. To achieve
precise execution control of SGX enclaves, we repurpose
previously published techniques for microarchitectural attacks
and apply them in our software-based power analysis attack.

Single-Stepping: With SGX-Step, Van Bulck et al. [81]
introduced the concept of single-stepping SGX enclaves. They
achieve this by configuring the local APIC timer interrupt
interval so that the interrupt arrives during execution of the first
instruction after eresume. This triggers an Asynchronous
Enclave Exit and execution of an attacker-controlled interrupt
handler, where attack-specific code can be executed. This
process can be repeated, resuming the enclave to execute
precisely one instruction each time. The SGX-Step framework
enables these APIC timer interrupts to be configured from
user space, along with user-space modification of page table
entries. Single-stepping has since been used in a range of
microarchitectural attacks. For example, it was used in the
Foreshadow attack [79] to extract key material from SGX
enclaves to bypass enclave launch control and to forge local
and remote attestation. It was further used with LVI [80] to
mount a transient fault attack on AES-NI.

Zero-Stepping: If the local APIC timer is configured
such that the interrupt arrives within eresume, the enclave
instruction pointer will not advance, and so a single instruction
can be repeatedly executed for measurements. Zero-stepping
can also be achieved by revoking the execute permissions of
an enclave’s code pages triggering a page fault on the first
instruction after eresume. Thus, no enclave instruction is
actually executed [81]. MicroScope [75] provides an additional



technique to replay an enclave instruction repeatedly using a
memory access instruction triggering the page fault handler as
a replay handle.

Zero-stepping provides us with a powerful attack primitive
to measure the power consumption of a single instruction
repeatedly. We can advance to the desired instruction using
single-stepping as described above, and then sample the in-
struction an arbitrary number of times with zero-stepping.
Crucially, it enables us to take this arbitrary number of samples
even if we are only able to trigger a single execution of
the algorithm under attack in the enclave. Taking a large
number of samples in this way allows to overcome the limited
sampling rate and resolution of RAPL.

V. EVALUATION

In this section, we combine our attack primitives to build
concrete PLATYPUS attacks. We demonstrate that we can
recover an RSA key used inside an SGX enclave using mbed
TLS (Section V-A). We use CPA attacks to extract AES keys
from the Linux kernel and from an SGX enclave, both utilizing
the AES-NI instruction extension (Section V-B). Furthermore,
we exploit Intel RAPL to observe victims at sub-cache-line
granularity (Section V-C), to derandomize the kernel address
space (Section V-D), and to establish a timing-independent
covert channel (Section V-E).

A. RSA Key Recovery

In this attack scenario, we consider a privileged attacker
targeting an Intel SGX enclave performing RSA signatures.
As the threat model of SGX considers the operating system to
be untrusted, the attacker is allowed to load arbitrary kernel
modules. We consider two different target implementations.
First, we will show a toy example imitating a square-and-
always-multiply RSA implementation that allows to visually
illustrate the leakage observable through the RAPL domain
and the core voltage using precise execution control. Second,
we will demonstrate an attack on mbed TLS [5] to extract
RSA private keys from the SGX enclave. Further, we will
discuss scenarios where the code executed within the enclave
is unknown as well as scenarios where the implementation of
the enclave is known by the attacker, thus enabling the attacker
to target specific instructions within the enclave’s execution.

Setup: In our experiment, the victim provides an API
for signing or decrypting user-provided data inside an SGX
enclave, making it secure against direct attacks from the
operating system, other enclaves, and user space. For simplifi-
cation and evaluation purposes, we first imitate a square-and-
always-multiply RSA implementation that performs the same
instructions with different operands based on the value of the
currently processed key bit. In our second scenario, we attack
the RSA implementation of mbed TLS inside an enclave.

We use SGX-Step [81] and hook the local APIC interrupt
apic_irq handler to record the values of the timestamp
counter TSC, the current energy consumption for the desired
domain (MSR_PP0_ENERGY_STATUS), and the current P-
state and core voltage (MSR_PERF_STATUS). Further, we
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Fig. 7: Energy consumption and core voltage per instruction
of a victim enclave. The attacker uses single-, and zero-
stepping to precisely measure single instructions of the victim,
allowing to distinguish between them to leak the single key
bits. Highlighted areas with red markers indicate a 1-bit, blue
markers indicate a 0-bit.

hook the Asynchronous Exit Pointer (AEP) to decide if we
want to zero-step the current instruction or advance to the
next instruction (single-step), as described in Section IV-B2.

1) Toy Example: Our toy implementation is constant-time,
the number of instructions executed is independent of the bit
processed. The key insight here is that even an implementation
with these defensive properties against side-channel attacks
can still be successfully attacked via the RAPL power side-
channel. Specifically, for a 1 bit, we execute two vpmuludq
instructions, one for a square operation and one for multipli-
cation. For a 0 bit, we execute a vpmuldq instruction for the
square operation and an additional one using a dummy output
register with no architectural effect.

Evaluation: We evaluated this attack scenario on our
Xeon E3-1275 v5 (server) system and the i9-9000K (desktop)
system. For each execution run of the victim, we single-step
to each instruction and measure it over 188 zero steps, i.e., the
number of zero steps that need to be executed such that the
RAPL counter is updated. We measured over 96 000 execution
runs, yielding an overall attack time of 8.11 h on the E3-1275
v5. The result is illustrated in Figure 7. One cannot only clearly
see the difference in power consumption for every instruction
measured, but also distinguish whether the key bit was set
to 1 (highlighted areas with red markers) or 0 (areas with
blue markers) by examining the instructions depending on the
key bit. This allows recovering the secret key successfully.
Furthermore, as shown in Figure 7, these differences are not
only clearly visible in the different RAPL domains (package,
PP0, DRAM) but also in the core voltage.

