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This research presents a systematic security analysis that we performed to explore a variety of attack vectors on 

a real smart manufacturing system and to assess the attacks that could be feasibly launched on a complex smart 

manufacturing system. The main, two-pronged question we want to answer is: Under which threat conditions 

and attacker capabilities are certain attacks possible, and what are the consequences? 

While smart manufacturing systems are often isolated from other company networks, there is a trend toward 

less isolation between information technology (IT) and operational technology (OT) systems. This could worsen 

the consequences of the attacks that we describe in this research because future attackers would have more 

opportunities for remote entry points, which currently are relatively unlikely. Recent incidents such as the 

ransomware infection that halted production at a major semiconductor foundry in 20181 have already shown the 

impact of IT-to-OT lateral movement.

When traditional, well-known attacks such as those involving malware designed for general-purpose IT systems 

hit a smart manufacturing system, they are typically visible as unexpected or blacklisted patterns in the network 

or host. These cases are spotted with network and endpoint protection solutions. In this research, we take a 

forward-looking viewpoint and look at what future advanced attackers would do given the technology-specific 

attack opportunities offered by smart manufacturing environments. We consider the smart manufacturing system 

in its entirety, without focusing on the presence of specific vulnerabilities. For example: What would happen if 

an attacker was able to “blend in” as legitimate network traffic or expected host activity (regardless of how it 

could happen)? What would such an attacker do to remain persistent? Furthermore, how could the legitimate 

functionalities of smart manufacturing technologies be abused?

Through concrete and detailed attack descriptions, we provide insights on how to protect a real smart 

manufacturing system. We show, for example, how an attacker could remotely and indirectly compromise an 

entire system using malicious software extensions, which some vendors are already distributing via app store-

like ecosystems, as the attack vector. Not only do we show that such malicious extensions have full capabilities 

on the target system, but we also show how an attacker could maintain a lower profile and silently use such 

extensions to “trojanize” the logic that will be executed on complex machines (e.g., industrial robots). We describe 

how the attack, once the malware is propagated in the physical machines, could continue by harvesting network 

and host information or planting services to support the next steps of the attack and to remain persistent.

The flourishing market of industry-grade embedded devices — often referred to as industrial internet-of-things 

(IoT) devices — offers another interesting entry point for attackers. Using one of these devices, we show how 

third-party development libraries could be abused for implementing both silent and noisy denial-of-service (DoS) 

attacks, e.g., to stop operations on the production floor until the device is identified and removed, thus creating 

additional downtime due to the missing, legitimate services that it was running.

Given the results of our research, we highlight the following security-sensitive areas in a typical smart 

manufacturing system:

• Industrial software delivered as packaged add-ins, extensions, or apps are powerful attack vectors that 

have not yet been seriously considered. Our findings show that if the delivery platforms (e.g., app stores) are 

not properly secured, they could offer a unique way to indirectly infect critical endpoints such as engineering 

workstations, from which attacks can propagate down to the production floor and remain persistent (e.g., in 

the form of machine logic introduced via a backdoor).

• Custom industrial IoT (IIoT) devices are gaining popularity because they allow engineers to run fully custom 

automation logic on the production floor, as opposed to less powerful nodes or traditional hardware such as 

programmable logic controllers (PLCs). We show that this flexibility and lowered access bar for developers 

create a change in the security management model: Instead of trusting one vendor that develops the software 
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running on these devices — usually the devices’ vendor — the users (e.g., system integrators) will have to 

manage an oft-intricate chain of trust, with many third-party libraries imported in the final software. Given 

that attackers have recently been targeting such libraries to compromise software at its origin,2 we deem it 

important to raise awareness of the very same risk in industrial settings, where it is likely to have a greater 

impact.

• Human-machine interfaces (HMIs) are a central component of the smart manufacturing ecosystem. As 

shown in previous research by the Trend Micro™ Zero Day Initiative™ (ZDI) program,3 HMIs have a wide 

attack surface as they are general-purpose computers with many interfaces, can be seldom upgraded, and 

are often affected by software vulnerabilities. The complexity of HMIs is also growing. We show that current 

mobile HMIs suffer from the typical issues found in unsecure mobile apps — a sign that they might not be 

ready for widespread use. Some are deployed via sideloading, use unsecure protocols to communicate with 

the back-end, and are shipped with hard-coded credentials, all of which position them as one of the weak 

links in this complex ecosystem.

• The manufacturing execution system (MES) is the most sensitive endpoint in a smart manufacturing system 

because it acts as a trusted bridge between the production floor and the rest of the corporate network, e.g., 

enterprise resource planning (ERP) systems. MESs are highly customized products that revolve around one 

or more databases that contain complex automation logic and work plans. We show the consequences of a 

slight alteration in one of the databases, which could result in damaged manufactured goods if the MES was 

not designed with security in mind and with specific countermeasures.

• Complex, programmable manufacturing machines such as industrial robots possess computational 

power that can go beyond performing physical movements, which is their main functionality. Nowadays, they 

can run general-purpose computing tasks, which not only can be a source of vulnerabilities, but can also be 

abused by an attacker to hide malicious logic that could evade current endpoint protection solutions since it 

will be considered as valid machine automation code.

The impact of cyberattacks on smart manufacturing systems can be very high4 because many organizations 

operating these kinds of systems are part of important industries or critical infrastructures. There are also several 

security challenges because an attacker can have many targets to choose from: the connection between the 

MES and the actuators, the sensors (the attacker can, for example, tamper with the measured values), the 

network itself (traffic is often unencrypted), the HMIs (e.g., traditional or mobile), humans in the loop, and a 

complex software supply chain with many dependencies.

Major manufacturers around the world either already use and rely on smart manufacturing technologies or will 

do so in the near future, and thus should consider the findings of this research.
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Introduction
Smart manufacturing systems can be seen as the modern implementation of the totally integrated 

automation (TIA) concept that has been developed by Siemens since 1996.5 But such is the complexity 

of smart manufacturing systems that it is difficult, if not futile, to provide any “crisp” definition of 

them. From a security research standpoint, it is challenging to obtain access to a sufficiently generic, 

fully functioning system, deployed within realistic conditions, because the concept of a “generic” or 

“reference” smart manufacturing system does not really exist. Therefore, any security analysis — 

including this one — must be interpreted with a grain of salt: It is easy to jump to conclusions such as, 

“All smart manufacturing systems are unsecure,” or, worse, to view attack scenarios as ready-to-use 

best practices on “how to secure smart manufacturing systems.” In this research, our aim is to provide 

food-for-thought examples and use cases intended for concerned organizations and individuals to 

carefully contextualize in their specific settings.

In this section, we describe the scope of our analysis (an actual smart manufacturing system deployed 

in an Industry 4.0 research laboratory), the methodology we used during our research (a holistic, hands-

on driven approach), the research angle we employed (focusing on concrete attack vectors in the hands 

of a forward-looking attacker), and some background concepts needed throughout the remainder of 

this research paper.

Scope
Tracing a boundary for this research was difficult because smart manufacturing encompasses a wide 

and diverse set of technologies and disciplines. Ultimately, we decided to concentrate our attention 

on a single instance of a smart manufacturing system, including the software ecosystem that revolves 

around it.

1.1
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Figure 1.

Figure 2.

A photo of Industry 4.0 Lab, the system that we analyzed during this research

The system under analysis is Industry 4.0 Lab,6 a research laboratory assembled by Festo and currently 

housed at the School of Management of Politecnico di Milano,7 the largest technical university in Italy. 

Although the lab, which costs around €250,000, is used for research and education purposes, it is 

engineered with the same equipment and basic principles used on real-world production floors.

 

The overall architecture of the smart manufacturing plant that we used in this research 
Note: A detailed description of the system and its parts is in Section 2.

Although we did consider their existence within the ecosystem, we left human resources (e.g., operators, 

contractors, engineers) out of our security analysis since the extent to which human behavior directly 

affects the operational security of a smart manufacturing system was beyond our scope. However, 

we considered the opposite — how the technology could be abused with the goal of influencing the 

decisions of the operator, e.g., via user interface (UI) tricks — but did not examine whether and how a 

human would successfully fall for such tricks.
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Methodology 
We followed a practical, hands-on methodology: We invested time to understand the internals of the 

smart manufacturing system, while also using it to produce some goods, as a real operator would do. 

Once we understood the basic operational aspects, we consulted with the lab’s plant maintainers to 

better understand the details of the system and also read technical documentation as needed.

Upon gaining a deep enough understanding of what we were working with, we started thinking about 

the security models at play, under what threat model assumptions they could be violated, and how. 

If we found a feasible example, we tried to implement an attack to prove our point. For instance, 

once we discovered that the communication between the programmable logic controllers (PLCs), the 

manufacturing execution system (MES), and the human-machine interfaces (HMIs) was unencrypted, 

we verified whether valid messages could be spoofed, and to what extent these would be accepted by 

the endpoints. We always tried to verify our findings in an end-to-end fashion, i.e., without limiting them 

to the attack possibilities. Overall, we created proofs of concept for five attacks, which are described 

in Section 4.

We consulted several times with operational technology (OT) experts, including automation engineers, 

operators, and industrial robot programmers. On top of that, we made extensive use of online discussion 

forums typically used by experts to exchange tips and best practices. Later on, we used the very same 

forums to recruit some volunteers for an online survey, and to “measure” the overall security awareness 

of the community, the results of which are discussed in Section 2.2.

Angle
We looked at what an advanced attacker would be able to accomplish, given the technology-specific 

attack opportunities afforded by smart manufacturing environments. Taken on its own, each part of 

a smart manufacturing system likely would have already been analyzed from a security viewpoint, 

either by us or by other researchers; industrial robots, PLCs, HMIs, industrial endpoints or networking 

appliances, and the like have all been subject to scrutiny. Thus, we focused instead on how an advanced 

(and creative) attacker, with access to one or more of the system’s components, would be able find their 

way into other parts of the system. In other words, this research focuses on the system in its entirety as 

a set of entry points and targets, under various attacker model assumptions.

Despite discovering and reporting some vulnerabilities, we stress that this analysis does not focus on 

any specific vulnerabilities, new or existing, in the products of the named vendors. Rather, it focuses 

on attack vectors, design issues, and post-exploitation opportunities. As a matter of fact, we took 

advantage of the physical laboratory as a concrete starting point to understand the architecture of 

a real smart manufacturing system and perform practical experiments on it; we did not use it solely 

as an exploitation target. When needed, we responsibly disclosed any security vulnerabilities that we 

discovered along the way through the Trend Micro™ Zero Day Initiative™ (ZDI) program.

Background
We assume that readers of this paper are familiar with the concepts of industrial automation that are 

essential to understanding the high-level functionalities and the interactions of components at various 

levels of the automation pyramid,8 as depicted in Figure 3. Section 2 introduces the basic terminology 

and provides a technical overview of a typical smart manufacturing system.

1.2

1.3

1.4
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This research focuses on Levels 1 to 3. Specifically, we assume that the sensors are trusted components, 

so an attacker may be able to spoof signals coming from the real sensors (without compromising the 

actual sensors). Similarly, we assume that Level 4 is considered trusted by the lower layers, which 

means that an attacker may be able to craft messages coming from it (although we did not investigate 

how that could happen).

Research Questions
We collected a list of “research questions” that we kept as a reference during our work. It is not meant 

to be exhaustive, but we hope that it will be a useful resource for future OT security research:

• Under which threat and attacker models are certain attacks possible, and what are the 

consequences? (This is the main question.)

• Are there any overlooked vectors that could facilitate an attacker’s getting a foothold in these 

systems?

• What is the security impact of modern industrial software development practices, including the use 

of open libraries, with complex interdependencies?

• What is the cybersecurity awareness level of the technical personnel who engineer, program, and 

operate in smart manufacturing environments?

