
TURLA
LIGHTNEURON
One email away from
remote code execution

ESET Research White papers // May 2019
Matthieu Faou

TABLE OF CONTENTS
1. Executive summary 4

2. Attacker profile 5

2.1 Publicized high-profile attacks 5

2.2 Victimology5

2.3 Tools and tactics 5

3. Overview 6

3.1 Impact. 6

3.2 Chronology6

3.3 Targeting. 7

3.4 Attribution to Turla 7

3.5 Insight into attackers activity8

4. Malware 9

4.1 Microsoft Exchange architecture 9

4.2 Malicious Transport Agent. 11

4.3 Companion Dynamic Link Library 14

4.4 Evolution 28

4.5 Linux variant 28

5. Remediation 28

5.1 Cleaning 28

5.2 Mitigations 30

6. Conclusion 30

7. Bibliography 31

8. IoCs . 32

8.1 Hashes 32

8.2 Paths 33

9. MITRE ATT&CK techniques 33

LIST OF TABLES
Table 1 Description of the handlers implemented in the DLL 18

Table 2 Handler return codes and their descriptions 19

Table 2 List of instruction codes 24

Table 3 Description of the log f iles 26

LIST OF FIGURES
Figure 1 Timeline of important attacks attributed to Turla 5

Figure 2 LightNeuron timeline 6

Figure 3 Map of known LightNeuron victims 7

Figure 4 Operators working hours 8

Figure 5 Distribution of the backdoor commands used by the operators 9

Figure 6 Microsoft Exchange architecture 10

Figure 7 Classes implemented by the Transport Agent 11

Figure 8 PowerShell script to install the malicious Transport Agent 11

Figure 9 SmtpReceiveAgent implementation 12

Figure 10 Process function 13

Figure 11 LightNeuron Transport Agent 14

Figure 12 Some decrypted strings 15

Figure 13 Partially redacted, decrypted configuration example 16

Figure 14 Redacted example of a rule f ile 18

Figure 15 Decompilation output of the zip handler function 19

Figure 16 Original email (on the left) and email after
the call to changeSubject (on the right) 20

Figure 17 Attachment type check (HexRays output) 20

Figure 18 Extraction of the container data
from the PDF (HexRays output) 21

Figure 19 Representation in hexadecimal of a PDF containing a container 21

Figure 20 Modif ied PDF document with embeded
commands for LightNeuron Snake is another name for Turla 21

Figure 21 Validation of the JPG signature (HexRays output) 22

Figure 22 Modif ied JPG picture with embedded commands
for LightNeuron 23

Figure 23 Hexadecimal dump of an encrypted container 23

Figure 24 Hexadecimal dump of a decrypted container 23

Figure 25 Structure of the command container (C-like syntax) 24

Figure 26 Example of an email generated by LightNeuron
to send command output 25

Figure 27 Log entry structure in C-like syntax 26

Figure 28 Exfiltration loop with night check (HexRays output) 27

Figure 29 Exfiltration loop (HexRays output) 27

Figure 30 Linux strings in the Windows DLL 28

Figure 31 agents.config example 29

Turla LightNeuron One email away from remote code execution4

1. EXECUTIVE SUMMARY
Turla, also known as Snake, is one of oldest, still-active cyberespionage groups, with more than a decade
of experience. Its operators mainly focus on high-profile targets such as governments and diplomatic
entities in Europe, Central Asia and the Middle East. They are known for having breached major organiza-
tions such as the US Department of Defense in 2008 and the Swiss defense company RUAG in 2014. More
recently, several European countries including France and the Czech Republic went public to denounce
Turla’s attacks against their governments.

To perform these operations, Turla’s operators own a large arsenal of malware including a rootkit,
several complex backdoors (with a notable one for Microsoft Outlook), and a large range of tools to pivot
on a network.

In this white paper, we present the analysis of LightNeuron, a backdoor specifically designed to target
Microsoft Exchange mail servers.

Key points in this white paper:
• Turla is believed to have used LightNeuron since at least 2014.
• LightNeuron is the first publicly known malware to use a malicious Microsoft Exchange Transport Agent.
• LightNeuron can spy on all emails going through the compromised mail server.
• LightNeuron can modify or block any email going through the compromised mail server.
• LightNeuron can execute commands sent by email.
• Commands are hidden in specially crafted PDF or JPG attachments using steganography.
• LightNeuron is hard to detect at the network level because it does not use standard HTTP(S)

communications.
• LightNeuron was used in recent attacks against diplomatic organizations in Eastern Europe

and the Middle East.

For any inquiries, or to make sample submissions related to this white paper, contact us at: threatintel@eset com

Turla LightNeuron One email away from remote code execution5

2. ATTACKER PROFILE
Turla, also known as Snake, is an infamous espionage group active for at least a decade. The group
is well known for its advanced custom tools and its ability to run highly targeted operations.

2.1 Publicized high-profile attacks
Over the past ten years, Turla has been responsible for numerous high-profile breaches. The targets include
the United States Central Command in 2008 [1], the Swiss military company RUAG in 2014 [2] and more
recently, the French Armed Forces in 2018 [3]. The timeline in Figure 1 presents some of the major attacks
attributed to Turla.

2008

US Central
Command

2013

Finnish Foreign
Ministry

2014

RUAG Defense
Company

2017

German Foreign
O�ce

2018

French Armed
Forces

Figure 1 // Timeline of important attacks attributed to Turla

2.2 Victimology
As opposed to some other APT (Advanced Persistent Threat) groups, Turla is far from being opportunistic
in the selection of its targets. The group is interested in collecting information from strategic people
or organizations. In addition, to our knowledge, Turla has never conducted cybersabotage operations,
such as those made by GreyEnergy [4] or TeleBots [5].

With several years of tracking this espionage group, we have identified the most at-risk types
of organizations:

• Ministries of Foreign Affairs and diplomatic representations (embassies, consulates, etc.)
• Military organizations
• Regional political organizations
• Defense contractors

Most parts of the world are targeted by Turla’s operations, with the exception, perhaps, of Eastern Asia.
Moreover, over the past few years, we have noticed that geographical areas of conflict, such as Eastern
Europe and the Middle East, are under heavy attacks from this APT group. However, even with this new
focus, they did not abandon their traditional targets in Western Europe and Central Asia.

2.3 Tools and tactics
The usual modus operandi used by Turla’s operators is to use basic first-stage malware for initial recon-
naissance. In some cases they even use generic tools such as Metasploit [6] [7]. Once they deem the victim
interesting enough, they switch to more advanced malware such as Carbon [8] or Gazer [9].

The initial compromise is generally tailored towards specific types of victims. In the past, they mainly relied
on spearphishing emails [10], watering hole attacks [11] or Man-in-the-Middle attacks [12].

After this initial compromising step, they move laterally on the network and collect many credentials.
To avoid suspicious communications to the internet, they developed tools such as DarkNeuron [13] and
RPCBackdoor, to forward commands and exfiltrate data on the local network. They also regularly create
user accounts that they use later if they lose access to a compromised machine. It means that once compro-
mised, it is very hard to eject the attacker from the network without rebuilding most of it.