Under the assumption that the attacker knows which set of
instructions needs to be sampled for each key bit, the attacker



does not need to zero-step every single instruction. In our
example, it would be sufficient just to sample every seventh
instruction to recover every single key bit. Even if different
instructions are executed depending on the key-bit value, the
attacker can advance directly to the instruction responsible for
the next key bit after recovering the current key-bit value.
To correctly distinguish between these two instructions, we
require at least 350 measurements over 255 zero steps when
observing the core voltage to recover 99.4% of the key bits
correctly. For the different RAPL domains, we require more
traces, e.g., at least 40 000 traces over 188 zero steps to recover
99.5% of the key bits. Thus, with a runtime of 1.35ms
per trace for each key bit, a 2048-bit RSA attack can be
successfully recovered within 16.5 minutes when observing
the core voltage. With RAPL and a runtime of 0.99ms per
trace for each key bit, we can successfully recover the key
within 23.3 hours. This number highly depends on how many
measurements are required to distinguish both cases with a
high probability and, thus, can be different in other scenarios.

2) Attack on mbed TLS: In our second scenario,
we extract RSA keys from the mbed TLS [5] (version
2.13.0) implementation with a fixed window length of 1
(MBEDTLS_MPI_WINDOW_SIZE 1). In order to distinguish
the key bits, we do not directly target the branch instruction
of the fixed-window exponentiation. Instead, we aim at an
instruction with a more distinct energy consumption inside
the branch. In SGX, Intel’s fast_memset implementation
replaces the standard libc memset implementation called
inside the mpi_montmul function with AVX instructions.
AVX instructions are located at a given offset from the
branch instruction if the key bit is set. If the key bit is 0,
a different (non-AVX) instruction is executed with the same
instruction offset. Thus, we can directly reconstruct the key
bit by measuring the energy consumption at the instruction
executed with the instruction offset after the branch.

However, the implementation of mbed TLS skips leading
zeroes of the exponent and, therefore, has a setup phase
depending on the key. Additionally, depending on whether the
key bit is 1 or 0, a different number of instructions is executed
for each key bit. In order to recover the full private key, we
first need to determine the number of zero bits to find the
instruction leaking the first key bit correctly. Second, we need
to calculate the offset of the next key bit instruction to zero-
step based on previously reconstructed key bits.

Determining the number of zero bits: The mbed TLS im-
plementation skips the leading zeroes of the exponent. There-
fore, the offset of the first instruction executed after the key-bit
branch depends on the number of leading zeroes. In order to
overcome this challenge, we note that the maximum number of
leading zeroes relies on the size of the mbedtls_mpi_uint
data type, which is either 32 or 64 bits. Hence, we assume a
possible maximum of 63 leading zeroes. For each possibility,
we calculate the offset of the targeted AVX instruction (a 1-
bit) under the assumption that we have n leading zero bits.
We target each calculated instruction offset and record the
core voltage when zero-stepping this instruction. For each
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Fig. 8: Measured core voltage of all 63 possible leading zero
offsets. The spike at offset 35 marks the first set key bit.

measurement, we reset the current energy consumption to a
known state by executing multiple hlt instructions. Then,
we measure each instruction 3 times and use the median of
the measured values as a classifier and illustrate the observed
measurements in Figure 8. The distinct peak, and, thus, the
first set key bit gives away the number of leading zeroes.

Offset Oracle: In order to find the instruction to zero-
step for the next key bit, we create an oracle that predicts
the offset of the next key bit instruction based on previously
reconstructed key bits. The oracle receives the known-plaintext
input, the public modulus, the number of leading zeroes as
well as the current key bit. Using this information, the oracle
calculates the next instruction offsets that need to be zero-
stepped in order to recover the next key bit.

In our attack, we implemented the oracle utilizing the same
enclave implementation for demonstration purposes. We inject
the current key hypothesis into the enclave to automatically
find the next instruction offset using single stepping. While
this increases the runtime of the attack, it allows to predict
the next offset without having to analyze the enclave on an
instruction-level basis.

Evaluation: We evaluated our attack on a Xeon E3-1275 v5
server CPU. In order to profile the instruction at the calculated
offset, we measure the observed core voltage 3 times over 256
zero steps. For a 1-bit, the instruction at and after the given
offset are AVX instructions and, thus, we measure both to
increase the signal. We used an RSA key pair with a 512-
bit modulus for evaluation purposes. In 211 minutes (n =

5,σx̄ = 7.2), we were able to reconstruct the 509 key bits
without any error. Figure 13 in Appendix B illustrates one
of the recorded traces. Note that the slow implementation of
the oracle compensates for 52 minutes (n = 4, σx̄ = 6.73)
of the attack. In addition, we successfully recovered the key
without any error in 100 minutes, even when we measured
each instruction only once.

B. Correlation Power Analysis Attacks

The SPA attack in Section V-A exploits the compara-
tively strong change in leakage in the energy consumption
or core voltage due to the different instructions executed.
In contrast, in this section, we focus on differential attacks
(see Section II-A) that apply to implementations with secret-
independent control flow, e.g., symmetric ciphers like AES,
targeting the data-dependent leakage of single instructions. We
show that Correlation Power Analysis can be applied to exploit
the small, data-dependent leakage of single instructions even



when capturing one aggregate leakage sample for the whole
cryptographic algorithm.

To this end, we demonstrate key recovery attacks against
AES-NI, an x86 instruction-set extension designed to mitigate
timing and cache side-channel leakage [32] in two different
settings. First, we will recover the AES key processed inside
an SGX enclave and second, from a Linux kernel module.