Readers who wish to know our high-level answers to these questions without going through the rest of 

this paper may do so by reading our conclusion in Section 6.

1.5

Figure 3.
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Technology
Smart manufacturing is the convergence of automation and information technology (IT), and is at the 

essence of the ongoing industrial revolution known as Industry 4.0.9 To draw an analogy: In the past, 

we would have needed to purchase a hardware computer in order to run our software, but today, we 

can quickly provision a bare-metal server in a data center and connect to it in less than five minutes 

— thanks to the integration and automation of IT operations. Similarly, we are getting to a point where 

manufacturing a product will be completely streamlined, with little or no human intervention required.

Smart manufacturing has become a major technology trend. For example, 10% of the 2021 edition 

of Hannover Messe, one of the largest industry exhibitions in the world,10 will be dedicated to digital 

factories (based on the number of exhibitors in the different categories), with more than 600 exhibitors, 

about 300 of which exclusively target the manufacturing industry. Within the manufacturing industry, 

smart manufacturing affects sectors including those that deal with: minerals; metals; oil; food; chemicals; 

textiles and clothing; electric products and electronics; furniture; glass and ceramics; leather, rubber 

and plastics; paper, cardboard, and related products; pharmaceutical products; tobacco; and cars and 

automotive products, components, and equipment.

In this section, we describe the technologies that drive a smart manufacturing system by focusing on 

the features that are relevant from a security standpoint. We conclude this section with a quantitative 

analysis of the security awareness of the online communities of practitioners who both talk about and 

work in the fields that revolve around smart manufacturing technologies.

Machines and Process
Industry 4.0 Lab, the smart manufacturing system that we analyzed during this research, comprises 

seven stations, each with PLCs and HMIs made by Siemens, various physical actuators (e.g., drills, 

presses) and sensors (e.g., temperature, pressure, camera), a conveyor belt, and a Mitsubishi Melfa 

industrial robot. Industry 4.0 Lab is part of the Fenix Project,11 which is partially funded by the Horizon 

2020 research and innovation program of the European Union (EU).12 The goal of the Fenix project is to 

create a reconfigurable multi-material pilot plant producing various goods, including but not limited to 

3D printing metal powders, customized jewels, and advanced filaments. In its current installation, the 

system produces toy cell phones. 

2.1
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Details of a machine (drill), HMI, and PLC in the target manufacturing system

The target smart manufacturing system (informally referred to as “the carousel” because of its circular 

workflow) is made up of stations, each comprising at least three parts, as pictured in Figure 4:

• A physical machine, such as a loader, drill, press, camera, or industrial robot, which does the actual 

work.

• An HMI, which is used by the operator for monitoring and controlling the progress.

• A PLC, which serves as the interface for the interaction between the machine, the HMI, and the 

rest of the network.

The PLCs are Siemens Simatic DP CPU 1510SP-1 PN units,13 the HMIs are Siemens Simatic HMI 

TP700 Comfort units,14 the industrial robot is a Mitsubishi Melfa V-2AJ,15 and the network is made and 

managed out of Siemens Scalance X208 switches.16

Manufacturing Execution System

The production process is coordinated by the manufacturing execution system (MES), which is a complex 

logic layer on top of a database. The MES is the interface between the enterprise resource planning 

(ERP) system, if any, and the actual physical plant. If used by itself, the MES can also incorporate some 

ERP system-like functionalities. The MES allows the writing of “recipes” that specify the production 

steps. These can be seen as “work templates” (i.e., sequences of generic actions), which are translated 

to network packets to the various stations (i.e., the PLC and HMI) once they receive input parameters 

(e.g., the number and variant of items to produce). When in execution, the MES receives feedback 

from the stations, ensures that the sequence of instructions in the work order is followed, and takes 

corrective actions if needed. Tracking each part is easy because each pallet is always transported by a 

carrier identified by a radio frequency identification (RFID) tag, which is known to the MES.

Roles

We consider three broad roles in a smart manufacturing system: 

• The system operator, who supervises the production (e.g., through HMIs), loads supplies as 

needed, checks for alerts, and unloads the finished goods if needed.

Figure 4.

Despite discovering and reporting some vulnerabilities during our analysis, we stress that we do 

not focus on exploiting or researching specific vulnerabilities (either new or existing) in the products 

of the named vendors — they are reported merely for completeness. Rather, we focus on attack 

vectors, design issues, and post-exploitation opportunities.

2.1.1

2.1.2
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• The MES operator, who designs work templates and interacts with the MES.

• The machine engineer or programmer, who designs and integrates the low-level logic in specific 

machines (e.g., robots, drills) and translates high-level order commands (e.g., “drill here,” “move 

arm 30 degrees left”) into actuator instructions.

While some of these roles can be filled by employees of the factory, others can be filled by outsiders 

(e.g., consultants, system integrators, and other contractors). For instance, the system operator can 

be an employee, the MES operator can be a system integrator, and the machine engineer can be a 

contractor who is called upon when needed (e.g., when a new task program needs to be developed for 

a new machine or when maintenance of existing logic is required). Therefore, some workstations are 

not always connected to the network, and the computers, even if never connected, may not be under 

the complete control of the factory’s IT staff. Consultants may use their own computers to develop 

automation logic code, which is then transferred to the factory floor (e.g., via portable media), without 

connecting their computers to the factory network. This not only makes security management more 

complex, but it also allows for the creation of new attack opportunities, as summarized in Figure 5 and 

described in Section 4. Outsourcing, especially in low-wage countries, also includes the risk of bribery 

or extortion of contractors, which could be considered by attackers.

System integration
service

Freelance
consultant

Vendor

Smart manufacturing
system

Third-party
developer Employees

• Software libraries • Custom integrations
• Operations
• Knowledge
• Design

• Custom software
• Knowledge

• Design
• Operation
• Deployment

• Parts
• Software

Provides to

Hired by

Uses
Operates

Uses

Works directly on

Deploys

Figure 5. The various roles (orange) that supply software, parts, and expertise to a smart manufacturing 

plant (red), and the relationships between them (blue)

Production Flow

The system operator interacts with the system mainly through the HMI, which we assume is considered 

trusted by the operator.

2.1.3
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2.1.4

Close-up shots of the various stations of the smart manufacturing system

In the case of the system that we analyzed, the typical production workflow is as follows:

1. The operator ensures that there are enough input parts and starts the production from the HMI on 

the first station.

2. The first station loads the first half of the toy phone case from a magazine onto the conveyor belt.

3. The second station assembles the case of the toy cell phone.

4. A drill drills a (programmable) number of holes through the phone case.

5. The industrial robot places the printed circuit board (PCB) into the case and assembles the 

electronic components.

6. The half-assembled phone goes through an intermediate visual check with a camera.

7. The top case is assembled.

8. A press pushes the top case down.

9. The conveyor belt ensures that the finished product goes back to the loader station and informs the 

MES to display a message on the HMI, prompting the operator to pick it up.

Mobile HMIs

We complemented the smart manufacturing system by considering mobile HMIs. As discussed 

in Section 3.3.3.2, mobile HMIs are gaining traction in the manufacturing world because they allow 

operators to conveniently interact with the system, receive production feedback, and even control 

machines (e.g., robots) with high precision and with the same level of control offered by classic manual 

interfaces (e.g., joysticks, physical buttons). However, there are concerns that are holding back the 

ubiquitous adoption of mobile HMIs, including issues pertaining to integration, risk management, and, 

of course, cybersecurity.17

Voices From Field Experts
There is a common belief that orthogonal disciplines (e.g., hardware or software engineering, automation) 

have just started to fully embrace the importance of cybersecurity. But this is often backed only by 

anecdotes. As part of our research, we were interested in understanding how and how often “security 

matters” are discussed in OT and industrial automation online communities.

Figure 6.

2.2
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Talking ‘Security’

After compiling a list of 11 OT-related online forums, we collected some analytics data to gain insights 

into the activity levels: the number of users, the topics and replies, and the oldest posts. Then, combining 

the forums’ search feature with site-specific web searches, we counted how many times security-

related words were used in the discussions. This clearly does not provide an unbiased outcome. The 

keyword “security,” for example, may or may not always indicate that a post is actually about security 

(e.g., a phrase or sentence like, “Please update your software to the most recent release to get all the 

security fixes,” does not necessarily indicate that the users are talking about a security topic). However, 

we accept and interpret these results as an upper bound — an optimistic snapshot of the true situation.

2.2.1

2.2.2

Community Affiliation
Indexed 

since

Total 
number of 

users

Total 
number of 

topics

Total 
number of 
replies or 

comments

Overall number 
of mentions of 

security-related 
terms

Control.com18 N/A 1997 N/A N/A 69,700 5,068

PLC.MyForum.ro19 N/A 2012 93,948 41,841 N/A 1,968

Mr.PLC20 N/A 2006 46,144 33,540 164,787 1,810

Robotforum21 Robtec 2006 17,611 19,166 90,134 892

Reddit - robotics22 N/A 2008 83,614 N/A N/A 638

Adam Forum23 N/A 2010 33,286 3,783 6,702 170

Automation 
Forum24 

N/A 2012 220 1,900 7,800 147

DoF25 Robotiq 2016 N/A 1,500 N/A 83

ABB Robotics26 ABB 2013 19,723 8,959 19,723 68

Universal Robots27 Universal Robots 2017 N/A N/A N/A 24

SolisPLC28 SolisPLC 2018 134 36 87 0

Table 1. The OT-related online forums we considered and their relevant details (as of August 2019)

As expected, the conversations that mentioned security-related keywords (e.g., “security,” “vulnerability,” 

“hacked,” “attack,” and variations thereof) were a slim minority. There have been anecdotal claims that 

people from the OT and IT security community “talk different languages” and “have different priorities,” 

and the numbers in Table 1 provide concrete evidence in support of these claims.

The lack of discussion regarding security lends credence to the belief that many of these communities 

often view “security” as mere compliance with whatever regulations apply to their specific manufacturing 

fields. This, of course, is a very far cry from the desired situation, where people in the industry fully 

embrace security concepts and design as part of their work. This further motivates our research, with 

the goal of raising awareness specifically within these communities.

Asking Experts Technical Questions 

The thinking that industrial cybersecurity is a major priority and industrial systems are likely to be a 

target of cyberattacks is not new. However, we were interested in understanding the technical aspects 

that might create preconditions for increased risk. For example, while it was interesting to know whether 

a manager was aware of the possibility of cyberattacks that could compromise the safety of their 
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organization’s equipment, we instead wanted to know whether the engineers used custom software, 

and who created it and why. Indeed, assuming “perfect” network-level protection, there is very little 

that can be done when a trusted yet malicious or vulnerable piece of software manages to sneak into 

industrial plants.

We interviewed six experts over the phone and had them fill in a fairly technical questionnaire. We 

focused on select experts within our trusted contacts, ranging from consultants working for system 

integrators to employees of major system integrators and even academic professors. On top of that, 

we reached out to 14 OT practitioners through online community discussion groups and mailing lists. 

Overall, we had the six experts helping us at various points throughout our research and 20 respondents 

for our survey; 70% of them were from the industry, 10% were from academia, and 20% were system 

integrators.

One of the key takeaways, as indicated in Figure 7, was that almost half of the respondents confirmed 

the use of custom industrial internet-of-things (IIoT) devices (e.g., Arduino, Raspberry Pi) on their factory 

floor; custom code was developed mostly internally, with some parts outsourced — thus trusting 

the external developers — with only a minority having a risk assessment process in place for these 

devices. Another was that industrial robot programming languages were used by more than half of the 

respondents, who confirmed that most of their use cases were interconnection with the external world 

— in some cases by using advanced features. We clarify some of these aspects in Sections 3.3.2, 3.3.5, 

4.1, and 4.5.
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Security Analysis
In a smart manufacturing system, traditional attacks are visible as unexpected or blacklisted patterns 

in the network or host activity, and can be spotted and blocked with current countermeasures, such 

as network and endpoint protection solutions. We do not consider these cases as a subject of this 

research.