Finally, collected data is exfiltrated through various channels such as HTTP and emails. They usually rely on
compromised web servers as first stage servers. They are also known for using SATCOM IP addresses to hide
the real destination of the traffic [14].

Turla LightNeuron One email away from remote code execution6

Turla’s operators have a wide arsenal at their disposal for all major desktop platforms: Windows, macOS
and Linux. Some of their tools stand out for their complexity, such as the Snake rootkit, which relies on
a vulnerable VirtualBox driver to bypass Windows Driver Signature Enforcement [15]. Some others stand
out by their originality, such as the Outlook backdoor we analyzed in 2018 [16].

During our several years of tracking Turla activities, we also noticed that they were reacting quickly to both
publication and detection. Apparently, they do not hesitate to clean all the traces and potentially lose
control of a machine if they feel they will be detected soon. They probably do not want their more-advanced
malware to be exposed publicly.

3. OVERVIEW
LightNeuron is a piece of malware specifically designed to target Microsoft Exchange servers. It has two
facets: spying on emails and acting as a full-feature backdoor.

3.1 Impact
While rootkits and bootkits have an unmatched stealthiness in the malware domain, LightNeuron is uncom-
monly stealthy for “regular” malware. To our knowledge, leveraging a Microsoft Exchange Transport Agent
for persistence is something unique and never before seen. Moreover, in the few cases we studied, Light-
Neuron was running with SYSTEM privileges. It is typically hard to gain this level of privilege on a Microsoft
Exchange server, as it is one of the most critical assets in an organization. Thus, once compromised, it is likely
that it will stay undetected for months or years.

The Command and Control protocol is fully based on emails and uses steganography to store data in PDF
and JPG attachments. Given that, in the Microsoft Exchange architecture, the malware is installed at the
same level as anti-spam and other email security solutions, it allows the malware to bypass them easily.
Using a nearly undetectable Command and Control channel allows the malware to stay under the radar
for a long period.

During the course of our investigation, we noticed alongside LightNeuron the presence of several tools used
to control other machines on the local network. These tools include Remote Administration Software, RPC-
based malware or .NET web shells targeting Outlook Web Access. By leveraging them, attackers are able to
control other machines on the local network using emails sent to the Exchange server. This strategy allows
avoiding typical, noisy methods such as an HTTP-based C&C protocol or connection via RDP from outside
the compromised network.

3.2 Chronology
We believe that LightNeuron development started before 2014 as the versions compiled in 2014, according
to the compilation timestamp, appear to be in a late development state. Even if the development occurred
several years ago, LightNeuron is still used in recent compromises. Figure 2 is a timeline of some important
events related to LightNeuron.

2014
June

Oldest compilation
timestamp

2016
October

Most recent
compilation
timestamp

2017
May

Compromise
of an organization
in the Middle East

2018
October

Compromise
of an organization
in Eastern in Europe

Figure 2 // LightNeuron timeline

Turla LightNeuron One email away from remote code execution7

3.3 Targeting
These targets are in line with traditional Turla targets. Figure 3 shows the geographical location of the
identified targets. The Eastern European and Middle East targets are diplomatic organizations. Regarding
the Brazilian target, the sample was uploaded to VirusTotal. Thus, we cannot know the exact nature
of the victim or even be sure that the victim was based in Brazil.

Brazil
Unknown organization

Eastern Europe
Ministry of Foreign A�airs

Middle East
Regional Diplomatic

organization

Figure 3 // Map of known LightNeuron victims

3.4 Attribution to Turla
We believe with high confidence that Turla operates LightNeuron. The following artefacts we collected
during our investigation back this:

• On one compromised Exchange server:
• A PowerShell script containing malware previously attributed to Turla was dropped 44 minutes before

a PowerShell script used to install LightNeuron.
• Both scripts were located in C:\windows\system32.

• The script used to install LightNeuron has a filename msinp.ps1 that looks like typical filenames
used by Turla.

• On another compromised server, we saw a sample of the IntelliAdmin Remote Administration Tool,
packed with a packer used only by Turla, being dropped by LightNeuron.

• For each LightNeuron attack, we found several other instances of Turla malware on the same network.
• The email address used by the attackers was registered at GMX and was impersonating an employee

of the targeted organization. This same provider was used for the Outlook backdoor [16] and for
a previously undocumented PowerShell backdoor we have dubbed PowerStallion.

• Kaspersky Labs researchers attribute LightNeuron, with medium confidence, to Turla [17].

Turla LightNeuron One email away from remote code execution8

3.5 Insight into attackers activity
While analyzing a compromised asset, we were able to retrace part of the attackers’ activities. In particular,
we were able to map the working hours of the operators, using the time at which the compromised Exchange
server received emails containing commands for the backdoor.

Our first observation is that the activity matches well a typical 9-to-5 workday in the UTC+3 time zone,
as shown in Figure 4.

30

20

10

0

2 4 6 8 10 12 14 16 18 200

UTC +3 timezoneUTC timezone

Hour

Number
of email received

Figure 4 // Operators working hours

Our second observation is that no activity was observed between December 28, 2018 and January 14, 2019,
while previously and afterwards, the attackers sent several emails per week. This break in activities corresponds
to holidays around the Orthodox Christmas.

Even if it is not sufficient for a strong attribution, one might correlate these two observations with other
artefacts used for attribution.

We also compiled the type of commands used by the attackers, as shown in Figure 5. Even if we were
not able to retrieve the command arguments, it is already a good insight into the operators’ goals.

It turns out that LightNeuron is used mostly to exfiltrate data. The remaining activity is most likely dropping
and executing tools to perform lateral movements across the local network.

Turla LightNeuron One email away from remote code execution9

Exfiltrate a file Execute
a command line

Drop a file
and execute it

Figure 5 // Distribution of the backdoor commands used by the operators

4. MALWARE
Two main components comprise LightNeuron: a Transport Agent [18], registered in the Microsoft Exchange
configuration, and a companion 64-bit Dynamic Link Library (DLL) containing most of the malicious code.

4.1 Microsoft Exchange architecture
Microsoft Exchange allows extending its functionalities using Transport Agents that can process and modify
all email messages going through the mail server [18]. Transport Agents can be created by Microsoft,
third-party vendors, or directly within an organization.

They have many legitimate purposes, such as:

• Filtering spam
• Filtering malicious emails/attachments
• Adding a corporate signature at the end of every email

The typical events handled by a Transport Agent occur when the mail server sends or receives an email.
Before the event is actually executed, the Transport Agents are called and have the possibility to modify
or block the email.

Figure 6 shows the typical workflow in a Microsoft Exchange server. It also shows where the malicious
Transport Agents are inserted in this flow.