In contrast to the RSA signature generation from Sec-
tion V-A, a single run of our target algorithms has a very
short runtime (on the order of tens to hundreds of cycles).
Hence, the overall energy consumption is below the resolution
of the RAPL interface (a single invocation usually reads as a
zero energy consumption difference). We therefore generally
measure the aggregate energy consumption of R invocations
of our target cipher (typically 16M) to obtain a single
leakage sample p. Our attacks, therefore, apply to situations
where an adversary can trigger the encryption/decryption of
many blocks of data, e.g., disk and file encryption, encrypted
network protocols like TLS, or (un)sealing of large enclave
state. In the case of a privileged attacker, the attacker model
allows the alternative approach of using zero-stepping to only
repeat the target instruction in the scenario of Intel SGX.
Moreover, differential attacks like CPA make use of many
leakage samples pn (traces) for different inputs (plaintexts) xn
for n < N . Depending on the scenario, we used N between
2M and 16M.

1) Key extraction with CPA: To recover a secret value, we
compute the correlation ρ (p, h) between the observed power
consumptions pn and hypothetical leakage values hn over all
N traces. The choice of h depends on the targeted operation
and the leakage characteristics of the target implementation
and processor. For example, for recovering byte 0 of the round
key in the final round of AES, a common choice (given a key
candidate k) is:

h
k
n = HW (SBox−1 (c0n ⊕ k)) (2)

where c0n is byte 0 of the n’th ciphertext, and HW denotes
the Hamming weight. Computing ρk (p, hk) for all candidates
k = 0 . . . 255, the correct key candidate can be identified as the
one with maximum correlation. This process is repeated for
each byte. Other choices of h are possible, e.g., when targeting
the XOR in the first round of AES:

h
k
n = HW (x0

n ⊕ k) (3)

For a given number of traces N , the noise level is [55]:

ρnoise =
4√
N

(4)

Only correlations ρ ≥ ρnoise are considered significant.
Assuming an ideal correlation ρexp that captures only the
correlation between the target value and a noise-free trace and
a Signal-to-Noise Ratio (SNR), the observed correlation ρ can
be computed as:

ρ =
ρexp√

1 + 1/SNR
(5)

TABLE IV: Profiling correlations after 2M traces for AES-NI
in scenario 1 for the Hamming weight (HW) for each round
and Hamming distance (HD) between rounds. Bold entries and
a ∣SF∣ ≥ 1 highlight significant statistical dependencies.

HD ρρρ SF HW ρρρ SF

00 → 01 0.03675729 13 00 0.06885782 24
01 → 02 0.02006421 7.1 01 0.05032280 18
02 → 03 0.03676030 13 02 0.00145256 0.51
03 → 04 0.03728021 13 03 0.00181104 0.64
04 → 05 0.03754657 13 04 0.00188247 0.66
05 → 06 0.03739362 13 05 0.00186131 0.66
06 → 07 0.03804800 13 06 0.00204561 0.72
07 → 08 0.03790153 13 07 0.00151157 0.53
08 → 09 0.03810117 13 08 0.00250208 0.88
09 → 10 0.03967649 14 09 0.00272294 0.96
10 → 11 0.01820413 6.4 10 -0.00045022 -0.16

11 0.08859152 31

2) SGX Enclave: In the first setting, we will demonstrate
AES-NI key recovery on an SGX enclave.

Setup: We implement an enclave that exposes an ecall
to encrypt a buffer using an in-enclave secret key. It deploys a
full AES implementation from Intel’s Integrated Performance
Primitives (Intel IPP) [42] ippsAESEncryptECB function
that uses the AES-NI instruction set. While the SGX scenario
enables a privileged attacker (Section IV-A), we assume an
unprivileged attacker.

We further considered two scenarios:

1) Minimal I/O noise: The unprivileged attacker records
the accumulated power consumption of 16 384 calls to
ippsAESEncryptECB, each encrypting 16 kB, within
a single ecall.

2) Real-world conditions: The unprivileged attacker records
the accumulated power consumption of 64 ecall in-
vocations, each encrypting 4MB with a single call to
ippsAESEncryptECB.

Profiling: To better understand the leakage behavior of
the AES-NI implementation on the processor under attack,
we compute the AES state after every round. Further, we
compute the correlation between different power models and
our observed traces.

We recorded 2M traces (thus ρnoise = 0.0028284) for
scenario 1 in 26 h and 16M traces (thus ρnoise = 0.001) for
scenario 2 in 277 h. Table IV shows the correlations of the
Hamming weight for each round and the Hamming distance
between rounds on our Xeon E3-1240 for scenario 1.

As discussed in Section V-B1, bold entries highlight signif-
icant entries with an exploitable statistical dependency (ρ ≥
ρnoise). In addition, the Significance Factor (SF) is computed
as ρ/ρnoise, i.e., ∣SF∣ ≥ 1 indicates a significant correlation.
For instance, the Hamming weight of the input and output
leak, as well as the Hamming weight of the 128-bit state after
the initial XOR of round key 0 to the plaintext (correlation
ρ = 0.05032280). In addition, the Hamming distance between
the input and output of each AES round leaks, which is crucial
for subsequent key recovery attacks.



For scenario 2, we similarly observed Hamming weight and
Hamming distance leakages for the AES rounds, albeit with
a lower magnitude of the correlations. For example, for the
final round, the correlation is ρ = 0.00532594 in scenario 2,
compared to ρ = 0.01820413 in scenario 1. Therefore, for
key recovery in scenario 2, a larger number of traces is
required. The respective profiling results are given in Table VI
in Appendix C.

Key Recovery: To recover the key, we build a CPA attack
using the Hamming distance between the input and the output
of the final round of AES. As observed in the profiling phase,
the correlation of the Hamming distance of the final round
10 → 11 yields ρ = 0.01820413 in scenario 1. In this case,
we successfully recovered all 16 bytes of the final round key
using 2M traces, and hence also the actual AES key due to
the reversible key schedule of AES.