We take a different viewpoint and look at what an advanced attacker29 would be able to accomplish, 

while considering the system as a whole, made up of more than just what exists on the factory floor. 

What would happen, for example, if an attacker was able to blend in as legitimate network traffic or 

normal host activity? What would such an attacker do to remain persistent? Are there some unique 

attack opportunities, perhaps outside the network perimeter, which are currently being overlooked? 

Figure 8 provides a visualization of the many dependencies in the software and data ecosystem that 

revolves around a smart manufacturing system. At the development stage, we see software add-ins 

and digital twins being supplied by the vendor or being developed on the engineering workstation (and 

optionally uploaded to an online catalog, usually provided by the software extension). This workstation 

is also used to create custom automation logic (for machines like robots) or firmware for custom IIoT 

devices. All of these, together with the other components like the HMI, MES, and PLC, make the 

automation logic work. High-level business decisions are translated into data written in the ERP system 

(or some other database), which in turn determines the actions scheduled by the MES, which then 

defines the automation routines executed by the PLC. In this, we can see the indirect impact of the 

software supply chain in the final automation actions (as depicted in the lower left part of Figure 8).

Figure 9 shows a visualization of the attack opportunities in the data and software dependencies. The 

attack involving compromise through a malicious industrial add-in and the attack involving “trojanization” 

of a custom IIoT device (described in Sections 4.1 and 4.2, respectively) abuse software components, 

which is possible (and is already being done in the wild) nowadays because of the complex supply 

chain, which in turn contains plenty of weak points. The attack involving a vulnerable mobile HMI 

(described in Section 4.3) shows how leaked information in a mobile HMI can be exploited to gain 

access to the machine controlled by that HMI (in our case, an industrial robot). The attack involving data 

mangling on the MES (described in Section 4.4) shows how any manipulation of data at the ERP system 

or database level can have a later impact on the automation. The attack involving the vulnerable or 

malicious automation logic in a complex manufacturing machine (described in Section 4.5) is by nature 

more sophisticated, because it exploits weaknesses in the automation logic. 

From our conversations with domain experts (introduced in Section 2.2), it emerged, among other things, 

that isolating smart manufacturing systems within a dedicated, isolated network is common practice. 

We also understood that these systems are treated like black boxes, in the sense that it is assumed 
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that nobody will ever be able to compromise them. On the other hand, connectivity is increasing and 

vendors are pushing for wireless networks on the factory floor, with assets such as industrial robots 

directly connected to them.
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Attacker Goals, Resources, and Capabilities
In an industrial setting, we are looking at advanced attackers with enough resources and capabilities 

to compromise at least one machine, directly or indirectly connected to the smart manufacturing 

system. We consider attackers who want to cause malfunctions, damage the produced goods, or alter 

the workflow such that it would manufacture defective products. There may be a variety of motives: 

Attackers may be employed by a competitor, may be financially motivated (e.g., attackers may request 

payment in exchange for revealing details of the batches in which they have introduced “hidden” 

defects, as we pointed out in one of our previous researches30), or may even just want to affect the 

factory’s overall reputation. Attackers may also be interested in the automation logic, which is usually a 

well-guarded intellectual property.

Figure 9.

3.1
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Depending on their profiles, attackers may or may not have a foothold in the smart manufacturing 

system network. For example, if an attacker is on an adjacent network, they may be able to write one 

field in the database of the MES because the MES is often a “bridge” between the enterprise and the 

factory floor networks. A remote attacker with no access to the factory network may attempt to create 

a malicious program for the industrial robot and use an insider or other software-based attacks to 

make it run on the robot. If the attacker knows that the system integrator or the target factory is using 

a specific piece of development software, they will likely target either the software itself or some third-

party extensions for that software.

In the past several years, we observed a number of supply chain attacks on software development tools 

or libraries, especially open-source ones.31, 32, 33, 34, 35 Interestingly, 42% of attacks on the manufacturing 

industry reportedly do not directly target facilities, but rather target some of the systems along the 

supply chain.36

Entry Points
This section provides a security-oriented overview of a smart manufacturing system, from which we 

derive its attack surface or the set of entry points that an attacker may consider targeting.

Figure 10 shows the security-sensitive areas of the smart manufacturing system that we analyzed, with 

the physical network perimeter highlighted. In our case, this indicates where the factory floor network is 

separated from other networks (e.g., internet, enterprise network) by firewalls. The red indicators signify 

endpoints that can be used as entry points for attacks.
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Engineering Workstation

The engineering workstation is a shared system with domain users that is always connected to the 

production floor. It is used to develop and deploy program logic, or to connect to field devices (e.g., 

PLCs, HMIs) for maintenance, diagnostics, or reprogramming. Occasionally, it is used to simply deploy 

programs that are developed elsewhere, perhaps outside the factory premises by personnel working 

for the system integrator.

There is a trust relation between any workstation used for engineering purposes and the rest of the 

system. Sometimes this relation is known and is part of the security planning. Other times, it becomes 

more difficult to see, considering how many indirect or implicit trust relations there are between, on one 

side, the person who develops automation logic and, on the other, the smart manufacturing system 

where the logic is finally deployed. This does not necessarily mean that the developer is malicious: 

Their computer could simply have been compromised, or even one library that they use could have 

been compromised at the source. A case in point is the XcodeGhost malware, which was used in one of 

the earliest instances of supply chain attacks: One of the techniques of the malware was to modify the 

Xcode compiler such that the compiled iOS apps would be infected.37 As we demonstrate in Section 

4.1, the industrial software that we analyzed offers concrete opportunities for attackers to compromise 

the entire engineering workstation or alter the digital twins.

Custom IIoT Device Development Environment

There are custom IIoT devices (e.g., embedded systems, Arduino-like devices, Raspberry Pi, or other 

single-board computers) programmed by system integrators or internal employees. They are gaining 

popularity because they allow more automation flexibility than classic automation hardware such as 

PLCs.

There are many trust relations between the multiple software libraries in this ecosystem and the smart 

manufacturing system, where the final software is deployed. What we discuss in the previous section 

regarding the engineering workstation applies even more strongly in this instance: It is highly likely that 

a developer needs to use a third-party library, a library based on a third-party library, or a third-party 

library based on a library from another party. This software dependency chain is very complex. As we 

show in Section 4.2, there is no way for a developer to easily validate the end-to-end integrity and 

authenticity of a library, which can lead to the inclusion of trojanized components.

MES Database

The MES database is often shared with the upper layers of the automation pyramid. Its function is to 

contain work orders and work templates, which are clearly sensitive data. When a work template is 

created on the MES, a new record is saved to the database. Similarly, when a work order is started, the 

state of the production operations is updated in the database.

At a conceptual level, the MES trusts the data coming from the database. This implies that if there is no 

authentication and integrity of the database storage, an attacker on the network (or on the database) 

could forge or alter records, thus resulting in altered production. As we show in Section 4.4, alteration 

can happen at the product-feature level and can be nondestructive.

3.2.1

3.2.2

3.2.3
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Targets
Taking a more in-depth look at the peculiar aspects of smart manufacturing technologies, this section 

highlights the components that offer attack opportunities.

Industrial Add-ins

The delivery mechanism of industrial software is evolving to keep up with the pace of innovation. 

Specifically, we found out that some solutions are being inspired by app-store models. For example, 

ABB   has an app store38 where anyone can register (registration is automatic with only email validation 

in place) and upload add-ins for ABB’s RobotStudio, which is used by engineers to write automation 

logic for ABB industrial robots. There are about 1,000 add-ins on the store, some of which have been 

downloaded thousands of times. These numbers must be interpreted by first considering that industrial 

robotics is currently a niche sector, where developers tend to keep everything “in house.” This is 

expected to change, and app stores such as ABB’s are the first signs of this change in direction.

Intelligent Plant’s solution39 is similar in spirit to ABB’s app store. It is not dedicated to robotics in 

particular, however, but to industrial applications in general. Individuals cannot upload apps; only 

registered businesses can. After trying to contact the owners, we argued that the apps are procured via 

a business-to-business (B2B) channel and served via a business-to-consumer (B2C) channel.

OrangeApps40 is dedicated to Kuka, despite not being developed or managed by Kuka directly. Unlike 

ABB’s app store, OrangeApps does not accept submissions from users; it is seemingly a closed 

ecosystem. Interestingly, it serves apps for both desktop software and the industrial robot controller. 

Therefore, the apps obtained from OrangeApps include code that runs directly on the industrial robot 

controller. Unfortunately, we noticed that the network transport uses plain HTTP, which opens the 

possibility for network man-in-the-middle (MitM) attacks.

Siwiat’s solution41 has a slightly different model: The vendor provides the hardware (an IIoT device), 

which has functionalities that can be extended by downloading apps from its app store. This software 

delivery model is very similar to the mobile device ecosystem, where users just purchase a piece of 

hardware and expand its functionality by downloading apps delivered from (trusted) stores. As a matter 

of fact, anything that comes from the app store is considered trusted.

Security Trade-off

This centralization provides some benefits, as we have learned from mobile app stores. However, we 

argue that in their current state, these models require some attention. Software extensions or apps can 

become weak spots, and app stores can become interesting targets for attackers. Browser extensions 

and mobile apps have highlighted the importance of sandboxing and the crucial role of app stores, 

which should have solid vetting procedures (e.g., modern app stores have continuous scans for any new 

uploaded app). Early browser extensions and mobile apps allowed full system access, but the advent 

of app stores changed this due to the need for more streamlined software delivery. The most important 

security change is that browser extensions and mobile apps are now sandboxed, as they should be, 

because they are essentially trusted software running on a computer. To access the network, they need 

to explicitly declare (and be granted) specific permissions. Sensitive software like industrial engineering 

software needs to embrace the same sandboxing principles and limit the scope of the runtime.

3.3

3.3.1

3.3.1.1
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Lack of Sandboxing

RobotStudio, an offline programming (OLP) application for desktop computers, is used by engineers to 

write automation logic for ABB industrial robots. It allows for the creation of interactive 3D digital twins 

of an industrial robot deployment, on top of which the automation logic code is written and tested.

RobotStudio, like other OLPs, comes with a plug-in or add-in system, which allows the extension of its 

functionality by loading dynamic link libraries (DLLs) in proper locations. Such add-ins are accompanied 

by Extensible Markup Language (XML) metadata for proper packaging, distribution, and loading. 

Essentially, when a DLL is loaded by the main software, the machine code in the DLL is executed. There 

is no isolation system or privilege separation: Add-ins possess “full” system and network access, to the 

same extent of a regular process running with RobotStudio’s privileges.

The code written using design environments such as this ends up on the factory floor. Therefore, 

an attacker who is able to compromise a plug-in or add-in can in turn obtain indirect access to the 

automation code that is being written — and that will run the automation logic.

An attack that exploits a malicious industrial add-in to propagate in a smart manufacturing system is 

described in Section 4.1.

Custom IIoT Devices

There is a wide and highly fragmented offering of “industry-grade” embedded devices   (often advertised 

as “Arduino-compatible”) that are used for both rapid prototyping and production use. Arduino Industrial 

101,42 Industrial Shields devices,43 Industrino,44 Iono Arduino,45 and Siemens Simatic IoT200046 are just 

a few examples. These IIoT devices bring full software customization capabilities in the hands of end 

users. But we argue that the growing need for customization and flexibility increases the attack surface 

of an industrial plant such as a smart manufacturing system.