Turla LightNeuron One email away from remote code execution10

Protocol Agents

LightNeuron
SMTP Receive Agent

Pickup & Replay
directories

Routing Agents

LightNeuron
Routing Agent

Protocol Agents

Hub Selector

SMTP from the
Transport service

or the Mailbox
Transport service
on other Mailbox

Servers

FROM

SMTP to the
Transport service

or the Mailbox
Transport service
on other Mailbox

Servers

TO

Submission
Queue

Delivery
Queue

Front End Transport Service

Transport Service

Client
Access
Server

Mailbox
Server

Mailbox Transport
Submission service

Mailbox transport
Delivery service

Categorizer

SMTP Receive

SMTP Receive

SMTP Receive

Mailbox Assistants

Mailbox Submit Agents

Store Driver Submit
Mailbox deliver Agents

Mailbox Transport Service
SMTP to the

Transport service
on other Mailbox

Servers

FROM

SMTP to the
Transport service
on other Mailbox

Servers

TO

Store Driver Deliver

Hub Selector

SMTP Send

External SMTP

SMTP

SMTP Send

SMTP

SMTP Send

SMTP

RPCRPC
Mailbox
database

Figure 6 // Microsoft Exchange architecture
(original picture: https://docs microsoft com/en-us/exchange/mail-flow-exchange-2013-help)

In order to register a Transport Agent to a Microsoft Exchange Installation, one could modify the list
of agents in <ExchangeInstallFolder>\TransportRoles\Agents\agents.config. The PowerShell
function Install-TransportAgent is another way to register a new Transport Agent.

Turla LightNeuron One email away from remote code execution11

4.2 Malicious Transport Agent
This component is responsible for communicating with Microsoft Exchange and with the main malicious DLL.
To our knowledge, this is the first time a Transport Agent has been used for malicious purposes.

Identification
The malicious Transport Agent is a 32-bit Windows DLL developed in .NET. Our analysis is based on the sample
with SHA-1 3C851E239FBF67A03E0DAE8F63EEE702B330DB6C, apparently compiled on 26/10/2016.

In Figure 7, you can see the seven different classes used by the malicious Transport Agent.
Common_utl is the class used to process the email and call the second DLL. ContentFilterAgent
and SecurityInteropAgent are, respectively, inheriting from the standard base classes RoutingAgent
and SmtpReceiveAgent.

Figure 7 // Classes implemented by the Transport Agent

Installation
The attackers drop this executable in the Exchange folder located in the Program Files folder. This first step
requires Administrative privileges. Then, they execute the script in Figure 8 to register the DLL as a Transport
Agent. This second step is required before the malware starts receiving events from Exchange.

Figure 8 // PowerShell script to install the malicious Transport Agent

Turla LightNeuron One email away from remote code execution12

Functions
This Transport Agent implements two classes: SmtpReceiveAgent and RoutingAgent. These classes
inherit from standard Microsoft Exchange classes, allowing them to receive events from the mail server.
Figure 9 shows a part of the class implementing SmtpReceiveAgent.

Figure 9 // SmtpReceiveAgent implementation

One of the events registered is EndofData, which the server calls once it has received the entire email.
This event’s callback then calls the Process function. The behavior is the same for all the callbacks.

The class common_utl contains the Process function. As shown in Figure 10, it first logs the date and the
sender of the email. Then, it calls the CheckMessage function that then calls the companion DLL to process
email data.

Finally, depending on the return value of CheckMessage, it does nothing, modifies the email, or blocks it.

Turla LightNeuron One email away from remote code execution13

Figure 10 // Process function

Figure 11 summarizes the behavior of the LightNeuron Transport Agent. A detailed explanation
of the behavior of the companion DLL is available in the Backdoor section.

Turla LightNeuron One email away from remote code execution14

Internal Email

Microsoft Exchange

Transport
Agent 1

LightNeuron
Transport Agent

Log date
and Sender

Call the companion DLL
to process the email

Transport
Agent n

Block the email
Execute

a command

Modify the email

Do nothing

External Email

Figure 11 // LightNeuron Transport Agent

4.3 Companion Dynamic Link Library
This second component implements most of the malicious functions that are needed
by the Transport Agent.

Identification
The companion DLL is a 64-bit Windows DLL developed in C. Our analysis is based on the sample
with SHA-1 76EE1802A6C920CBEB3A1053A4EC03C71B7E46F8, apparently compiled on 02/09/2016.

This DLL exports three functions:

• FL (aka ForLoading): return 777
• BLE (aka BinaryLogEx): Log input data in a log file
• SV (aka SimpleValidate): Process an email

The exports’ full names were present in the oldest versions of the DLL, while in the most recent one,
they were shortened.

Initialization
When the Transport Agent loads the DLL, the DLL’s main function performs various initialization tasks.

First, it decrypts, using an XOR operation; most of the strings with the hardcoded key 0xA9. Figure 12 shows
some interesting strings once decrypted.

Turla LightNeuron One email away from remote code execution15

Figure 12 // Some decrypted strings

Then, it decrypts the configuration file stored in %tmp%\winmail.dat. Microsoft Outlook uses the same
filename when people send messages from an incorrectly configured mail client [19]. We believe they choose
this filename to hide their configuration file in plain sight as a Microsoft Exchange administrator might
be accustomed to see many legitimate files named winmail.dat.

The configuration is encrypted with AES-256, with the first 32 bytes of the file being the RSA-encrypted
AES key. The 1024-bit RSA private key is hardcoded in the binary and it uses the mode PKCS1-v1_5
for encryption.

Figure 13 is an example of a decrypted configuration. Please note that we have redacted
some confidential information.

Turla LightNeuron One email away from remote code execution16

<Parameters>

CONFIG_FILE_NAME:c:\Windows\ServiceProfiles\NetworkService\appdata\Local\Temp\msmocf.xml

LOG_LEVEL:17

DEBUG_LOG_FILE_NAME:c:\Windows\ServiceProfiles\NetworkService\appdata\Local\Temp\msmodl.
dat

CRYPT_KEY: LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUlHZk1BMEdDU3FHU0liM0RRRUJBUVVBQTRH
TkFEQ0JpUUtCZ1FDOG5zc2g2UDJpa29YMnpBOFg3dUpNcmxRWApkM21Pc3VvcWRpa1pzQ1l3TlJCNXc5RVl
jeHRQYVdubEc4L2hCeC9IMG05cnZyelFVamxCa3dieDY5L2tSclhVCmZ5MkE3RGk2NTZldlExMHZPVHlBcH
RualMvRWtBKzFUUGRPSTdkZWcrakNpaDFMNk5TNUJFTyszTTN0aGZrVzcKZVU2ZUdkcVZyeWdiOWV6amxRS
URBUUFCCi0tLS0tRU5EIFBVQkxJQyBLRVktLS0tLQo=