In scenario 2, the respective correlation for the Hamming
distance of the final round 10 → 11 is ρ = 0.00532594.
We performed a CPA key recovery using 16M traces and
successfully recovered 12 of the 16 bytes of the full key. The
remaining four bytes of the key can then be found in negligible
time through exhaustive search with 2

32 AES invocations.
Incidentally, we note that the key recovery specifically fails
for key bytes 0, 4, 8, and 12, i.e., the first byte of each 4-byte
word. This implies that these bytes might exhibit a different
leakage behavior than the other (successfully recovered) bytes.
Hence, with an appropriate leakage model, it might be possible
to also directly recover those four bytes without exhaustive
search. We leave this aspect for future work.

3) Kernel Module: Likewise, to our attack on the SGX
enclave (Section V-B2), we evaluate the CPA attack on a Linux
kernel module, processing an AES-NI key.

Setup: We implemented a kernel module encrypting data
using AES-NI accelerated encryption. Therefore, we made use
of the Intel AES-NI Sample Library [23] that claims to be
some of the most efficient AES assembler code implementa-
tions [39]. The kernel module provides an ioctl interface to
user space where data to be encrypted can be passed to.

Profiling: For the attack on the kernel module, we recorded
4M traces (ρnoise = 0.0002) in 50 h on the Xeon E3-1240 v5
(server) system. Each leakage sample corresponds to 16 384
encryptions of 16 kB in a loop inside the ioctl handler,
similar to scenario 1 for SGX above. As for SGX, we observe
statistical significant leakage for the AES rounds using both
the Hamming weight and Hamming distance models. The
profiling results are given in Table VIII in Appendix C.

Key Recovery: For the attack on the kernel module, we
performed a CPA key recovery using the 4M traces, again
targeting the final round of AES. We successfully recovered 15
of the 16 bytes of the full key. Note that the correct candidate
for the remaining byte was the second-best candidate.

4) Limitations: We showed that it is possible to recover
secrets from AES-NI, both from implementations in the kernel
and from an Intel IPP function using AES-NI in Intel SGX.
These attacks are feasible, and the number of traces is also
well in the threat model. For example, previous side-channel

attacks on AES-NI with physical access required recording a
large number of traces for 17 days using an EM probe [70]—
longer than the time required for our method. Furthermore, as
input to the NISTIR 8214A draft [8], Rijmen and Svetla [69]
recommend considering an adversary that can collect up to
100M traces.

While we note that our attacks might succeed with fewer
traces using algorithms designed to perform a CPA-guided
exhaustive search [83], we did not evaluate that in our attacks.
Still, whether our CPA attacks are practical depends on the
target, as we require large amounts of data to be processed
with a fixed or known plaintext. In the case of Intel SGX, as
a privileged attacker, it might be possible to alleviate this issue
using zero-stepping (see Section IV-B2). Instead of repeating
the whole algorithm, it is possible to repeat only the target in-
struction (which should also result in a better SNR). However,
in our experiments so far, we could not successfully apply CPA
in this case. This might be due to the noise introduced by the
zero-stepping logic, combined with long measurement times,
which prevent the acquisition of a sufficient number of traces.
Finally, determining the appropriate leakage model depends
on the specific implementation of the algorithm under attack
and also the targeted CPU—e.g., we observed substantial
differences for AES-NI between our i3-7100U and Xeon E3-
1240 v5 systems, with the i3-7100U exposing less leakage (see
Appendix C). We leave a more in-depth study of the behavior
for future work.

C. Observing Intra-Cacheline Activity

A common assumption for side-channel-secure software
was that an attacker can only observe victim operations at a
cache line granularity [10]. For instance, to protect against
cache attacks that observe access patterns at a cache line
granularity, such as Flush+Reload and Prime+Probe, scatter-
gather [25] is a constant-time programming technique for
RSA. However, recent work [88], [60] showed that this as-
sumption does not hold when an attacker shares a hyperthread
with a victim. Consequently, the attacker can infer the crypto-
graphic key used by an implementation that has sub-cache-line
variations in the control flow or data accesses.

However, for our attack, we assume a scenario where the
victim and attacker do not share a hyperthread. Consequently,
previous attacks [88], [60] cannot obtain this information.

In our experiment, the victim performs a secret-dependent
branch within a cache line, executing instructions with differ-
ent power consumption. If the bit at a given offset of a secret
byte is set, a fscale instruction is executed. Otherwise,
rdrand is executed. We assume an unprivileged attacker
that can trigger the code executed by the victim through an
API passing the offset to it. We evaluated the experiment on
our i7-8650U and i7-6600U (mobile) system, both running on
battery and connected to an AC power supply, both desktop
machines (i7-6700K and i9-9000K) as well as on the 3
servers (E3-1240 v5, E3-1275 v5, Silver 4214). The attacker
records the power consumption when triggering the victim. As
illustrated in Figure 9, one can clearly distinguish jump-target
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Fig. 9: Our attack clearly distinguishes different jumps within
the same cache line. In this figure, leaking the byte 0x4d
(ASCII ‘M’) (01001101 in binary) bit by bit by inspect-
ing the power consumption. Values below that threshold are
interpreted as ‘1’s, values above as ‘0’s.

locations within a cache line due to the difference in power
consumption. Hence, constraining control-flow variations in
cryptographic operations to a cache line cannot be considered
secure anymore, even in scenarios where victim and attacker
do not share a hyperthread. This allows breaking cryptographic
implementations, which are currently considered secure in the
scenario we investigate [32].

In addition, an extreme approach suggested to impede cache
timing attacks is to disable caching for the PRM range in
SGX [17]. In a second experiment, we mark pages of our
victim as uncacheable. Thus, the code cannot leak through
cache timings anymore. Still, with our power side-channel,
we can observe the leakage.