3.3.1.2

3.3.2

Figure 11. Examples of industry-grade IoT devices: Iono Arduino (left) and a device from 

Industrial Shields (right)

Widespread Use

Most of the domain experts whom we interviewed confirmed that they used several custom devices, 

running custom firmware, on real-world production floors. Even in our Industry 4.0 Lab environment, 

there is a (separate) network of Raspberry Pi nodes that monitors the physical conditions of the plant 

using sensors (e.g., temperature, pressure, light, noise). Raspberry Pi devices can run anything, including 

Linux malware — and the same is true for Arduino or Arduino-compatible boards.47, 48

3.3.2.1
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Malicious Devices and Hardware Implants

“Extra” devices plugged to the floor network are becoming common, representing a risk on their own. 

Indeed, there have been cases where such devices have flown under the radar and been used to break 

into critical facilities. The case of the NASA Jet Propulsion Laboratory (JPL) is a prominent example: In 

2018, a hacker accessed the JPL network by targeting a Raspberry Pi device that was not authorized 

to be connected to it.49 Moreover, the miniaturization of electronic components and the increased 

accessibility of fabrication laboratories make it possible to create hardware implants that are as small 

as the metal portion of a USB key.50

Complex Software Supply Chain

Unlike devices such as classic PLCs, which run a simple loop and are bound to a rather simple execution 

model, custom IIoT devices can run complex firmware and often include several external libraries, with 

further dependencies. In short, the software supply chain of custom IIoT devices is more complex to 

manage than that of a vendor-supplied hardware and software solution. The main risk is that apart from 

official libraries shipped by Arduino, there is no integrity mechanism that can guarantee that the libraries 

used by these devices are authentic and have not been tampered with. Indeed, attackers have realized 

that they could compromise a high number of machines at once if they could get to the “source,” i.e., 

either by compromising a popular library or by “typosquatting” to have their code included in the final 

product, instead of the original one.

An attack that uses a trojanized software library to cause malfunctions in a smart manufacturing system 

is described in Section 4.2. 

HMIs

There have been numerous security analyses of traditional HMI software, such as the research conducted 

by the ZDI in 2017,51 which looked at the state of HMIs and highlighted that they often run outdated, 

vulnerable software. In this paper, we emphasize that HMI technology and custom deployments create 

opportunities for types of attacks beyond the classic exploitation of software vulnerabilities on the HMI 

side.

Traditional HMIs

Web- and cloud-based solutions, as well as app- or plug-in-based systems, have led to traditional 

HMIs’ becoming more interconnected. HMIs have also evolved from a statically defined concept of 

“interaction” to a more flexible one, providing the means for end users to design or customize interfaces 

and quickly upload and integrate them into existing systems. These peculiarities make HMI components 

complex, leading in turn to a larger attack surface.

For example, even in the test setup of the research lab that we used, the HMIs are hybrid and use 

an embedded web browser that allows the factory operators to customize the UI (e.g., by serving 

custom HTML or JavaScript resources) without the need for system integrator intervention. Our domain 

experts working on the engineering of manufacturing plants for large customers confirmed that this was 

frequently requested by clients. We verified that, as shown in Figure 12, an attacker can manipulate 

a simple webpage not only to convey exploits but also, in the absence of vulnerabilities on the HMI 

side, to play several UI tricks to fool the operator and influence their decisions (e.g., simulate errors or 

3.3.2.2

3.3.2.3

3.3.3

3.3.3.1
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emergencies). A user is likely to trust the HMI screen and act based on its input, especially if there is no 

way to ensure the authenticity of the embedded webpage.

Figure 12. UI manipulation attack on the HMI: While the manufactured item is finished correctly, the HMI 

displays an error.

Mobile HMIs

Because of their flexibility and ease of use, mobile devices such as tablets and smartphones make for 

good HMIs. Despite HMIs’ being a relatively niche market, we found over 170 HMI apps on the Google 

Play Store, more than 40 of which had over 1,000 installations — even up to more than 100,000 in 

some cases. Not only do we foresee a growing demand for these solutions, but we also see a usability 

and security benefit of mobile HMIs versus classic ones. In addition to the fact that users have grown 

accustomed to using mobile devices, they are also far more flexible and easier to manage than the 

industrial computers that run HMI software. They are easier still to keep updated and are inherently 

more secure since apps running on modern mobile operating systems are sandboxed — to name one 

important feature that is lacking in touch-based industrial computers running (outdated versions of) 

Microsoft Windows.

However, because of their flexibility, and because the hardware is a general-purpose computer, mobile 

HMIs are subject to other classes of attacks. At the physical network layer, mobile HMIs are connected 

via wireless protocols (Wi-Fi or Bluetooth), which make them more accessible to an attacker within range 

than a wired connection. The main risk is that mobile HMIs are designed with the same assumptions 

as traditional HMIs, i.e., that they are in a closed, wired network. For example, in Comau’s PickApp, 

an HMI used to interact with industrial robots, the network protocols used do not enforce any integrity 

or confidentiality of the data, nor do they authenticate or perform any attestation of the endpoint, 

which means that they will trust any data as long as it complies with their application protocol. This is 

discussed in more detail in Section 4.3.

One important point is that, despite being sandboxed, mobile HMI apps exist with other apps and can 

interact with other software (e.g., via Android intents). The main risk of this is that other apps installed 

on a device are trusted but are not necessarily trustworthy. On Android, it is indeed possible to invoke 

certain actions of an app from another app via the so-called intent mechanism. Therefore, a malicious 

3.3.3.2
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app, even if sandboxed and isolated from the target mobile HMI, could invoke certain actions (e.g., 

the click of a soft button) on the mobile HMI, which would indirectly affect the physical machine it 

controls (e.g., move the machine). Mobile HMI apps are thus in a very “powerful” position, because any 

command that they send will be trusted by the machine, making them in turn a very interesting target. 

A similar reasoning can be done regarding the use of external storage in mobile apps, which exposes 

them to cross-app data leaks because the external storage is shared among all apps.

Mobile HMI apps, like other apps, could inadvertently ship with sensitive information (e.g., credentials, 

private keys). The critical point here is that such information will be publicly available because the 

preferred delivery mechanism is through app stores. For example, as shown in Section 4.3, PickApp 

contains the password generation algorithm used to authenticate it to the endpoint. This means that 

anyone can download the app from the vendor’s website, reverse-engineer it as we did, and discover 

the information required to interact with the endpoint on the factory floor.

We found cases of HMI apps being delivered directly by vendors rather than through app stores. 

In these cases, sideloading is the only installation option. Under this option, the vendor of an app 

instructs users on how to enable the “trust external apps” security setting, which allows the installation 

of any app, bypassing the end-to-end authentication and integrity checks backed by the app store 

infrastructure. Consequently, a repackaged version of an official app — to name one attack vector — 

would be accepted, with no way for average users to verify if the app is authentic or non-malicious.

Several of the apps that we downloaded from the Google Play Store contain unsafe, albeit not always 

directly exploitable, code patterns such as the use of external (shared) storage or the use of embedded 

web views with JavaScript fully enabled. These unsafe code patterns are easily found via automated 

code review. If unnecessary, such unsafe features should be disabled. But based on our findings, it 

seems that either the developers have ignored the output provided by automated code review tools or 

no such code review has been performed at all.

An attack that exploits a vulnerable mobile HMI is described in Section 4.3.

MES

In a smart manufacturing system, the MES serves the critical role of being the gateway between high-

level manufacturing scheduling (e.g., ERP) and the manufacturing floor, where the goods are actually 

produced. The MES market is “closed” and oriented toward ad hoc solutions. For example, we were 

able to find only two open-source solutions,52, 53 as opposed to many more commercial and enterprise 

products,54 the most popular of which include General Electric’s Predix Manufacturing Execution 

Systems, Honeywell Connected Plant, Rockwell Automation’s FactoryTalk ProductionCentre MES, SAP 

Manufacturing Execution, and Wonderware MES.

Enterprise-level MESs are very expensive, and it is difficult to gain access to them. From a security 

research perspective, this is clearly a problem because of the importance of having access to a real, 

full-fledged system for security testing. Finding internet-facing MESs is highly unlikely, apart from 

cloud-based solutions and some random transient instances of Wonderware that we found exposed via 

Remote Desktop Protocol (possibly a honeypot or staging system).

Looking at an MES from a security standpoint, we can reasonably assume that the attacker is already 

within the network. The question we want to answer is about lateral movements. This does not mean 

that we assume that the attacker has access to the MES (otherwise, it would already be too late). For 

example, we consider an attacker that can access only the database of the MES and not the entire MES 

endpoint.

An attack involving data mangling on the MES is described in Section 4.4.

3.3.4
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Complex, Programmable Manufacturing Machines

Complex programmable machines such as industrial robots execute their manufacturing tasks 

according to task programs, which are essentially scripts executed on the machine side (e.g., “move 

right,” “open pliers,” “move down,” “pick up piece”). Each machine vendor has its own domain-specific 

language for writing task programs, such as ABB’s Rapid, Comau’s PDL2, Fanuc’s Karel, Kawasaki’s 

AS, the Kuka Robot Language (KRL), Mitsubishi’s Melfa Basic, and Yaskawa’s Inform. These industrial 

robot programming languages (IRPLs) are all proprietary, and each of them has a unique set of features.

IRPLs can be very powerful because they allow programmers to write automation programs that also 

read-write data to or from the network or files, access the process memory, execute code downloaded 

dynamically from the network, and so on. One of the main use cases of such powerful features is the 

need for integration with middleware software, i.e., to let a robot talk to a vendor-neutral solution such 

as the Robot Operating System Industrial (ROS Industrial), which is the most popular solution (with 

many top industry brands being part of the ROS Industrial consortium55).

If used improperly and without the right security mindset in place, these powerful functionalities 

could be very dangerous.56 First, if used without input validation (which is the most common case we 

discovered), these functionalities could introduce vulnerabilities. Second, because there is no privilege 

separation during execution, a program that performs simple machine movements is indistinguishable 

from a program that reads from the network, writes on a file, or executes that file (i.e., a dropper-like 

behavior), or from a program that scans the network to find targets, harvests and exfiltrates files on 

the manufacturing machine, or alters robot movements and other properties that affect the physical 

environment.

The attack vector can simply be a malicious task program, which will not be detected by conventional 

security scanners (similar to how PowerShell or JavaScript malware variants used to go undetected), or 

a trojanized task program with a dropper functionality, which will download the malicious payload and 

execute it when it is unexpected.

A technical description of how the vulnerable or malicious automation logic in a complex manufacturing 

machine can be exploited is in Section 4.5.

3.3.5
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Case Study: Attacks
In this section, we describe how we tested the feasibility of some attacks under different attacker 

model assumptions. In certain cases, we assume that the attacker does not have direct access to the 

smart manufacturing (floor) network, while in others, we explain what the consequences would be if the 

attacker could access the network.

Figure 13 shows a high-level overview of the possible attacks included in our case study. We focus on 

the three entry points described in Section 3.2 (purposely leaving out the classic infected USB flash 

drive entry point à la Stuxnet,57 which had been analyzed quite a few times in previous researches): the 

MES database (or the ERP system, alternatively), the engineering workstation (which is used to create 

and deploy automation logic), and a custom IIoT device (which can be a custom-developed embedded 

system). We describe two attacks — compromise through a malicious industrial add-in and trojanization 

of a custom IIoT device — through which an actor can gain access to the entry points indirectly. We 

then describe three attacks — exploitation of a vulnerable mobile HMI, data mangling on the MES,  and 

use of the vulnerable or malicious automation logic in a complex manufacturing machine — that would 

allow lateral movement (e.g., on the HMI or the MES) or persistence (e.g., on the robot). The key details 

of these attacks — presented in this paper according to the depth of their penetration into the system, 

from entry point to the final target — and their corresponding defense approaches are listed in Table 2.