DECRYPT_KEY: LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlDWFFJQkFBS0JnUURRTWdoRS
9sUlBpbGNNTXFqb1RSMDBJcU0wWkovalFuT2kwZzFTRXJ1dytaQ0tqUit0CmRZSHo1bUVNTXJmbS9uYnZkV
2hRQUxubERpSlNwOHRpa3VHdHdJajFrV09aQ0ppangvazhHWWdoNHZkZmtCSkcKbmlnQnJTMTliSktqMzh0
eElGVWI2NGQwK0hISlczdld1VVJFYUhwZjVFemdmQmdIZ1ZIN2NzaVE1UUlEQVFBQgpBb0dCQUlLMkJzOGF
SbUN4NERqK1RXR2JtS3cwMnZaMy9wSTJGRmV6UFQyOEdTN2hZTWc4RmhsWFgwRjc4STR5CkFaZjdSenpNSD
dPcTRRdFlObUJpaktUVXh1Nm5rYk5MajQxVWhYQks4YUl1S1oxa2lKUG5rY3RVUERWWjN5WmkKS1lKZ3lje
DI0SEozbXF3T05mZTczVElKcEsybDZFRkVDUDJkaTg5aHNZTFhsa2s1QWtFQTcwRGxlMDROMVBIeAozUzBj
WkhFQm9ZNnhyNElvUGJSQmZ2Wkd0NHEyZWs5ZjVldG1idjVvck54WnE4QUpzRkJsOWhBZFIxUE8rdUk5Ckl
0WnVGRzhvM3dKQkFON0VuZWpNQ05Td3FEdlhvSWxBMElFVkd5RlNIcHp1TDFBWW9FSFVhNXZpOFR0VC9KYV
kKN1pSSFNwNUxZeExLZkh6MGovWExBVFo5a2oxVDNkaWpDcnNDUUdlMk1RUC9kTjEvTjhJUndRSUZQcGpDM
jJGaQpRWUZsOXhKTFBhSm9mZXVOSnR2cTdBOW5Od2JmeWZzNmxyaVlVV3FWMTZ0SXVDdG5FT3RlR24rL0kr
OENRQnlsCjFGalh4RnIxek96Rk1oUDBqZHZMeHcxbDdpSG9UNVZSVldxaDBxVGRib0Jlc0tEOVViQTc2dEN
vaVRrbGFSVDQKcm5yQmZJcHhZNWtYYS9Rc0kza0NRUUMzeS9wVUdRK0J1MDhJczBmcTBSQmNmaG5zYXREen
djWjRZS0cwc0NXVgpxeXNjdTZBd3hvaGdjZEN2UGJiNDJYcnZIamFmbTZYYk05aXFnU0lqc0JuRgotLS0tL
UVORCBSU0EgUFJJVkFURSBLRVktLS0tLQo=

LOG_OUTPUT:c:\Windows\ServiceProfiles\NetworkService\appdata\Local\Temp\

MIN_SIZE_TO_ZIP:20000

ZIP_FILE_NAME:c:\Windows\ServiceProfiles\NetworkService\appdata\Local\Temp\tmpE4BC

CONFIG_UPDATE_INTERVAL:1800

DEBUG_LOG_CRYPT:0

STAT_INTERVAL:5

STAT_PATH:c:\Windows\ServiceProfiles\NetworkService\appdata\Local\Temp\tmpD48BC

SEND_FROM:[redacted]noreply@[redacted]

COMMAND_REPLY_SUBJECT: Email_confirmation

COMMAND_REPLY_ATTACH_NAME: Letter; [redacted]; prnt01; Note; Instruction; List; Scanned;
Untitled; report; filename; ATT00001; ticket; Form; Attachment; Information

</Parameters>

Figure 13 // Partially redacted, decrypted configuration example

The configuration does not necessarily specify all the possible parameters. Some parameters,
such as CRYPT_KEY, have their default values hardcoded in the DLL, which could be used in case none
is specified in the winmail.dat file.

The different configuration parameters handled by the sample we analyzed are:

• COMMAND_REPLY_ATTACH_NAME
• COMMAND_REPLY_SUBJECT
• CONFIG_FILE_NAME
• CONFIG_UPDATE_INTERVAL
• CRYPT_KEY
• DEBUG_LOG_FILE_NAME
• DECRYPT_KEY
• LIMITS_MAILS_PER_SECOND
• LIMITS_MAILS_PER_SECOND_REFRESH_INTERVAL
• LIMITS_MEMORY_LOAD
• LIMITS_MEMORY_LOAD_REFRESH_INTERVAL
• LOG_LEVEL
• LOG_OUTPUT

Turla LightNeuron One email away from remote code execution17

• MIN_SIZE_TO_ZIP
• POSTFIX_INCOMING_PATH
• SEND_AT_NIGHT
• SEND_FILE
• SEND_FROM
• SEND_NEW_MAIL_LOCAL_RECIPIENT
• SEND_NEW_MAIL_LOGIN
• SEND_NEW_MAIL_MODE
• SEND_NEW_MAIL_PASS
• SEND_NEW_MAIL_PORT
• SEND_NEW_MAIL_SERVER
• SEND_TIME
• SEND_TO
• STAT_INTERVAL
• STAT_PATH
• TMP_ID_PATH
• USE_TEMPLATE
• ZIP_FILE_NAME

While most of the parameter names are self-explanatory, an interesting one is CONFIG_FILE_NAME.
This second configuration file contains the rules used to process the emails. We detail this behavior
in the next section.

Rules and handlers
In our example, the rules are defined in c:\Windows\ServiceProfiles\NetworkService\appdata\
Local\Temp\msmocf.xml. This file is encrypted in a similar way as winmail.dat and the RSA private
key is defined in the configuration parameter DECRYPT_KEY.

Once decrypted, this is an XML file describing rules, as shown in Figure 14. It contains several class nodes,
each one corresponding to a different function (aka handler) implemented in the DLL. Each class node
contains a set of rules describing conditions using the logical operators AND and OR. In addition, each
conditional node has three parameters:

• The field to which the condition applies
• The condition: cnt for contains and !cnt for does not contain
• The value that is compared to the field value

Finally, at the end of the file is the mapping of the class names with the name of the functions in the DLL.

Turla LightNeuron One email away from remote code execution18

<class name="zip" metric="30" id="1" dllName="ZipMe" type="dll" include="1">
 <rule metric="10" id="1" include="1">
 <and>
 <or>
 <To condition="cnt" value="email1@[redacted]" />
 <From condition="cnt" value="email1@[redacted]" />
 <To condition="cnt" value="email2@[redacted]" />
 <From condition="cnt" value="email2@[redacted]" />
 [...]
 </or>
 <and>
 <To condition="!cnt" value="email3@[redacted]" />
 <From condition="!cnt" value="email3@[redacted]" />
 [...]
 </and>
 </and>
 </rule>
</class>
<class name="command" metric="40" id="1" dllName="ZipMe" type="dll" include="1">
 <rule metric="10" id="1" include="1">
 <attachment_Content-Type condition="cnt" value="image/jpeg" />
 </rule>
</class>

log:logHandler
zip:zipHandler
changeSubject:changeSubjectHandler
changeBody:changeBodyHandler
create:createHandler
command:commandHandler
block:blockHandler
replace:replaceHandler
stat:statHandler

Figure 14 // Redacted example of a rule file

These rules are applied to every email processed by the DLL. Thus, the behavioral characteristics
of LightNeuron reside in this configuration file.

This configuration is highly flexible, allowing it to perform different actions depending on various fields
of the email. For example, it is possible to collect all the emails sent by one particular email address.