D. Kernel Address Space Derandomization

In this section, we show that an unprivileged attacker
can derandomize the kernel address space using RAPL. As
there is no distinction between committed and non-committed
instructions at the voltage regulator level, the power con-
sumption also changes for transient instructions. Transient
instructions are instructions that have been executed by an out-
of-order processor but are never committed to the architectural
state, e.g., instructions causing a fault [53] or instructions
following a misspeculated branch [48]. The general concept
of derandomizing the kernel address space is to distinguish
between the transient access of mapped and unmapped kernel
addresses via differences in power consumption. The current
KASLR implementation randomly chooses one out of 512
2MB-aligned virtual addresses as the base address for the
entire kernel [71]. Hence, as the kernel binary itself does not
support fine-grained randomization, knowing the base offset
of the kernel allows to calculate the location of kernel code
and data [37], [46], [30], [71], [12]. The same approach can
also be applied to dynamically loadable kernel modules [71].

Transiently accessing mapped and unmapped kernel ad-
dresses show differences in timing [37], [46], [30] and store-
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Fig. 10: Power consumption when transiently accessing kernel
addresses. If a kernel page is not mapped, the access triggers
an entire page-table walk, consuming more power.

forwarding behavior [12], [71]. Hence, the assumption is that
there is also a measurable difference in power consumption.

Figure 10 shows the power consumption when transiently
loading a kernel address while suppressing faults using Intel
TSX. The power consumption differs for mapped and un-
mapped kernel pages. The differences in power consumption
correlate with the differences in access times reported by
Jang et al. [46]. As unmapped kernel pages cannot be cached
in the TLB, accessing these pages triggers a page-table walk
which consumes more power than accessing mapped kernel
pages, which are cached in the TLB.

In our experiments, we used our i7-8650U (connected to
a power supply and running on battery), i7-6600U, i9-9900K,
and Xeon Silver 4214 systems with PTI (Page Table Isolation)
disabled. Note that both, the i9-9900K and the Silver 4214,
contain hardware mitigations against Meltdown; thus, PTI
can be disabled. To evaluate the success rate, we execute
the KASLR break 500 times for known KASLR offsets. On
average, we successfully derandomize the KASLR offset in
100% (n = 500, σx̄ = 0.00) of the runs. The average time
to find the KASLR offset is 20 s. Hence, while not being the
fastest KASLR break, it is still practical. Moreover, in contrast
to previous microarchitectural KASLR breaks [46], [37], [30],
[71], [12], [13], our KASLR break using power consumption
is the first microarchitectural KASLR break, which does not
require any timing primitive. Even with the microcode patch
on the i9-9900K, there is no significant change in the success
rate of the KASLR break. This is in line with Intel’s statement
that attacks on KASLR are not mitigated by this update [41].

In addition, we evaluated the influence of system activity
using stress-ng on the success rate of the KASLR break on
the i9-9900K running Ubuntu 18.04. These tests are designed
to stress the CPU and do not represent a realistic workload,
e.g., compilation task, rendering process, or office workload.
However, the tool allows us to vary the load on each core. By
default, it will cycle through all stress tests unless a specific
one is specified. With a load below 10% on the entire system,
there is no change in the success rate. With a moderately high
load of 50%, it decreases to 22% (n = 100, σx̄ = 4.34).
However, as system noise is statistically independent from
the measured signal, increasing the number of measurements
(and thus the runtime) increases the success rate. Especially
as system activity only increases the power consumption,
and mapped pages have a lower power consumption than



0

5

10

15

11

0

11

000

11

Time [cycles]

E
ne

rg
y

[n
J]

Fig. 11: Transmission of bits 1101100011 using the time-
less covert channel.

unmapped pages, noise does not lead to false positives, but
only to not being able to detect the kernel (false negative). A
simply increase of the measurements by a factor of 10 already
results in a success rate of 46% (n = 100, σx̄ = 4.75).

E. Timing-Independent Covert Channel

In this section, we describe how unprivileged access to
power consumption can be utilized to establish a timing-
independent covert channel. The basic idea of the covert
channel is to encode the information by varying the power con-
sumption of the device. To send a 1-bit, the sender increases
the power consumption by executing more energy-consuming
instructions. To transmit a 0-bit, the sender idles. The receiver
monitors the power consumption of the device through the
RAPL interface and decodes the transmitted information by
observing the changes in power consumption.

Figure 11 illustrates the transmission of the bits
1101100011 over the power-based covert channel. We
transmitted 1 kB of random data between two unprivileged
processes running on different cores of the i7-8650U, either
battery-powered or connected to a power supply. We achieved
a transmission rate of 18.7 bit/s with a bit error rate of 0.89%.

While the transmission rate of our covert channel is sig-
nificantly lower in contrast to other state-of-the-art covert
channels [54], [29], [58], our covert channel has the benefit
that it does not rely on high-resolution timers. Furthermore,
our proof-of-concept covert channel is not optimized and
strictly working only with binary decisions. However, we can
transmit not just one bit per symbol but rather several bits
by using modulation techniques, such as amplitude modu-
lation, phase-shift keying, or frequency modulation. While
Maurice et al. [58] found that these methods are infeasible
for cache covert channels due to the unreliable clock, they are
applicable to a power-based covert channel. Thus, we believe
that the performance of our covert channel could be drastically
improved using these techniques.

VI. COUNTERMEASURES

In this section, we discuss different countermeasures and
mitigation strategies for the presented attacks.

Restricting Access: To obtain the Intel RAPL counters,
kernel privileges are required to read the corresponding MSRs.
However, the power capping framework powercap on Linux
provides unprivileged access to these MSRs through the
sysfs interface. While the purpose of the driver is to expose
RAPL for user-space consumption [65], unprivileged access
could be directly prevented by respecting the access level

similar to kernel.perf_event_paranoia for the perf
interface. While these interfaces may be required for existing
functionality, limiting user-space access is necessary to mit-
igate at least unprivileged attacks. However, as a privileged
attacker has direct access to these MSRs, attacks on Intel
SGX are not prevented. Thus, access to these MSRs needs
to be blocked via a microcode update. Furthermore, trusted
computing base recovery is required to allow remote verifiers
to re-establish the trust that these MSRs have been deactivated.