Compromise through
 a malicious

industrial add-in

Use of the vulnerable
or malicious automation

logic in a complex
manufacturing machine

Trojanization of a
custom IIoT device

Data mangling
on the MES

Exploitation of
a vulnerable
mobile HMI

Trojanized
add-in

Trojanized
third-party

library

MES
database

Engineering
workstation

Custom
IIoT device

MES

HMI

Machine

Vectors Entry points Targets

A high-level overview of the possible attacks included in our case studyFigure 13.



| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis  28 |

Attack Attacker is Target is
Attack 

technique
Impact

Ease of 
attack

Ease of 
defense

Defense 
approach

Compromise 
through a 
malicious 
industrial 
add-in

Remote Engineering 
or 
development 
workstation

Indirect: 
malicious 
software 
extension

 
 
(full plant 
compromise)

 
 
(software 
extension 
vetting and 
isolation)

File scanning 
prevents 
malicious 
software 
extensions from 
landing on the 
engineering or 
development 
workstation.

Details in 
Section 4.1.

Trojanization 
of a custom 
IIoT device

Remote Custom IIoT 
device

Indirect: 
trojanized 
library or 
compromised 
repository

 
 
(full plant 
compromise)

 
 
(software 
supply 
chain 
security)

Visibility over the 
software supply 
chain validates 
every third-party 
component 
used in the 
development of 
IIoT software.

Details in 
Section 4.2.

Exploitation of 
a vulnerable 
mobile HMI

On network Mobile HMI Credential 
harvesting

 
 
(mobile 
app 
vetting)

Mobile app 
vetting is the 
minimum 
required to avoid 
vulnerable or 
malicious apps.

Details in 
Section 4.3.

Data mangling 
on the MES

On network, 
database or 
ERP system

MES Database 
data or 
network 
spoofing

 
 
(altered 
product)

 
 
(endpoint 
or network 
monitoring)

Prevention of 
database or 
ERP system 
compromise 
is key since all 
traffic from the 
database or ERP 
system to the 
MES is normally 
authorized.
Countermeasures 
against Internet 
Protocol (IP) 
and Address 
Resolution 
Protocol (ARP) 
spoofing should 
also be deployed

Details in 
Section 4.4.

Easy to 
medium

MediumVery high

Very high Medium

Medium

Medium

Medium

Medium

High

Easy

Easy
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Attack Attacker is Target is
Attack 

technique
Impact

Ease of 
attack

Ease of 
defense

Defense 
approach

Use of the 
vulnerable 
or malicious 
automation 
logic in a 
complex 
manufacturing 
machine 

System 
integrator, 
or from 
compromise 
through a 
malicious 
add-in

Machine 
(e.g., robot)

Vulnerable 
or malicious 
automation 
logic

 
 
(hijacked 
physical 
machine)

 
 
(custom 
program 
analysis 
engine)

Custom program 
analysis 
techniques 
validate each 
automation 
logic before 
deployment, 
at the system 
integrator level.

Details in 
Section 4.5.

Table 2. Details of the attacks included in our case study and their corresponding defense 

recommendations

Overall, we envision the following multi-attack flows:

• Attack: compromise through a malicious industrial add-in → Entry point: engineering 

workstation → Attack: use of the vulnerable or malicious automation logic in a complex 

manufacturing machine (robot)

 º The engineering workstation is compromised via a malicious industrial add-in.

 º The malicious industrial add-in appends malicious automation logic code that will be deployed 

on the robot.

 º The malicious automation logic code:

 · Maps the network.

 · Exfiltrates files and network information from the robot host.

 · Implements a malicious server to support the other steps of the attack.

• Attack: trojanization of a custom IIoT device (open-source library) → Entry point: custom IIoT 

device

 º Either the development workstation or the repository of an open-source project library is 

compromised.

 º The library is altered to:

 · Report incorrect temperature readings so that the plant will stop due to safety rules.

 · Perform Address Resolution Protocol (ARP) spoofing as a noisier alternative to stop the 

plant.

 º The developer creates custom firmware to monitor the temperature readings and unknowingly 

includes the trojanized library.

Very 
hard

High Hard
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• Entry point: MES database → Attack: data mangling on the MES

 º The attacker obtains access to the database of the MES.

 º The attacker reverse-engineers the structure of the database.

 º The attacker alters one number in one row of the database.

App store

 Smart
manufacturing

plant

Engineer
laptop

Third-party
developer

library

Developer
laptop

Official Arduino
libraries

Official Arduino
libraries

Custom IIoT
development

Malicious industrial add-in

Installs

Trojanized logic

Command
and control

Attacker

• Compromises popular
   repository
• Uses typosquatting or
   similar technique

HTTPS

Trojanized firmware

To the
smart manufacturing

plant

HTTPS +

Integrity checks on the
downloaded libraries

Attacker

1

1

3

4

Figure 14. The overall multi-step attack scenarios that we envision given our findings described in the 

remainder of this section, including initial compromise using a malicious industrial add-in (left) and 

a “backdoored” third-party library (right)

Compromise Through a Malicious 
Industrial Add-in
In this section, we show, using tools and development environments that are specific to industrial 

automation, how an attacker can gain access to the target engineering workstation, steal secrets 

from it, and remotely trojanize every task program developed, in order to move laterally to the smart 

manufacturing system.

The attacker’s end goal is to alter the production or remain persistent in the smart manufacturing plant, 

even if the engineering workstation is not directly connected to it (e.g., the engineering workstation 

could be a consultant’s laptop, used to develop the automation logic that would be delivered to the 

customer).

4.1

Defense approach: Malicious industrial add-ins are essentially DLL files. Since DLL files do not 

represent a threat per se, the best defense approach is to use behavioral endpoint protection 

solutions, which can detect whether an executable is trying to harvest and exfiltrate files, among 

other actions.

Background concepts and a security analysis of industrial add-ins, which are relevant to the discussion 

of this attack, are in Sections 3.2.1 and 3.3.1.
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Industrial Add-ins as Attack Vectors

In this section, we explain how a vulnerable development environment could be exploited by an attacker 

as a first, indirect step toward gaining access to the entire smart manufacturing system. We estimate 

that an attacker in this case would be able to infect about two distinct computers per day.

We found out that ABB’s app store was affected by a file-upload bypass vulnerability, in which 

RobotStudio made non-approved add-ins immediately available. We reported this finding to ABB, 

which acknowledged and fixed the vulnerability. In addition, we verified that it is possible to create add-

ins that collect data from the target engineering workstation and send it out over the public internet. We 

also verified that it is possible to create add-ins that append malicious code that will be delivered to the 

robot. (It should be noted that RobotStudio is used to develop, among other things, automation logic, 

specifically in the Rapid programming language.) Essentially, these add-ins have access to all of the 

system resources that are necessary to implement any functionality. As shown in Figure 15, the normal 

workflow is such that a developer could install add-ins from the app store via the web view (e.g., using 

a browser) or via the desktop view embedded in RobotStudio.

4.1.1

Figure 15. Add-ins can be downloaded from the web-facing app store and the app store client built into the 

desktop application (RobotStudio), the latter of which makes add-in installation seamless with just 

the click of a button.

Going into more detail, we discovered three issues (from high- to low-level) involving add-ins uploaded 

to the ABB app store.

Weak Vetting Process

Anyone can register and upload add-ins; there is no developer registration process as seen with mobile 

app stores. Moreover, there is no strict vetting of the uploaded code. In our case, it was possible for 

one of our research partners to successfully upload a (harmless) add-in that included the following note: 

“[…] prepared it and uploaded it to check whether this app store has any manual vetting procedure. […] 

to check whether someone would be able to uploading [sic] software, including non-benign software, 

via this app store.” The add-in was readily accepted, and within 10 days it had been downloaded by 

18 users.

4.1.1.1
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Lack of Sandboxing

Although the uploaded add-in was harmless, we verified that, once downloaded, an add-in can do 

anything on the system, including network communication and file system harvesting, without any 

sandboxing or other restrictions. To this end, we created an offline add-in that performed these actions.

As shown in Figure 16, a test add-in that we created was able to recursively walk the C:\Users directory 

tree, collect full file paths from it, and make web requests, e.g., to send out harvested information to a 

remote endpoint.

4.1.1.2

Once downloaded (and automatically installed), an add-in is not sandboxed and can perform 

actions on the system using the same privileges of the host app.

File-upload Vetting Bypass

While waiting for approval, the uploaded add-in was not showing up in the web view of the app store. 

But it was immediately available for download through the built-in desktop app store interface of 

RobotStudio, as shown in Figure 17.

ABB has fixed this server-side issue in response to our disclosure. A completely remote attacker could 

have indirectly infected the users of RobotStudio by uploading a malicious add-in that would bypass 

the vetting process.

Figure 16.

4.1.1.3
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Figure 17. While still waiting for approval, the test add-in could already be downloaded and installed.

Digital Twin Compromise

We found and reported a slight variation of the aforementioned issues in the Kuka development 

ecosystem, specifically in the engineering and development software Kuka.Sim, which is used for both 

robots and computer numerical control (CNC) machines. An advisory for this vulnerability, which has 

been assigned the identifier CVE-2020-10635, has been published by the Industrial Control Systems 

Cyber Emergency Response Team (ICS-CERT).58

Like any OLP software, Kuka.Sim is used to design and test automation logic programs offline, before 

on-site testing. The version that we tested, Kuka.Sim Pro 3.1, has a feature called eCatalog, which allows 

developers to import externally developed, interactive 3D models in their simulations. In other words, 

eCatalog contains the digital twins of the industrial machines, which we consider a fairly advanced and 

forward-looking function. Internally, each of these digital twins, examples of which are shown in Figure 

18, is made up of a 3D model combined with the KRL source code that defines its physical behavior. 

Any modification in the code will be reflected in the behavior of the digital twin.

4.1.2

Figure 18. Like many other digital twins, each of Kuka’s digital twins is made up of a 3D model along with 

simulation parameters, which “govern” its physical behavior when in use.
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We found two security issues that, despite their simplicity, could have serious consequences if exploited.

Lack of Code Signing or Integrity

There are no application-level integrity checks on the data fetched from eCatalog, including the digital 

twins. The integrity of the digital twins is critical because they are used as the references for creating 

industrial automation tasks and workflows. They are simple ZIP files containing both code (written in 

the KRL) and 3D models (in 3D Studio format). Without any integrity checks, there is no way to verify 

whether the digital twins have been tampered with.

Unencrypted Network Transport

The network communication between the Kuka.Sim client and the remote eCatalog endpoint is over 

plain HTTP, not via HTTPS. Given the ubiquity of HTTPS thanks to the Let’s Encrypt initiative,59 we 

believe there are very few barriers to its adoption. With minimal time investment, anyone can set up an 

HTTPS endpoint, which provides an immediate gain in security.

The digital twins are fetched from the remote eCatalog servers as soon as the Kuka.Sim software 

boots. After having downloaded and installed a fresh copy of Kuka.Sim, we observed a lot of plain-text 

HTTP traffic to the visualcomponents.net host, which we later discovered was related to the eCatalog 

feature. The directory of the catalog is fetched via HTTP from “http://download.visualcomponents.net/

elib/KUKA_Sim_3.1/components.xml”. (There seems to be no HTTPS endpoint configured.)

Even if there were application-level integrity mechanisms to protect the files served from the directory 

(e.g., hashes or other checksums for Kuka.Sim to verify), they could not be considered secure because 

an MitM between the host computer and http://download.visualcomponents.net would be able to 

tamper with the XML code, including any integrity information. On top of that, even the individual digital 

twin files are fetched via HTTP, making it trivial for an MitM to tamper with them. In our responsible 

disclosure to Kuka, we suggested that they switch to HTTPS for any network communication from 

Kuka.Sim (or with any other software).