Moreover, the operators customize the rules for each victim. In the sample we analyzed, all the email
addresses contained in the rules belonged to the targeted organization. In one case, they were monitoring
around thirty different email addresses, which probably were the people about whom they were the most
interested in collecting information.

There are eleven different handlers implemented in the DLL and described in Table 1.

Table 1 Description of the handlers implemented in the DLL

Handler name Description

block Block the email

changeBody Change the body of the email

changeTo Change the recipient of the email

changeSubject Change the subject of the email

command
Parse the JPG/PDF attachment, decrypt and execute the commands. This is described in
detail in the Backdoor section

create Create a new email

log Log email attachment in LOG_OUTPUT

Turla LightNeuron One email away from remote code execution19

Handler name Description

replace Replace the attachment

spam Re-create and re-send the email from the exchange server to bypass the spam filter

stat Log From, Date, To, Subject in STAT_PATH in CSV format

zip Encrypt the email with RSA and store it in the path specified by ZIP_FILE_NAME.

All the handlers are implemented in the same way. In the arguments, there is the email in the form
of a linked-list with the different fields parsed (From, To, body, etc.). The handler can modify this linked-list
and will return a code corresponding to the action it performed, as listed in Table 2.

Table 2 Handler return codes and their descriptions

Return Value Description

0 No modification

1 Email modified

2 Block the email

3 Error

4 Contains .NET assembly

Then, the Transport Agent interprets this return code to know if it should modify the email, block
it or execute .NET assembly code.

Figure 15 is the handler function for zip. Interestingly, it will dump, encrypt the email and store it on disk
but does not compress it. We believe these files are sent back to the attackers using a backdoor command.

Figure 15 // Decompilation output of the zip handler function

Some handlers, such as changeSubject, were not used in the rules we analyzed. However, by creating a new
set of rules, we were able to trigger this handler. The modification is easily noticed, as you can see in Figure 16.
Other handlers, such as changeBody or changeTo, might be used to hide some information or to redirect emails.

Turla LightNeuron One email away from remote code execution20

Figure 16 // Original email (on the left) and email after the call to changeSubject (on the right)

Backdoor
The command handler is actually the implementation of a backdoor controlled by email.
It has the following properties:

• Depending on the rules, the commands are hidden in a PDF or a JPG attachment.
• It uses steganography to hide data in PDF documents or JPG pictures.
• The email is blocked so it will not be delivered to the final recipient.

Although this may sound very similar to the Turla Outlook backdoor controlled by PDF attachments
that we analyzed in 2018 [16], the format of the attachment is quite different. Thus, we believe a different
programmer or team developed it.

As shown in the configuration example, the rule to execute the command handler applies to every
attachment of type image/jpeg going through the Exchange server. It is not very efficient, as most of the
images do not contain commands. As an example, for one victim, the command handler processed around
7000 pictures while only 178 actually contained commands for the backdoor.

Every time the handler is called, it will first check whether the attachment is a PDF document or a JPG image,
as shown in Figure 17.

Figure 17 // Attachment type check (HexRays output)

Turla LightNeuron One email away from remote code execution21

PDF

In the case of a PDF document, the routine first checks for a signature by performing XOR operations
with the data from offset 0x0B to offset 0x10. One way to satisfy this signature condition is by setting
all the values from offset 0x0B to 0x10 to 0x00.

If the previous signature is satisfied, the routine reads the offset of the blob of data containing the command,
which we call the container, from offset 0x11. It also reads the size of the container from offset 0x15. Finally,
it copies the container data. Figure 18 shows these operations.

Figure 18 // Extraction of the container data from the PDF (HexRays output)

A visualization in a hexadecimal editor of the different fields is shown Figure 19.

Figure 19 // Representation in hexadecimal of a PDF containing a container

This PDF, which was modified to embed a command, is still valid as you can see in Figure 20.

Figure 20 // Modified PDF document with embeded commands for LightNeuron. Snake is another name for Turla.

Turla LightNeuron One email away from remote code execution22

JPG

In case of a JPG image, it first computes a signature using 16 bytes from the first quantization table.
The quantization table is a part of the JPG format and contains data used during the compression of the picture.

It performs several XOR operations on these 16 bytes and compares the result against a hardcoded
signature, as shown in Figure 21.

Figure 21 // Validation of the JPG signature (HexRays output)

We can view these multiple XOR () operations on the input, followed by a comparison, as a set
of mathematical equations:

input0 input4 = 250

input1 input5 = 16

input2 input6 = 82

input3 input7 = 145

input0 input10 = 40

input1 input11 = 219

input2 input12 = 213

input3 input13 = 176

Once we have the set of equations, we can easily solve it manually or use a SMT (Satisfiability Modulo
Theories) solver such as Microsoft Z3 [20] to find out whether a solution exists and, if so, to find one possible
solution. It turns out this set of equations is solvable and we use the solution to create a JPG image
that can pass the check.

If the previous equation is satisfied, it gets the length of the container from offset 0x0F of the quantization table.

Finally, it extracts the container from the last Start of Scan section, another standard field of the JPG format.

By modifying the quantization table, the resulting picture is also affected. However, the image is still valid,
as shown in Figure 22.

Turla LightNeuron One email away from remote code execution23

Figure 22 // Modified JPG picture with embedded commands for LightNeuron

Container and command execution

Regardless of the attachment type delivering it, the container format is strictly identical. The first four bytes
are the size of the container and the following bytes are encrypted with AES-256 with a key hardcoded
in the binary. Figure 23 shows an example of an encrypted container.

Figure 23 // Hexadecimal dump of an encrypted container

Once decrypted, we see the different fields used to store information about the commands to be executed.
In Figure 24, we can see some of the most important fields:

• At offset 0x08, the email address to which the result of the command is sent.
• At offset 0x1D, the instruction code. It corresponds to a function in the DLL.
• At offset 0x25, the first argument. It will be passed to the function represented by the instruction code.

Figure 24 // Hexadecimal dump of a decrypted container

If an email containing this particular container, embedded in a JPG or in a PDF, is sent to a server compromised
by LightNeuron, a calculator will be executed on the Microsoft Exchange server.

In addition to the instruction code 0x04, which runs the executable given by the first argument,
there are eight other instruction codes having up to three arguments. Table 2 describes the nine different
backdoor instructions.

Turla LightNeuron One email away from remote code execution24

Table 2 List of instruction codes

Instruction
Code Description Arg 1 Arg 2 Arg 3

0x01
Write a file.
Execute it if it is an executable.