Limiting Resolution: The RAPL interface has a µJ res-
olution. While reducing the counter’s granularity does not
completely mitigate our attacks, the number of traces for
some scenarios might become impractical. However, even
without the RAPL interface, it may still be possible to use
other limited-resolution sources of energy data, e.g., battery
monitoring, to conduct a software-based power side-channel
attack, e.g., identifying running applications [87].

Limiting Precise Execution Control: Restricting the user-
space access to the RAPL counters only impedes unprivileged
attackers, as a privileged attacker has direct access to these
MSRs. In addition, the attacker can make use of precise
execution control (cf. Section IV-B2) to zero step an enclave.
This primitive gives an attacker the possibility to execute a
single instruction within an SGX enclave arbitrarily often,
enabling sampling of the instruction’s energy consumption
(cf. Section V-A). Introducing a counter inside SGX that
increments every time an enclave is executed from the same
instruction pointer could limit the number of zero steps.

Application Hardening: Software computing on particu-
larly sensitive values, e.g., cryptographic algorithms, could de-
ploy state-of-the-art countermeasures against power analysis,
e.g., masking, to make these attacks more difficult. However,
using zero stepping (Section IV-B2) and the possibility to
observe the Hamming weight of bytes (Section III-E), masking
is insufficient against our attacks on SGX enclaves.

Intel’s Mitigation: To address the presented issues, Intel
plans to release microcode updates that help ensure that the
reported energy consumption by the RAPL interface hinders
the ability to distinguish same instructions with different data
or operands if SGX is enabled. In addition, an update to the
Linux powercap driver restricts the unprivileged access to
the RAPL MSRs.

VII. RELATED WORK & DISCUSSION

In this section, we present related and future work and
discuss other microarchitectures.

A. Related Work

Hardware-based Power Analysis: Eisenbarth et al. [19]
reconstructed control-flow and program code from power
consumption on a small microcontroller. Strobel et al. [76]
distinguish instructions on a microcontroller using an oscillo-
scope sampling at 2.5GHz. Park et al. [66] use an oscilloscope
with 2.5GHz in combination with machine learning to extract
the instruction stream (opcodes and operands) from a micro-
controller. Msgna et al. [62] measured differences in power



consumption during the execution of single instructions on a
microcontroller using an oscilloscope with a sampling rate of
5GHz. Saab et al. [70] extracted an AES-NI key from an Intel
i7 after collecting traces for 17 days with an EM probe.

Guri et al. [33], as well as Islam and Ren [45] demonstrated
that current and voltage respectively, can be monitored and
influenced to build covert channels, e.g., in cloud environ-
ments. However, both works assume an attacker with hardware
equipment connected to the device.

Undersampling: Molka et al. [61] used a physically-
connected power meter to record a victim system’s power
consumption at a rate of 10Hz, distinguishing loops of nops,
and other instructions. Attacks with similar sampling rates
to ours were shown by Genkin et al. [22], who recovered
4096-bit GnuPG RSA keys and program code via acoustic
cryptanalysis, and Lifshits et al. [52], who inferred sensitive
data, including keystrokes, via a malicious battery storing
power traces. These works sampled at ≈24 kHz (mobile phone
attack) and 1 kHz, respectively.

Our work shows that this can similarly be done from
software at even higher sampling rates, and our attacks demon-
strate the security ramifications of this. While prior attacks
require either physical proximity or physical access to the
device, they support this work’s finding that a low sampling
rate can still achieve fine-grained information leakage.

Software-based Power Analysis: Fusi [20] used RAPL
to attack RSA-16384 but concluded that the sampling rate of
RAPL is too low to mount an attack, showing that it is only
observable whether branches are taken and accessed data is
cached. Mantel et al. [56] distinguish RSA keys with different
Hamming weights using RAPL but do not try to extract keys
or perform other concrete attacks. Gao et al. [21] use RAPL
in containers to infer information about the host environment,
e.g., co-location of multiple containers.

Power Analysis on Mobile Devices: Yan et al. [87] mon-
itor system power information on mobile devices to acquire
voltage and current, observing a correlation with keystrokes,
enabling them to infer password lengths and also distinguish
different applications. Qin et al. [68] use the same interfaces to
fingerprint websites on mobile devices. We instead use RAPL
on regular laptops, desktops, and servers that have more subtle
variation in power consumption and voltage.

On-die Power Analysis: O’Flynn [64] recorded power
measurements using an on-board ADC from the non-secure
world to recover secrets processed in the secure world on
TrustZone-M. Zhao and Suh [89] use an FPGA to observe
a CPU’s power consumption on the same SoC to break RSA.

B. Other Microarchitectures

While we focus on Intel’s RAPL implementation throughout
this work, other microarchitectures offer different interfaces to
obtain the energy consumption of the core.

For instance, since the Zen microarchitecture, AMD CPUs
also provide a RAPL interface [2]. In contrast to Intel, their
counters even allow to measure the energy consumption even
per individual core. However, as the powercap driver does

not support AMD’s implementation, an attacker requires ker-
nel privileges to read the corresponding MSRs. In Appendix A,
we show that AMD’s RAPL interface allows to distinguish
different instructions executed on an AMD Ryzen CPU. This
could allow similar attacks on AMD CPUs, e.g., against
AMD’s SEV-SNP, where a privileged kernel-space attacker is
conceivable.

Other CPU manufacturers, e.g., ARM, NVIDIA, IBM
POWER, Ampere, Hygon, or Marvell, provide different power
interfaces as well. We briefly discuss them in Appendix A and
leave the investigation of them to future work.