Tampering With Digital Twins

By exploiting the lack of integrity (at both the application and transport levels), an attacker — even a 

remote one — on the network can do several things. Since their integrity is not checked, an attacker can 

change the code, the 3D model, or both. Furthermore, the attacker can modify a digital twin by altering 

its visual 3D appearance, its reference system (coordinates), or both. An unaware programmer would 

then create a program for the machine based on the (altered) simulation parameters. The program 

would run smoothly when simulated on the machine that runs the altered digital twin.

Consequently, programmers may create projects based on tampered digital twins. When these projects 

are tested on real machines (e.g., robots, CNC machines), the effect is going to be unpredictable. The 

program will fail the on-site, preproduction tests, but it will be difficult to determine why. In addition, 

programmers will waste time figuring out why the simulation runs smoothly.

We verified this information with the aid of a field expert and reported the issue to Kuka.

4.1.2.1

4.1.2.2

4.1.2.3
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Figure 19. Kuka’s eCatalog does not use any integrity protection at both the application and transport levels, 

making it possible for an attacker to modify the digital twins.

Trojanization of a Custom IIoT Device
In this section, we show how an attacker can compromise a smart manufacturing system through custom 

IIoT devices. Although the attack vector that we use is not specifically tied to smart manufacturing 

environments, this attack can certainly have an impact in such a setting.

We assume that the attacker wants to either cause malfunctions on the smart manufacturing system 

or facilitate other attacks on the network. In our attacker model, the attacker does not have direct 

access to the smart manufacturing system or its network. We assume that the attacker can access 

a developer’s computer — possibly via the method described in the section on compromise through 

a malicious industrial add-in (Section 4.1) — either to alter an installed library or to compromise the 

original library repository (in the case of a more capable attacker).

4.2

Defense approach: The best approach is to have full visibility over the software supply chain, 

including the third-party components used (internally) by developers to build custom firmware for 

IIoT devices. This means that whenever a library is included in a software project — and many open-

source libraries are used nowadays — it needs to be considered as untrusted, in the sense that a full 

code review needs to be performed whenever it changes.

Background concepts and a security analysis of custom IIoT devices, which are relevant to the 

discussion of this attack, are in Sections 3.2.2 and 3.3.2.
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Security Risks of Modern (Industrial) IoT Development 
Practices

Arduino provides its own official integrated development environment (IDE) along with an online catalog 

of about 80 official libraries,60 which are vetted and considered stable. The end-to-end integrity of these 

libraries is between the Arduino servers and the developers’ computers that download them. While 

using the Arduino IDE, developers are assured that the libraries that they download are authentic, and 

their integrity is guaranteed by a cryptographic hash. From there, however, whatever happens on a 

developer’s computer is outside Arduino’s control. There is no way to guarantee that the code that will 

end up being loaded and executed on the IoT node has not been tampered with. Another risk, which 

is mitigated by the vetting at the source, is that the original library developer could have included a 

malicious functionality or a vulnerability in the library, e.g., the original developer’s repository could have 

been compromised.61, 62, 63, 64 For this, Arduino is the trusted third party because it (periodically) checks 

all of the official libraries in the official catalog.

Modern embedded development ecosystems are often extremely large and complex, and are filled with 

a variety of resources, tutorials, and libraries that are casually uploaded to code repositories and other, 

similar places. Developers are inclined to take libraries apart, modify them, and then re-upload them 

somewhere else, copying code from and onto community forums such as Stack Overflow. Moreover, 

advanced developers do not rely on the Arduino IDE; they are used to incorporating libraries coming 

from unofficial sources. The most representative example is PlatformIO, a fairly advanced development 

environment that also offers a catalog of more than 7,000 libraries.65 On PlatformIO, anyone can register 

a library for other developers to download. There is no end-to-end integrity mechanism apart from the 

fact that the libraries must be downloaded via HTTPS. In other words, there is no way to detect whether 

the source repository that hosts the library has been compromised or even whether it still contains the 

original code written by the developer, as with what happens in the official Arduino libraries.

Furthermore, the Arduino hardware abstraction layer is compatible with several target boards — which 

is its main goal. For example, even if the Siemens Simatic IoT2040 is meant to run Yocto Linux and 

its official Siemens software distribution, any custom firmware will run seamlessly on it, without any 

hardware modification. There are several tutorials that clearly explain how to do this. Aside from the 

Siemens Simatic IoT2040, there are many industrial devices that are compatible with Arduino, as noted 

in Section 3.2.2.

Attack Demonstration

To avoid calling out a specific brand or product, which is not what we aim to do, we demonstrate the 

attack using generic Arduino-compatible devices from an unknown brand, like the one shown in Figure 

20. Indeed, the brand is not relevant in this case because the issue is unrelated to the vendor but rather 

lies in the (open-source) software supply chain.

4.2.1

4.2.2
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The custom IIoT device we used to demonstrate the attack

Given the above premise, we show how an attacker could trojanize firmware via a software supply 

chain attack targeting one of the libraries used by a developer. We assume that an IIoT developer wants 

to create a monitoring node that collects temperature readings, e.g., for predictive maintenance or 

anomaly detection. This is a very common scenario these days: multiple sensors attached to various 

key points in the production plant that detect signs of anomalous behavior (e.g., a machine that may 

be faulty or may be working beyond its physical limits). In Industry 4.0 Lab, the monitoring network is 

on a separate, air-gapped network (although this may not always be the case), and is used to send 

monitoring data to a cloud service, which activates an alarm (with a loud siren) every time the measured 

value is out of safety range. Figure 21 shows the main loop running on the custom IIoT device and the 

readings that are reported over time.

Figure 20.

Figure 21. A timeline of the temperature readings

Because of the trojanized library, the developer is not aware that the firmware will report incorrect 

temperature readings after some time, as shown in Figure 22. From then on, an anomaly will be triggered, 

the alarm will go off, and any further reaction procedure will be engaged.
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Figure 22. A timeline of the altered temperature readings

As an alternative strategy, the attacker could use the trojanized library to cause a denial of service (DoS) 

in the smart manufacturing plant by including less subtle malicious functionalities. As shown in Figure 

23, an ARP spoofing loop could be included by the attacker. While the code that the developer wrote 

was the same as the one above, the library had been compromised by an attacker to launch an ARP 

spoofing attack at random intervals, which would disrupt network communication.

Figure 23. ARP spoofing caused by a trojanized library included in the custom IIoT device responsible for 

monitoring the temperature

Exploitation of a Vulnerable Mobile HMI
In this section, we explain how an attacker can obtain control of a connected machine by exploiting 

a vulnerable mobile HMI. For our attacker model, we assume that the attacker has access only to the 

(wireless) network that connects the mobile HMI and the connected machine.

4.3

Defense approach: Detecting vulnerable or malicious mobile apps can help prevent the root cause 

that an attacker might exploit. In the specific case of our case study, we found that the developers 

implemented a weak authentication scheme, which stored secrets right in the code. We do not think 

that this case would be detected by streamlined code analyzers. Thus, in this specific case, the best 

defense approach would be manual code review of the mobile app that implements the HMI.

Background concepts and a security analysis of HMIs, which are relevant to the discussion of this 

attack, are in Section 3.3.3.
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Controlling Connected Machines via Mobile HMIs

We found one public mobile HMI app leaking sensitive authentication information, which would allow an 

attacker to easily reverse-engineer the credentials stored in it, and then reuse the same credentials to 

authenticate and send movement commands to a Comau industrial robotics controller. We responsibly 

disclosed this case to Comau through the ZDI; the relevant vulnerabilities have been assigned the 

identifiers CVE-2020-10998 and CVE-2020-10999. In response to our disclosure, Comau indicated that 

it would be blocking downloads of the affected app and making a new, updated version of the app 

available. As of the publication of this paper, Comau said that it did not know when a new version of the 

app would be available, or if a new version would be available at all.

Like many modern vendors, Comau offers a mobile HMI in the form of an app. In this particular case, 

Comau’s PickApp can be used to interact with the robot as if the operator were using a traditional robot 

teach pendant, which is normally a wired, dedicated device. As depicted in Figure 24, the UI has control 

soft buttons for interacting directly with the physical robot. We are seeing a trend, beyond the robotics 

domain, of functionalities being implemented in apps or on general-purpose devices like tablets.

4.3.1

Comau’s PickApp implements some of the functionalities of a robot teach pendant.

Credential Leaks

PickApp is free, so anyone can download it. While this is not an issue in itself, we managed to decompile 

and reverse-engineer the application package, where we found out the supposedly secret algorithm 

used to compute the password needed to connect to the robot (based on the calendar date and time), 

as shown in Figure 25.

Figure 24.

4.3.2

From the source code obtained via decompilation, we found out the algorithm used to compute 

the password to connect to the robot.

Figure 25.
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An attacker who has gained network-level access to a smart manufacturing plant that uses this line 

of robots, with PickApp enabled, can interact with the robot directly because they now know the 

credentials.

From a remediation viewpoint, the vendor needs to implement proper authentication protocols. This 

shows that a security upgrade is due for both the controller and application sides. Moreover, users need 

to create, deploy, and use proper credentials. 

Application Sideloading

As shown in Figure 26, PickApp’s manual instructs users on how to disable a security feature on 

their tablet or phone, which otherwise would prevent the app from running. It explains how to enable 

sideloading to allow the installation of applications outside official app stores, i.e., to allow the installation 

of PickApp, which is not officially distributed. This alone is an issue because users have no way to 

verify the authenticity of the app being installed. In addition, the manual neither warns users about this 

security risks nor explicitly states that users should re-enable the security feature once they are done 

with the installation.

4.3.3

Figure 26. PickApp’s manual explains in detail (including screenshots) how to enable sideloading of 

unofficially distributed apps like PickApp, without explaining the security consequences and 

advising users to disable it once the installation is finished.

To remediate this issue, the vendor should either distribute the app through the Google Play Store if 

the company policy allows for the use of internet connections (e.g., limited to the app store IP range) or 

create an internal “app store” with valid certificates if not.

Impact on Safety

Merely using software machine interfaces carries safety risks because there is no direct mechanical 

or electrical connection from the command-issuing device (e.g., the HMI) and the final actuator (e.g., 

the motor). The PickApp case, which is no exception, allows us to comment on this problem. The app 

substitutes the hardware teach pendant but is unable to fulfill the emergency stop time requirements 

(which are subject to standards and regulations). This is because a software failure on the mobile side 

may prevent the operator from issuing timely emergency stop commands.

As seen in the manual excerpt shown in Figure 27, the use of this mobile HMI requires the installation 

of a hardware bypass circuit, which transfers the emergency stop commands to the cell (e.g., robot) 

level. This assumes that the operator must stay close to the robot to issue an emergency stop command 

using the usual hardware red button.

4.3.4
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Figure 27. The PickAPP manual describes the impact on safety when software teach pendants such as 

PickApp are used.

Data Mangling on the MES
In this section, we show how an attacker can affect the proper operation of the MES. We assume that 

the attacker wants to cause malfunctions, damage the produced goods, or produce defective products. 

We assume that the attacker is not on the smart manufacturing system network and cannot access it, 

but can write one field in the database of the MES, which may or may not be on the same network.

4.4

Defense approach: The best strategy to avoid this attack is to prevent the database or ERP system 

from getting compromised because all traffic from the database or ERP system to the MES is 

normally authorized. Thus, if an attacker manages to compromise any trusted machine that can 

legitimately send data to the MES, it is already too late.

If the attacker is already on the network and if the MES accepts commands from the network, the 

attacker may try to spoof them. In this case, the recommendation is to deploy countermeasures 

against IP and ARP spoofing.

Background concepts and a security analysis of MESs, which are relevant to the discussion of this 

attack, are in Sections 2.1.1, 3.2.3, and 3.3.4.
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While this attack is not tightly coupled with the Festo MES4 that we analyzed, it can affect any MES that 

does not implement data integrity checks on the database records. The MES we analyzed is running 

Festo MES4 1.1.0.9. This software is used to create a work plan and distribute it in the form of operations 

to the manufacturing line. A work plan specifies the operations that need to be executed from the line to 

process a piece and to create a final product. Each operation is executed by one distinct station, e.g., 

a drill that drills a hole through the piece under process.