Exe path N/A File data

0x02 Delete a file File path N/A N/A

0x03 Exfiltrate a file File path
Set to “1” to
delete the file

N/A

0x04 Execute a process (CreateProcess) Command line N/A N/A

0x05 Execute a command line (cmd.exe /c) Command line N/A N/A

0x06 Return 0 N/A N/A N/A

0x07 Disable backdoor for N minutes. Minutes N/A N/A

0x09
Exfiltrate a file (duplicate function of
0x03)

File Path
Set to “1” to
delete the file

N/A

0x65 No-op N/A N/A N/A

 The detailed structure, in C-like syntax, of the container is available Figure 25.

struct encrypted_container {
 int size; //clear text
 container[]; //encrypted with AES-256
}

struct container { //Can contain multiple commands
 int CmdId; //Unique ID to identify the container
 int rcptl; //Recipient address length
 char rcpt[rcptl]; //Recipient address (address to which the output data will be sent)
 command[]; //list of commands
}

struct command {
 int InstId; //Unique ID to identify this command
 int InstrCode; //The instruction that will be executed
 int fpl; //First parameter length
 char fp[fpl]; //First parameter
 int spl; //Second parameter length
 char sp[spl]; //Second parameter
 int bpl; //Third parameter length
 char bp[bpl]; //Third parameter
}

Figure 25 // Structure of the command container (C-like syntax)

When processing a container, the backdoor writes the CmdId value to a log file, located at the path c:\Win-
dows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft\Windows\thumbcache_32.
db. The backdoor checks it just before processing a new container, to check whether this container
has already been processed. This is an anti-replay mechanism, probably to avoid duplicate execution
if the mail server somehow receives the same email multiple times.

Finally, the command output is encrypted with AES and a PDF document or a JPG image is built using
a format similar to that described earlier. Interestingly, it reuses the incoming PDF or JPG and replaces
the command container with a container holding the output data. An email is then created using data

Turla LightNeuron One email away from remote code execution25

from the configuration and the destination address provided in the incoming container. For instance,
it uses the following fields from winmail.dat:

SEND_FROM:[redacted]noreply@[redacted]
COMMAND_REPLY_SUBJECT: Email_confirmation
COMMAND_REPLY_ATTACH_NAME: Letter; [redacted]; prnt01; Note; Instruction; List; Scanned;
Untitled; report; filename; ATT00001; ticket; Form; Attachment; Information

To send the email, it simply drops it in the folder <ExchangeInstallFolder>\TransportRoles\PickUp\
and the filename starts with msg followed by the result of the GetTickCount function. According to the
Microsoft documentation [21]:

The Pickup and replay directories are used by the Transport service on Mailbox servers and Edge
Transport servers to insert message f iles directly into the transport pipeline Correctly formatted
email message f iles that you copy to the Pickup or Replay directories are submitted for delivery

Moreover, Exchange does not perform any security check on the email sent via this folder [22]:

Any security checks configured on a Receive connector, such as anti-spam, anti-malware, sender
f iltering, or recipient f iltering actions, aren't performed on messages submitted through the Pickup
directory or the Replay directory

Thus, security solutions will not see the data exfiltrated through LightNeuron, which makes this malware
very stealthy.

An example of an email containing the result of LightNeuron executing a command is shown in Figure 26.
The recipient is reply@example com, as specified in the incoming command container. The sender is noreply@
example com, which is the address we choose to use to replace the redacted one specified in the original
configuration. The subject header and the attachment name were selected from the lists in the configura-
tion and the incoming PDF was re-used to transport output data.

Figure 26 // Example of an email generated by LightNeuron to send command output

Turla LightNeuron One email away from remote code execution26

Miscellaneous

Logging

The companion DLL uses logging extensively. The log level can be customized in the configuration file,
allowing logging only relevant information when the malware is implanted on a victim machine.

The log files are encrypted with AES-256. Each log entry contained in the log files is encrypted separately
and the thirty-two first bytes of each log file contain the key.

Regardless of the log’s purpose, each log entry has the same format, as described in Figure 27 in C-like syntax.

struct log_entry {
 DWORD total_size;
 QWORD unknown1; //AES encryption begins here
 DWORD log_code;
 DWORD hex_value;
 DWORD unknown2;
 DWORD data_size;
 char data[data_size];
}

Figure 27 // Log entry structure in C-like syntax

The most important fields are:

• The log code field: each different code corresponds to a different logging event. For example, the log code
0x3C28 corresponds to the execution of a handler.

• The hex value field: Used when the data are numerical. For example, it can contain the Instruction
Code executed by the backdoor.

• The data field: Used to store text data. For example, it can contain the subject of the email.

The log file names vary across the different samples but for the sample we analyzed, we identified
the following six log files:

Table 3 Description of the log files

Component Path Description

Transport Agent
C:\Windows\serviceprofiles\network-
service\appdata\Roaming\Microsoft\
Windows\814ad43-58ab-2cd3-3e68-b82a8f402fd0

Log the sender and the date of every
email processed by the Exchange server

Transport Agent
C:\Windows\serviceprofiles\network-
service\appdata\Roaming\Microsoft\
Windows\42cf8a1-6e20-8c24-d35f-82c46d8b70ba

Error log

Companion DLL
C:\Windows\serviceprofiles\network-
service\appdata\Roaming\Microsoft\
Windows\36b1f4a-82b9-eb06-7c1e-90b4b2d5c27d

Log the date at each execution of the
DLL main

Companion DLL
C:\Windows\ServiceProfiles\NetworkService\AppData\
Roaming\Microsoft\thumbcache_idx.db

Log backdoor actions

Companion DLL
C:\Windows\ServiceProfiles\NetworkService\appdata\
Local\Temp\msmodl.dat

Debug log

Companion DLL
C:\Windows\ServiceProfiles\NetworkService\AppData\
Roaming\Microsoft\Windows\thumbcache_32.db

Log the command id. Used to protect
against replay attacks.

Turla LightNeuron One email away from remote code execution27

Automatic exfiltration

If the configuration parameters SEND_TIME and SEND_AT_NIGHT are set, a thread launched by the DLL main
function will loop indefinitely. As shown in Figure 28, it first waits SEND_TIME seconds and then checks if the
exfiltration should only occur during the night or during working hours. In the latter case, it checks whether
the hour is between 17:00 and 09:00 and if it is true, it re-enters the sleep loop without exfiltrating any files.

Figure 28 // Exfiltration loop with night check (HexRays output)

The exfiltration function, shown in Figure 29, loops over the files that match the SEND_FILE specification.
It is possible to include wildcards in the filename specification to match several different files. Then, for each
file, it will send an email containing the file in either a JPG or a PDF attachment. The Backdoor section details
the sending of the emails.

Figure 29 // Exfiltration loop (HexRays output)

Even though we did not see Turla make use of it in the wild, we believe this functionality might be used
to exfiltrate automatically the emails archived by the zip handler, as this handler does not implement
any exfiltration mechanism.

Turla LightNeuron One email away from remote code execution28

4.4 Evolution
Even without the earliest versions of LightNeuron, we noticed some development effort between
the different versions we have seen:

• There was an effort to obfuscate function names in the .NET Transport Agent.
• Some Indicators of Compromise are different in each sample:

• Mutex names,
• Log file names,
• AES key used by the backdoor.

• The oldest versions only support JPG attachments for the C&C protocol, while the latest versions
also support PDF documents.

4.5 Linux variant
In a previous section, we explained that most of the strings used by LightNeuron are encrypted. It turns
out that some decrypted strings contain strings that make sense only in a Unix environment.