C. Enclave Inspection

While Intel SGX provides integrity and confidentiality of
data and integrity of code at runtime, it does not provide
confidentiality of code in the binary file stored offline. How-
ever, with the Intel Software Guard Extensions Protected Code
Loader (Intel SGX PCL) [44], the enclave shared object is
encrypted at build time and decrypted during the load phase.
This enables intellectual property within SGX enclave code to
be protected from inspection by untrusted parties, as reverse-
engineering of the encrypted enclave is not possible [6].
Furthermore, encrypting the memory used by the enclave [17]
prevents runtime inspection, provided the enclave is built in
release mode [43].

Using zero-stepping, we can now measure the energy
consumption of every single instruction executed within an
SGX enclave. This allows to classify different instructions by
evaluating their power consumption, as shown in Section III.
Further, differences depending on the values of their operands
and loaded data from the cache can be observed. This enables
us to not only recover the control flow of the executed program
but also to directly disclose sensitive information, as we
demonstrate in Section V-A.

For enclave inspection, the idea is to retrofit the power-
side-channel-based disassembler by Eisenbarth et al. [19] with
PLATYPUS to infer the control flow of the enclave. While
our results are promising for a certain set of instructions
(see Table III), the general case is very complex due to the
complex instruction-set architecture. In total, there are more
than 3684 x86-64 instruction variants (combining mnemonics
and operand types) [35] that need to be profiled on the mi-
croarchitecture under attack first. Thus, the set of instructions
with similar power consumption, especially with the influence
of different operand values, is currently too large. We leave
further exploration to future work.

VIII. CONCLUSION

In this work, we show that software-based power side-
channel attacks are particularly powerful against Intel SGX
due to the zero-stepping capabilities of a privileged attacker.
We showed how instructions and operand-level differences can
be observed, enabling recovery of an RSA key from mbed TLS
inside an SGX enclave. We demonstrated that with sufficient
statistical evaluation, even user space attackers can exploit
unprivileged access to the Intel RAPL interface to extract



AES-NI keys from SGX enclaves or kernel space. Moreover,
we demonstrated that this side channel enables an attacker
to break KASLR, observe sub-cache-line-granularity activity,
and establish timing-independent covert channels.

While unprivileged attacks can be impeded by restricting
access to the sysfs interface, mitigating privileged attacks in
order to protect Intel SGX enclaves is not trivial. We, there-
fore, propose limiting precise execution control and, while it,
unfortunately, breaks backward compatibility and support for
software-based thermal management, removing access to these
interfaces in general.
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APPENDIX

A. Other Microarchitectures

While we focus on Intel’s RAPL implementation throughout
this work, other microarchitectures offer different interfaces to
obtain the energy consumption of the core.

AMD: Since the Zen (family 17H) microarchitecture, AMD
CPUs have provided a RAPL interface [2]. However, lit-
tle documentation is available regarding its implementation.
Power consumption values for the core and package domains
are provided respectively in the CORE_ENERGY_STAT and
PKG_ENERGY_STAT MSRs [1]. A notable difference from
Intel RAPL is that the core domain is accessible per-core rather

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
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https://www.esat.kuleuven.be/cosic/events/tis-online-workshop/wp-content/uploads/sites/6/2020/07/Vincent_Rijmen.pdf
https://www.esat.kuleuven.be/cosic/events/tis-online-workshop/wp-content/uploads/sites/6/2020/07/Vincent_Rijmen.pdf
https://patchwork.kernel.org/patch/11123607/


Instruction Ryzen 7 Pro 3700U Ryzen 7 3700X EPYC 7401P

nop 0.0886nJ 0.1052nJ 0.1571nJ
inc r64 0.1241nJ 0.1144nJ 0.1800nJ
xor r64, r64 0.1246nJ 0.1144nJ 0.1785nJ
mov r64, mem 0.0978nJ 0.1266nJ 0.1571nJ
imul r64, r64 0.0930nJ 0.0930nJ 0.1586nJ
fscale 0.0892nJ 0.0991nJ 0.1571nJ
rdrand r64 0.0669nJ 0.0564nJ 0.0991nJ
rdtsc 0.0885nJ 0.0896nJ 0.1296nJ
clflush mem 0.0671nJ 0.0503nJ 0.0991nJ
aesenc xmm, xmm 0.0890nJ 0.0854nJ 0.1571nJ

TABLE V: Average observed energy consumption (package
domain) of different instructions on an AMD Ryzen 7 Pro
3700U mobile CPU, an AMD Ryzen 7 3700X desktop CPU,
and an AMD EPYC 7401P server CPU.
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Fig. 12: Measured energy consumption of the shr instruction
with different Hamming weights (AMD Ryzen 5 3600).

than across all cores of the CPU, which substantially reduces
measurement noise.

An attacker targeting AMD currently requires root priv-
ileges to read the MSRs, as the Linux powercap driver
only establishes a user-accessible sysfs RAPL interface
on Intel CPUs. While they lack the RAPL interface, earlier
AMD family 15h and 16h CPUs also have power MSRs
which provide consumption estimates based on platform ac-
tivity levels [2]. Unfortunately, none were available to us for
evaluation purposes. However, we believe systems with these
CPUs may be vulnerable to user-space attacks because if the
fam15h_power driver is loaded, power values can be read
from user space via sysfs [34].

Table V lists the measured energy consumption of different
instructions on AMD Ryzen 7 Pro 3700U, AMD Ryzen 7
3700X, and AMD EPYC 7401P. On the mobile and desktop
CPU, we disabled processor boost and set the cores to a
fixed frequency. To measure the energy consumption of an
instruction, we record its energy consumption over 10 000
consecutive executions and take the median value to eliminate
system-level noise (e.g., erroneous high values caused by
interrupt handling or the process being descheduled). On both
AMD and Intel (see Section III), we observe the energy
consumption across the entire CPU package to ensure that
non-core activity (for example, interactions with DRAM)
is included. We can observe inter-instruction differences in
energy consumption. This enables identification of executed
instructions, provided the attacker can profile the energy
consumption of the victim microarchitecture. Furthermore, as
shown in Figure 12, the Hamming weight of the register
influences the energy consumption of the shr instruction.