The MES uses an internal database (Microsoft Access) to store the work plans that are created by 

the operator. When a work plan is executed, the MES uses this database to translate the work plan’s 

operations in a series of parameter values for the different stations. For example, the operation “right 

drill” corresponds to Parameter Value No. 2 (table tblOperationParameter) and is used in communication 

with Station No. 3 (DRILL-CPS in tblResource).

We verified empirically that the MES neither authenticates the database nor contains a way of validating 

each of the records. This allows an attacker to arbitrarily tamper with the database and conduct two 

practical attacks. One involves the introduction of an error in the production. In this scenario, the 

attacker changes the value of the parameter associated with an operation, e.g., by changing No. 2 

(“right drill”) with No. 1 (“left drill”). As a result, every time the operator creates a “right drill” operation, 

this gets substituted by a “left drill” operation. Clearly, this attack would be even more effective if the 

attacker had the ability to alter the Q&A process, e.g., by tampering with the results of the camera check 

in order to return “OK” in the presence of defects.

The other practical attack involves blocking the production. As previously mentioned, each station is 

configured with a set of preconfigured available operations (e.g., “drill right” or “drill left”), which are 

configured in the PLC of the station. As a consequence, the station expects to receive one of these two 

values from the MES. We verified that it is possible to cause a DoS if an attacker introduces an out-of-

bound value in the parameter values of one of these operations. For example, an attacker may replace 

Value No. 2 with Value No. 5. In this case, every time the operator creates a work plan with a “right drill” 

operation, the drilling station will trigger an error and block the production.

The attacks can be conducted either manually, by updating parameter values in the database (e.g., via 

an SQL update), or automatically, via malware.

A high-level demonstration of the attack sequence is shown in Figures 28 to 32.

Figure 28. Data mangling on the MES, Step 1: A normal order is inserted via the MES and the production 

starts.
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Figure 29. Data mangling on the MES, Step 2: The raw product (white box) enters the production line for 

drilling on the right.

Figure 30. Data mangling on the MES, Step 3: The drill drills a hole in the correct position.

Figure 31. Data mangling on the MES, Step 4: The same order is restarted, again with a “drill right” 

instruction.
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Figure 32. Data mangling on the MES, Step 5: The drill unexpectedly drills on the left.

Use of the Vulnerable or Malicious 
Automation Logic in a Complex 
Manufacturing Machine
Using the programming environments from major industrial robot vendors, we show that it is possible to 

create vulnerable or malicious machine automation logic. We also show how we found real-world cases 

of vulnerable task programs, one of which has since been removed by the vendor upon our responsible 

disclosure. In our attacker model, we assume that either the attacker is on the network and cannot 

access the target machine (e.g., robot) or the attacker is already on a target machine (e.g., robot) and 

wants to remain persistent while loading additional control logic, mapping the network, and exfiltrating 

sensitive information from it.

4.5

Defense approach: This situation requires custom program analysis techniques to validate each 

automation logic before deployment at the system integrator level. Unfortunately, network and 

endpoint monitoring are not enough for a couple of reasons. First, there are legitimate reasons 

that a robot, for instance, must receive data from a machine, and blocking that traffic will result in 

the disruption of the machine’s functions. Second, automation logic is not compiled in common 

executable formats such as the Portable Executable (PE) format and the Executable and Linkable 

Format (ELF), neither of which is written in general-purpose languages such as C, for which scanners 

— which can point out vulnerabilities or signs of malicious behavior — are readily available.

Trend Micro has developed a technology with specific countermeasures for this attack. Certain 

portions of this technology are patent pending.

Background concepts and a security analysis of industrial robots and IRPLs, which are relevant to the 

discussion of this attack, are in Section 3.3.5.
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Task programs for complex manufacturing machines are among the industry’s best-kept secrets 

since they are essentially the digital twins of manufactured goods and, as such, carry a lot of value. 

For this reason, we were not expecting to find any public or open-source task program to analyze 

for vulnerable or malicious code patterns. However, by using a mixture of web search techniques 

(e.g., “site: github.com”) and GitHub’s search feature, we were able to crawl GitHub and similar code-

hosting sites and collect nearly 2,000 task program files covering major industrial robot vendors. Since 

we knew the file extensions used by each vendor and the characteristic language keywords, we were 

able to narrow down the search and find several repositories containing real code. Despite most of the 

programs’ being clearly used for educational purposes, we found a recurring and interesting use case: 

integration programs. These programs allow the connection of an industrial machine to on-premise 

services, either by exposing a network service on the machine’s side or by acting as a client to an 

existing network service.

We extended this finding further by using our knowledge of the domain-specific programming language 

of each vendor to show three patterns for vulnerable programs and one for malicious programs. The 

most striking aspect is that, while it is possible to introduce input validation or logic vulnerabilities, 

the vendors’ languages are rather limited in their string-processing functions. Therefore, it is hard 

to implement input validation routines. Moreover, and most importantly, the lack of cryptographic 

primitives makes it practically impossible to implement proper authentication or integrity checks on the 

data coming from the network.

Universal Robots is very peculiar and different from all of the other vendors because it allows the writing 

of automation logic in a general-purpose programming language (Java and Python being the most 

representative examples). In other words, Universal Robots is not limited to using its own IRPL. On one 

hand, this may sound very dangerous because it gives complete power to a malicious developer to 

write advanced malware with direct access to all of the hardware resources. On the other hand, it is a 

security advantage: All of the best practices and state-of-the-art code analysis tools (e.g., for Java and 

Python) can be used to find vulnerable code patterns, and general-purpose programming languages 

are powerful enough to allow the implementation of strong security measures such as authentication 

and encryption.

The mere presence of the named program language features does not represent a security issue. 

Only its unsafe use can create venues for vulnerabilities, the degree of exploitation of which depends 

on several conditions, as explained in the remainder of this section.

Figure 33 summarizes the broad cases of unsafe automation logic. On one hand, developers can 

introduce vulnerabilities by using unsafe programming patterns. On the other hand, malicious actors 

can purposely write programs that abuse specific functionalities. There is an interplay between the two 

cases, which can lead to malware that loads remote external code, enumerates the network (e.g., to find 

further targets), exfiltrates secrets, modifies configuration, or causes general damage.
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Figure 33. A summary of the broad cases of unsafe automation logic

Arbitrary File Access or Configuration Tampering

We found and reported a real case of a vulnerable web or file server implemented in ABB’s Rapid 

language that was meant to run on an industrial robot.66 As summarized in Figure 34, the file server 

was affected by a classic input validation vulnerability, which would have allowed an attacker to pass 

any string as the file path — including directory separators (e.g., “../”). This made directory traversal 

possible, allowing an attacker access to any files on the machine’s controller computer. By checking the 

features of the other vendors’ programming languages, we verified that a programmer can make similar 

mistakes on other platforms, so the issue is not limited to this case.

Also by looking at the features of the other programming languages, we concluded that variations of 

this vulnerable code pattern exists. For example, if there is an “unsanitized” path from an inbound 

communication primitive (e.g., network socket, field bus, serial) and a configuration-handling or file-

writing function, then an attacker could exploit it to tamper with sensitive configuration files. This 

could result in instances like unexpected behavior from the controlled machine or even in the entire 

programming logic’s being replaced by arbitrary files at the attacker’s will.

4.5.1
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Figure 34. Vulnerable code pattern: from unsanitized (e.g., file, network, serial) data to read/write file access

Arbitrary, Unintended Movement Commands

A vulnerable code pattern emerged after we found that in all of the cases that we examined, there was 

no authentication or input validation on the movement coordinates. This means that an attacker who 

can send data on the network is also able to issue any movement command to the machine since there 

is no granular control on the coordinates sent to the robot. While seemingly straightforward at first, this 

vulnerability is difficult to mitigate in the context of a smart manufacturing environment, where every 

endpoint is trusted by default. A firewall will not help because even if machines are whitelisted, there 

is no way to block or control unexpected movement commands from those trusted machines. The 

only solution is to authenticate all packets. Implementing this at the source-code level is challenging 

because cryptographic support is either absent or very limited.

The only effective mitigation is to implement an authenticated and encrypted connection, such as a 

virtual private network (VPN) connection, between the robot and each of the endpoints that need to 

communicate with it. However, this can prove impractical, and even if it is implemented, the lack of input 

validation on the movement coordinates will still need to be taken care of at the source-code level (e.g., 

by checking values against boundaries).

4.5.2
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Figure 35. Vulnerable code pattern: From unsanitized (e.g., file, network, serial) data to movement 

commands

Control Flow Hijack

Some of the programming languages that we analyzed have a very powerful feature, called late 

binding or call by name, that is normally available in general-purpose, high-level programming 

languages such as C, C++, Java, and Python. Basically, this feature allows a programmer to write 

code that programmatically calls another routine by its name. Thus, instead of statically writing, say, 

function_reset_coordinates(), a programmer can write callbyname(func_name), where 

func_name can be the function_reset_coordinates string value (or any other dynamic value).

If there is no input validation on the func_name variable in question, and if func_name is controllable by 

the attacker (e.g., because it comes from or is influenced by inbound network data), then the program is 

vulnerable. Not only did we find out that it is possible to implement programs that have this vulnerability, 

but we also found an instance of this vulnerability in an open-source, educational program.

By exploiting this vulnerable code pattern, an attacker can change the original automation logic behavior 

completely (e.g., by calling other code already present on the machine or by creating DoS loops).

The next section describes how the call-by-name feature is essential in creating advanced dropper-like 

malware whose operation differs from the loading of the actual malicious payload.

4.5.3
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Figure 36. Vulnerable code pattern: From unsanitized (e.g., file, network, serial) data to command invocation

Malicious Code Loading

By combining networking primitives and call by name (i.e., deferred code loading and execution), we 

verified that it is possible to craft fairly advanced malicious programs. As summarized in Figure 37, 

the program that we used in our demonstration opens a connection to a remote server, receives the 

malicious payload, writes it onto a file, executes it (after a delay), and, finally, deletes it once done. An 

excerpt of an example of this malicious program written in ABB’s Rapid is shown in Figure 38. The first 

three lines of the excerpt regard the robot movement instructions. From the fourth line onward, the 

malicious part starts receiving data from the network; the data is stored as code, which is dynamically 

loaded with the load dynamic instruction. The connect_socket function shows how the network 

connectivity can be implemented.

4.5.4
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. . .
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Figure 37. Malicious code pattern: Malicious code loading for creating targeted malware with dropper-like 

capabilities
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Figure 38. An example of automation logic that embeds a malicious component 

From this, the attacker can implement various payloads, depending on the features available on the 

manufacturing runtime. For example, if the specific programming language has low-level network 

functionalities available (e.g., open socket), these can be used to enumerate host targets in the same 

network by trying to connect to well-known ports. If there are low-level file-system access functionalities 

(e.g., open, read, or write files and directories), these can be used to harvest files on the machine. By 

combining these two sets of functionalities, an attacker can create over-the-network data exfiltration 

routines.

Given the interplay between vulnerable and malicious code summarized in Figure 33, instead of the 

malicious (or compromised) system integrator shown in Figure 37, such a dropper might first infect the 

target machine via a vulnerability (e.g., the file access case described in Section 4.5.1), and then find 

further targets by enumerating hosts on the network.
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Defense and Mitigation
Defending a smart manufacturing system is challenging because the environment itself is complex. 