Figure 30 shows some of these strings that refer to Unix. For example, sendmail is a common executable
used to send an email on Linux. Thus, piping email content with cat to sendmail is actually a common way
to send an email in a Linux environment. Further, Postfix is an alternative mail server to sendmail.

Figure 30 // Linux strings in the Windows DLL

These Unix artefacts in the Windows malware could be explained by the possible sharing of code between
Windows and Unix implementations.

Hence, the presence of these strings suggests LightNeuron exists for Linux. That would not be surprising,
given that many organizations have Linux mail servers.

5. REMEDIATION

5.1 Cleaning
The cleaning of LightNeuron is not an easy task. Simply removing the two malicious files will break
Microsoft Exchange, preventing everybody in the organization from sending and receiving emails.

Note to other AV vendors: before adding a detection for the Transport Agent files, be aware that doing
so without a proper cleaning routine will render your infected customer’s exchange servers inoperable,
so proceed with caution.

Turla LightNeuron One email away from remote code execution29

Before actually removing the files, the malicious Transport Agent should be disabled.

First, open <ExchangeInstallFolder>\TransportRoles\Agents\agents.config and check every DLL.
All of the genuine Transport Agents should be signed either by Microsoft a trusted software vendor. The
agents.config file should be similar to Figure 31.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <mexRuntime>
 <monitoring>
 <agentExecution timeLimitInMilliseconds="90000" />
 </monitoring>
 <agentList>
 [...]
 <agent name="Security Interop Agent"
 baseType="Microsoft.Exchange.Data.Transport.Smtp.SmtpReceiveAgent"
 classFactory="Microsoft.Exchange.Security.Interop.
SecurityInteropAgentFactory"
 assemblyPath="c:\program files\microsoft\Exchange Server\v15\bin\
Microsoft.Exchange.Security.Interop.dll"
 enabled="true"
 IsCritical="true" />
 <agent name="Content Filter Agent"
 baseType="Microsoft.Exchange.Data.Transport.Routing.RoutingAgent"
 classFactory="Microsoft.Exchange.Security.Interop.
ContentFilterAgentFactory"
 assemblyPath="c:\program files\microsoft\Exchange Server\v15\bin\
Microsoft.Exchange.Security.Interop.dll"
 enabled="true"
 IsCritical="true" />
 </agentList>
 <settings />
 </mexRuntime>
</configuration>

Figure 31 // agents.config example

In that example, the malicious DLL is Microsoft.Exchange.Security.Interop.dll and two related
Transport Agents are registered:

• Security Interop Agent (called <name1> in the following explanations)
• Content Filter Agent (called <name2> in the following explanations)

Then, on the Exchange server, execute the following PowerShell commands with admin rights:

Disable-TransportAgent -Identity <name1>
Disable-TransportAgent -Identity <name2>
Uninstall-TransportAgent -Identity <name1>
Uninstall-TransportAgent -Identity <name2>

The malicious Transport Agents are now disabled. After that, it is possible to remove the two malicious files
without breaking Microsoft Exchange.

If you do not plan to re-install the mail server, an important last step is to modify the passwords
of all accounts that have administrative rights on the compromised server. Otherwise, attackers could access
the server again to compromise it again.

Turla LightNeuron One email away from remote code execution30

5.2 Mitigations
Given that attackers have gained administrative privileges on the Exchange server, there are no bulletproof
mitigations against this threat. However, these few recommendations can help to detect the compromise
and to make the attacker’s work harder.

• Use dedicated accounts for the administration of Exchange servers with strong, unique passwords
and, if possible, 2FA.

• Monitor closely the usage of these accounts.
• Restrict PowerShell execution.
• Regularly check that all the installed Transport Agents are signed by a trusted provider.

6. CONCLUSION
In addition to their Turla Outlook backdoor [16], LightNeuron is another example that Turla operators
have a large set of sophisticated, custom malware at their disposal.

To our knowledge, this is the first time a malicious actor has leveraged a Microsoft Exchange Transport
Agent to enable persistence on a mail server. This technique is very interesting as it allows them to receive
commands and exfiltrate data without any filtering.

LightNeuron is a very powerful piece of malware. It can spy on all the emails of the compromised organization
but also execute commands, for example, to control other machines on the local network. This makes
it a main hub in the breached network for Turla operators.

We will continue to monitor Turla developments to help defenders to protect their networks.

Indicators of Compromise can also be found on GitHub For any inquiries, or to make sample submissions related
to the subject, contact us at: threatintel@eset com

Turla LightNeuron One email away from remote code execution31

7. BIBLIOGRAPHY
 1 B. KNOWLTON, “Military Computer Attack Confirmed,” New York Times, 25 08 2010. [Online]. Available:

https://www nytimes com/2010/08/26/technology/26cyber html?_r=1&ref=technology. [Accessed 09 04 2018].

 2 MELANI, “ Technical Report about the Malware used in the Cyberespionage against RUAG,” 23 05 2016.
[Online]. Available: https://www melani admin ch/melani/en/home/dokumentation/reports/technical-reports/
technical-report_apt_case_ruag html.

 3 M. Untersinger, “Quelle est la bonne équation pour pacifier le cyberespace ?,” Le Monde, 29 01 2019. [Online].
Available: https://www lemonde fr/pixels/article/2019/01/29/course-aux-cyberarmes-logiciels-destructeurs-dormants-
le-difficile-apaisement-du-cyberespace_5416003_4408996 html.

 4 A. Cherepanov, “GREYENERGY: A successor to BlackEnergy,” ESET, 2018.

 5 A. Cherepanov, “TeleBots are back: Supply-chain attacks against Ukraine,” ESET, 30 06 2017. [Online].
Available: https://www welivesecurity com/2017/06/30/telebots-back-supply-chain-attacks-against-ukraine/.

 6 ESET Research, “Turla Mosquito: A shift towards more generic tools,” 22 05 2018. [Online].
Available: https://www welivesecurity com/2018/05/22/turla-mosquito-shift-towards-generic-tools/.

 7 Kaspersky GReAT, “Shedding Skin - Turla’s Fresh Faces,” 04 10 2018. [Online].
Available: https://securelist com/shedding-skin-turlas-fresh-faces/88069/.

 8 ESET Research, “Carbon Paper: Peering into Turla’s second stage backdoor,” ESET, 30 03 2017. [Online].
Available: https://www welivesecurity com/2017/03/30/carbon-paper-peering-turlas-second-stage-backdoor/.

 9 ESET Research, “Gazing at Gazer - Turla’s new second stage backdoor,” ESET, 08 2017. [Online].
Available: https://www welivesecurity com/wp-content/uploads/2017/08/eset-gazer pdf.

 10 D. Huss, “Turla APT actor refreshes KopiLuwak JavaScript backdoor for use in G20-themed
attack,” 17 08 2017. [Online]. Available: https://www proofpoint com/us/threat-insight/post/
turla-apt-actor-refreshes-kopiluwak-javascript-backdoor-use-g20-themed-attack.