ARM: The ARM Energy Probe, a 3-channel USB voltmeter
which can be attached to a targeted platform, requires physical
access to the device. However, different development boards
using ARM CPUs contain on-board energy meters like the
ARM CoreTile Express A15x2. The odroid XU+E used by
Vasilakis [82] to characterize the energy consumption of
instructions on ARM contains 4 ina23 power sensors. The
SAML11 running a Cortex-M23 processor used by O’Flynn
and Dewar [64], grants access to an onboard ADC.

NVIDIA: NVIDIA’s JetsonTX2 module has 3-channel
INA3221 monitors [63] exposing current (mA), voltage (mV),
and power (mW) used of different power rails. These include
the CPU and GPU and are exposed to unprivileged access in
the sysfs.

IBM POWER: The POWER9 processor contains a ded-
icated on-chip microcontroller that allows to analog sample
various voltage rails. Note, however, that the POWER9 does
not include per-core power estimation circuitry [38].

Marvell: For the ThunderX2, Marvell provides a kernel
driver [57] exposing readings from hardware sensors, among
other things, voltages and power measurements. Similar to
Intel RAPL, measurements can be observed for all cores on
the System on Chip, the SRAM, memory, and miscellaneous
peripherals.

Ampere: For the Ampere Altra SoC, the APM X-Gene
SoC hardware monitoring driver gives unprivileged access to
the temperature and power sensors and, thus, allows to read
the current power consumption of the CPU or the IO [15].

Hygon: Recently, RAPL support for the Hygon Dhyana
CPU family has been added to the Linux perf interface
and, likewise to AMD, allows to read the per-core energy
consumption [86].

B. mbed TLS Attack

Figure 13 illustrates the minimum core voltage measure-
ments for each key bit instruction of the mbed TLS attack
described in Section V-A.

C. Additional Profiling Results for AES-NI

Table VI, Table VII and Table VIII present additional
profiling correlations for AES-NI of the attacks described
in Section V-B.
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Fig. 13: Core voltage per measured instruction for each key bit offset in the fixed window length implementation of mbed
TLS inside an SGX enclave on the Xeon E3-1275 v5. The blue marks represent 1 bits, while the red marks represent 0 bits.
Using a threshold (dashed line), they can easily be distinguished.

TABLE VI: Profiling correlations (for Xeon E3-1240 v5) after
16M traces for AES-NI in scenario 2 for the Hamming weight
(HW) for each round and Hamming distance (HD) between
rounds. Bold entries and a ∣SF∣ ≥ 1 highlight significant
statistical dependencies.

HD ρρρ SF HW ρρρ SF

00 → 01 0.01412518 14 00 0.06653038 66
01 → 02 0.00674140 6.7 01 0.01389394 14
02 → 03 0.01182713 12 02 0.00045177 0.45
03 → 04 0.01159959 12 03 0.00106697 1.1
04 → 05 0.01144089 11 04 0.00073025 0.73
05 → 06 0.01069259 11 05 0.00058525 0.58
06 → 07 0.01142695 11 06 0.00114676 1.1
07 → 08 0.01158716 12 07 0.00068475 0.68
08 → 09 0.01102899 11 08 0.00077455 0.77
09 → 10 0.01114280 11 09 0.00094852 0.95
10 → 11 0.00532594 5.3 10 -0.00041563 -0.41

11 0.05861710 58

TABLE VII: Profiling correlations (for i3-7100U) after 4M
traces for AES-NI in scenario 1 for the Hamming weight (HW)
for each round and Hamming distance (HD) between rounds.
Bold entries and a ∣SF∣ ≥ 1 highlight significant statistical
dependencies.

HD ρρρ SF HW ρρρ SF

00 → 01 0.00429156 2.1 00 0.00957385 4.8
01 → 02 0.00256447 1.3 01 0.00550198 2.7
02 → 03 0.00441708 2.2 02 0.00056316 0.28
03 → 04 0.00404454 2 03 0.00003843 0.01
04 → 05 0.00388573 1.9 04 0.00048580 0.24
05 → 06 0.00512078 2.6 05 0.00081453 0.41
06 → 07 0.00418470 2.1 06 -0.00057528 -0.29
07 → 08 0.00454403 2.3 07 -0.00040692 -0.2
08 → 09 0.00477473 2.4 08 -0.00005976 -0.03
09 → 10 0.00488921 2.4 09 0.00085888 0.43
10 → 11 0.00269663 1.3 10 0.00021935 0.11

11 0.01133641 5.7

TABLE VIII: Profiling correlations (for Xeon E3-1240 v5)
after 4M traces for AES-NI in the Linux kernel for the
Hamming weight (HW) for each round and Hamming distance
(HD) between rounds. Bold entries and a ∣SF∣ ≥ 1 highlight
significant statistical dependencies.

HD ρρρ SF HW ρρρ SF

00 → 01 0.063436878 32 00 0.092565061 46
01 → 02 0.029847718 15 01 0.075098846 38
02 → 03 0.056173544 28 02 0.0022803663 1.1
03 → 04 0.057817586 29 03 0.0033372879 1.7
04 → 05 0.057572691 29 04 0.0030430309 1.5
05 → 06 0.057020521 28 05 0.0034340331 1.7
06 → 07 0.058405015 29 06 0.0038034749 1.9
07 → 08 0.05697378 28 07 0.0022000058 1.1
08 → 09 0.057203062 29 08 0.0033568495 1.7
09 → 10 0.05837099 29 09 0.0031144225 1.6
10 → 11 0.027001464 13 10 -0.0008108201 -0.16

11 0.12527739 63
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