Focusing on “keeping attackers out” is clearly important, but this has been the usual advice for decades, 

regardless of the system. Such an approach is not future-proof because there is a tendency toward 

increased connectivity and dynamic setups with modular plants that can be reconfigured as needed, 

as opposed to the classic, static deployments. This has an impact on security policies, which should 

be moving away from the assumption that every endpoint or machine within a manufacturing plant is 

trusted, leaving the floor open to a more granular approach. As we have shown, network traffic coming 

from an industrial robot — to take just one example — may not be coming from trustworthy software 

because it might be malicious or it could have been exploited. The challenge is that there are currently 

no simple ways of authenticating and signing the software and data flowing into these complex systems, 

essentially because not all systems support such security requirements.

Securing Current Smart Manufacturing 
Systems
This section complements the attack-specific defense approaches presented in Table 2 and at the 

beginning of Sections 4.1, 4.2, 4.3, 4.4, and 4.5.

At the network level, deep packet inspection that supports the relevant OT protocols should be 

implemented to spot anomalous payloads. For endpoints, integrity checks should be run periodically 

to receive alerts for any altered software component (e.g., an automation script or a file that holds 

calibration parameters). For IIoT devices, code signing is also required, but it should not be limited to 

the final firmware; it should also include any other dependencies because we have seen that third-party 

libraries could also be hiding malicious functionalities.

Risk analysis related to automation software is another important element. Traditional risk analysis in 

industrial automation settings focuses on safety and sometimes relies on safety mechanisms as a sort 

of “insurance” or “safety net.” However, modern manufacturing machines are evolving in their use of 

complex safety systems. For example, in systems involving collaborative robots, which work side by 

side with humans, safety is implemented in the software (at the firmware level), which clearly changes 

its position in the risk analysis process.

As a general guiding principle, we recommend “thinking outside the box.” This paper should serve as 

a prompt for thinking exercises for both basic and unconventional attack vectors, which are precisely 

what advanced attackers think about for the attacks that they eventually act on.

5.1
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Countermeasures Against Future Threats
What we demonstrate in this paper is what we predict might happen in the future. Our predictions are 

not based on intuition; all of the technical prerequisites are in place. Before witnessing the first attacks 

from or involving infected PLCs, only a few people were persuaded that it would be a reality, but now 

people are dealing with the exploitation of PLCs. Similarly, we hope that this paper can persuade enough 

key players to believe and invest in the required innovation that is necessary to raise the bar for security.

The first step is to realize that the same level of maturity found in the secure coding practices and 

defenses of non-OT software (e.g., mobile apps, web apps, cloud environments) must be reached. In 

the context of web apps as a comparative example, despite the continued existence of input validation 

vulnerabilities, the overall situation has improved substantially, since it is much harder to find basic 

input validation bugs today than it was, say, a decade ago. Likewise, despite the continued existence 

of malware in mobile devices, rudimentary mobile malware has been eliminated. In this paper, we show 

that we are at a stage where simple input validation vulnerabilities are present in automation code for 

complex manufacturing machines (e.g., robots) and where malicious or altered extensions (e.g., add-

ins, digital twins) can be written and distributed through app stores, much as they were when the very 

first version of the Google Play Store was initially released. (Malware found in the Google Play Store 

has become newsworthy on account of its being uncommon, and it takes quite a lot of effort on an 

attacker’s part to evade all of the security checks Google has in place.) Our desire is to see the software 

delivery mechanisms for OT software being ready for the attacks that we demonstrate in this paper.

The second step is to focus on these three areas to improve current products and embed them with 

security functionalities:

• A full chain of trust should be properly set up for data and software within a smart manufacturing 

environment. The code that implements the automation logic, including the firmware running on 

a custom IIoT device, should not be just “transferred” from the engineering workstation — or 

worse, the developer’s laptop — to the industrial machine. A cryptography-backed code-signing 

mechanism is required to ensure that all of the libraries incorporated by that code are signed 

and that the final code is signed as well. This entails support from industrial machine vendors. 

Similar verification routines should be in place in the development environment: Active software 

components (e.g., plug-ins, add-ins, extensions) and digital twins must all be signed.

• Detection mechanisms should be in place to recognize vulnerable or malicious logic in complex 

manufacturing machines (e.g., industrial robots). As we demonstrate in this paper, in addition to 

the more outright scenario of a malicious developer intentionally creating malicious logic (with 

time bomb-like behavior), a developer can mistakenly introduce vulnerabilities even in domain-

specific languages. Being able to detect these cases will enable short-time prevention because it 

will alert engineers to the fact that they are about to deploy vulnerable automation logic (e.g., with 

an “overprivileged” routine or input validation bugs), so that they can take corrective actions. Trend 

Micro has developed a technology with detection capabilities that can protect its customers from 

these advanced attacks. Certain portions of this technology are patent pending.

• Sandboxing and privilege separation mechanisms should be implemented for software running on 

industrial machines and development environments. Mobile apps, for example, must declare and 

request permission before accessing storage or network resources. So must automation logic and 

active software components because they are not trustworthy and must never be considered as 

trusted elements

5.2
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Conclusion
Smart manufacturing systems are designed and deployed under the assumption that they will be 

isolated from both the outside world and the rest of the corporate network. On one hand, this does not 

necessarily mean that remote attackers should not be considered: Remote attackers will try alternative, 

indirect routes (e.g., infected automation logic or software extensions), which we show in this paper to be 

possible. On the other hand, and perhaps more importantly, the closed-world assumption automatically 

implies that local attackers have full power: Because of the lack of isolation between the parts of a smart 

manufacturing system (e.g., all PLCs and machines on the same, flat network), any endpoint will trust 

any other endpoint and a local attacker will be able to do practically anything they want. We believe this 

should change.

Attackers are not sitting back and hoping for a high-profile, vulnerable smart manufacturing system to 

pop up on search engines like Shodan, ready for them to attack. We believe that unconventional attack 

vectors such as the ones we explore are more likely for an advanced attacker profile. This possibility is 

increased by the fact that smart manufacturing systems, while made of hardware, live in an ecosystem 

with an intricate net of interdependencies. Hardware is only one, small part of the equation. There are 

also other components: software, libraries, developers, business relations, and so on, including software 

used to develop other software, libraries sold by one company that is used by another company, system 

integrators who work for several factories. We show how this has repercussions on the types of attacks 

that are possible in smart manufacturing systems, such as those that involve malicious industrial add-

ins and those that trojanize custom IIoT devices.

Once an attacker has landed on a smart manufacturing system, they have unique opportunities for 

lateral movement, some of which we believe had been unexplored until now. We found security-critical 

design issues in the automation logic in robots, which not only create ground for vulnerabilities (for 

which no automated vulnerability scanners exist yet), but also allow the implementation of malicious 

logic (which will pass undetected, again in the absence of scanners).

We are now ready to answer the research questions stated in Section 1.5. The first, main question was, 

“Under which threat and attacker models are certain attacks possible, and what are the consequences?” 

Setting internal attackers aside, we note that external attackers will try to indirectly infect the endpoints 

through targeted malware. This alone is not surprising; the novel part is that some OT software may 

offer opportunities for targeting not only one specific person but broader categories of people who all 

use the same software (e.g., OT developers). This similarly holds true for software libraries used for IIoT 

development. This answers the second question, “Are there any overlooked vectors that could facilitate 

an attacker’s getting a foothold in these systems?”
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Using such attack vectors, the attacker can gain persistence using, for example, compromised 

automation logic (e.g., running on industrial robots). The next question follows up on this point: “What 

is the security impact of modern industrial software development practices, including the use of open 

libraries, with complex interdependencies?” Programs written in industrial development environments, 

which do not enforce the use of secure components (e.g., code signing, sandboxing), end up running on 

a manufacturing machine (e.g., robot). Similarly, IoT firmware that includes complex dependencies and 

a lot of “unofficial” libraries ends up monitoring or affecting the behavior of the machines. Since all of the 

components of a smart manufacturing plant are usually connected to the same, flat network, anything 

can happen. And because an attacker could really do anything to the system, the consequences are 

difficult to estimate.

The final question was, “What is the cybersecurity awareness level of the technical personnel who 

engineer, program, and operate in smart manufacturing environments?” Our survey and our analysis of 

online community discussion groups confirm that people working in OT environments consider security 

as an “add-on” rather than a process. 

A smart manufacturing system does not exist in a vacuum: It is a complex ecosystem of machines, 

components, and people that can be taken advantage of by threat actors to launch both conventional 

and unconventional attacks. By shedding light on the different attack vectors that need to be focused on, 

especially the unconventional ones, we hope that this paper will increase awareness levels, particularly 

of individuals who are involved in operating smart manufacturing systems.
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Appendix

The tactics and techniques used in the attacks discussed in this paper are mapped below using the 

MITRE ATT&CK® for Industrial Control Systems matrix.67 

Tactic Technique ID Description

Initial access
Engineering workstation 
compromise

T818
Used to access the control system 
applications and equipment.

Persistence Project file infection T873

Used to download an infected program 
to a PLC in the operating environment, 
enabling further execution and 
persistence techniques

Discovery
Network service 
scanning

T1046
Used to get a listing of services 
running on remote hosts

Impact

Loss of safety T880
Used to possibly inhibit safety 
mechanisms that allow the injury and 
possible loss of life

Manipulation of Control T831
Used to communicate with and 
command physical control processes

Table 3. The tactics and techniques used in the attack involving compromise through a malicious industrial 

add-in

Tactic Technique ID Description

Initial access
Supply chain 
compromise

T862
Used to gain access to the control 
system environment

Persistence Module firmware T839
Used to install malicious or vulnerable 
firmware onto modular hardware 
devices

Inhibit response 
function

Denial of service T814
Used to disrupt expected device 
functionality

Impact

Denial of control T813
Used to deny process control 
access to cause temporary loss of 
communication with the control device

Loss of control T827
Used to achieve sustained loss of 
control

Loss of productivity and 
revenue

T828
Used to cause loss of productivity and 
revenue

Loss of safety T880
Used to possibly inhibit safety 
mechanisms that allow the injury and 
possible loss of life

Table 4. The tactics and techniques used in the attack involving trojanization of a custom IIoT device
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Tactic Technique ID Description

Execution Graphical user interface T1061
Used to search for information and 
execute files

Lateral movement Default credentials T812
Used to abuse default credentials that 
have not been properly modified or 
disabled

Impact

Loss of safety T880
Used to possibly inhibit safety 
mechanisms that allow the injury and 
possible loss of life

Manipulation of control T831
Used to communicate with and 
command physical control processes

Theft of operational 
information

T882
Used to steal operational information 
on a production environment

Table 5. The tactics and techniques used in the attack involving the exploitation of a vulnerable mobile HMI

Tactic Technique ID Description

Initial access
Data historian 
compromise

T810
Used to gain a foothold in the control 
system environment

Impair process 
control

Modify parameter T836
Used to produce an outcome outside 
of what was intended by the operators

Impact

Denial of control T813
Used to deny process control 
access to cause temporary loss of 
communication with the control device

Loss of safety T880
Used to possibly inhibit safety 
mechanisms that allow the injury and 
possible loss of life

Manipulation of control T831
Used to communicate with and 
command physical control processes

Table 6. The tactics and techniques used in the attack involving data mangling on the MES

Tactic Technique ID Description

Initial access

Engineering workstation 
compromise

T818
Used to access the control system 
applications and equipment

Supply chain 
compromise

T862
Used to gain access to the control 
systems environment

Persistence Project file infection T873

Used to download an infected program 
to a PLC in the operating environment, 
enabling further execution and 
persistence techniques

Collection Program upload T845
Used to gather information about an 
industrial process

Impact

Loss of productivity and 
revenue

T828
Used to cause loss of productivity and 
revenue

Manipulation of view T833
Used to manipulate the information 
reported back to the operators or 
controllers

Table 7. The tactics and techniques used in the attack involving the use of the vulnerable or malicious 

automation logic in a complex manufacturing machine
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