 11 J.-I. Boutin, “Turla’s watering hole campaign: An updated Firefox extension abusing
Instagram,” 06 06 2017. [Online]. Available: https://www welivesecurity com/2017/06/06/
turlas-watering-hole-campaign-updated-firefox-extension-abusing-instagram/.

 12 ESET Research, “Diplomats in Eastern Europe bitten by a Turla mosquito,” ESET, 01 2018. [Online].
Available: https://www welivesecurity com/wp-content/uploads/2018/01/ESET_Turla_Mosquito pdf.

 13 National Cyber Security Centre, “Turla group using Neuron and Nautilus tools alongside Snake malware,”
23 11 2017. [Online]. Available: https://www ncsc gov uk/content/files/protected_files/article_files/Turla%20group%20
using%20Neuron%20and%20Nautilus%20tools%20alongside%20Snake%20malware_1 pdf.

 14 S. Tanase, “Satellite Turla: APT Command and Control in the Sky,” 09 09 2015. [Online].
Available: https://securelist com/satellite-turla-apt-command-and-control-in-the-sky/72081/.

 15 GDATA, “Uroburos – Deeper travel into kernel protection mitigation,” 07 03 2014. [Online]. Available:
https://www gdatasoftware com/blog/2014/03/23966-uroburos-deeper-travel-into-kernel-protection-mitigation.

 16 ESET, “Turla Outlook Backdoor,” 08 2018. [Online]. Available:
https://www welivesecurity com/wp-content/uploads/2018/08/Eset-Turla-Outlook-Backdoor pdf.

 17 GReAT, “APT Trends Report Q2 2018,” Kaspersky Labs, 10 06 2018. [Online]. Available:
https://securelist com/apt-trends-report-q2-2018/86487/.

 18 Microsoft, “Transport agents,” 01 06 2016. [Online]. Available:
https://docs microsoft com/en-us/exchange/transport-agents-exchange-2013-help.

 19 Mozilla, “What is the winmail.dat attachment?,” [Online]. Available:
https://support mozilla org/en-US/kb/what-winmaildat-attachment.

 20 Microsoft, “The Z3 Theorem Prover,” [Online]. Available: https://github com/Z3Prover/z3.

 21 D. Strome, “Configure the Pickup directory and the Replay directory,” 12 08 2016. [Online]. Available: https://
docs microsoft com/en-us/exchange/configure-the-pickup-directory-and-the-replay-directory-exchange-2013-help.

Turla LightNeuron One email away from remote code execution32

 22 D. Strome, “Pickup directory and Replay directory,” 08 12 2016. [Online]. Available:
https://docs microsoft com/en-us/exchange/pickup-directory-and-replay-directory-exchange-2013-help.

 23 M. Schlee, “Hackers used Outlook for cyberattack on German government: report,” Politico, 06 03 2018. [Online].
Available: https://www politico eu/article/report-hackers-used-outlook-for-cyberattack-on-german-government/.

8. IOCS

8.1 Hashes
In order to avoid breaking a compromised Microsoft Exchange server, please read the Cleaning section before
deleting any of the LightNeuron files.

SHA1 hash 3C851E239FBF67A03E0DAE8F63EEE702B330DB6C

Filename Microsoft.Exchange.Security.Interop.dll

Component Transport Agent

Compilation date 26/10/2016

ESET Detection Name MSIL/Turla.A

SHA1 hash 76EE1802A6C920CBEB3A1053A4EC03C71B7E46F8

Filename exrwdb.dll

Component Companion DLL

Compilation date 02/09/2016

ESET Detection Name Win64/Turla.CC

SHA1 hash FF28B53B55BC77A5B4626F9DB856E67AC598C787

Filename Microsoft.Exchange.MessagingPolicies.Search.dll

Component Transport Agent

Compilation date 16/08/2015

ESET Detection Name MSIL/Turla.A

SHA1 hash C1FF6804FDB8656AB08928D187837D28060A552F

Filename BPA.Transport.dll

Component Companion DLL

Compilation date 25/07/2014

ESET Detection Name Win64/Turla.CC

SHA1 hash F9D52BB5A30B42FC2D1763BE586CEE8A57424732

Filename Microsoft.Exchange.MessagingPolicies.Search.exe

Component Transport Agent

Compilation date 20/06/2014

ESET Detection Name MSIL/Turla.A

SHA1 hash 0A9F10925AF42DF94925D07112F303D57392C908

Filename BPA.Transport.dll

Component Companion DLL

Compilation date 01/07/2016

ESET Detection Name Win64/Turla.CC

SHA1 hash A4D1A34FE5EFFD90CCB6897679586DDC07FBC5CD

Filename /

Component Transport Agent

Compilation date 20/06/2014

ESET Detection Name MSIL/Turla.A

Turla LightNeuron One email away from remote code execution33

8.2 Paths
• %tmp%\winmail.dat
• C:\Windows\ServiceProfiles\NetworkService\appdata\Local\Temp\msmocf.xml
• C:\Windows\ServiceProfiles\NetworkService\appdata\Local\Temp\msmodl.dat
• C:\Windows\serviceprofiles\networkservice\appdata\Roaming\Microsoft\

Windows\814ad43-58ab-2cd3-3e68-b82a8f402fd0
• C:\Windows\serviceprofiles\networkservice\appdata\Roaming\Microsoft\

Windows\42cf8a1-6e20-8c24-d35f-82c46d8b70ba
• C:\Windows\serviceprofiles\networkservice\appdata\Roaming\Microsoft\

Windows\36b1f4a-82b9-eb06-7c1e-90b4b2d5c27d
• C:\Windows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft\thumbcache_idx.db
• C:\Windows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft\Windows\thumbcache_32.db

9. MITRE ATT&CK TECHNIQUES

Tactic Id Name Description

Initial Access T1078 Valid Accounts
Attackers probably re-used stolen credentials
to deploy LightNeuron.

Execution T1086 PowerShell A PowerShell script was used to install LightNeuron.

Privilege
Escalation

T1078 Valid Accounts
To have Administrative rights, attackers probably
used stolen credentials.

Discovery T1016
System Network
Configuration Discovery

LightNeuron exfiltrates the result of the functions
GetAdaptersInfo and GetComputerName.

Collection

T1119 Automated Collection
Depending on the configuration, LightNeuron
can collect the files in a specific path.

T1005 Data from Local System
Using a backdoor function, attackers can exfiltrate
any local file.

T1114 Email Collection
LightNeuron collects all the emails matching one rules
specified in its configuration.

Exfiltration

T1020 Automated Exfiltration
Depending on the configuration, LightNeuron
can exfiltrate files located in a specific path.

T1022 Data Encrypted Data is encrypted using AES.

T1041
Exfiltration Over
Command and Control
Channel

Data is exfiltratated using an email C&C channel.

T1029 Scheduled Transfer
Depending on the configuration, automatic exfiltration
can happen during the night or during working hours.

Command
and Control

T1001 Data Obfuscation
C&C data is hidden in PDF documents or JPG images
using steganography.

T1032
Standard Cryptographic
Protocol

C&C data is encrypted using AES.

T1071
Standard Application
Layer Protocol

C&C communication uses emails.

