
A MACHINE-LEARNING
METHOD TO EXPLORE
THE UEFI LANDSCAPE
How we found unwanted UEFI
components hidden in a sea
of millions of samples

ESET Research white papers

Authors:
Filip Mazán
Frédéric Vachon

TLP: WHITE

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE1 TLP: WHITE

CONTENTS
INTRODUCTION 2

BASICS OF UEFI 2

High-level overview of a UEFI-compliant firmware boot flow 2

UEFI firmware layout 3

UEFI executable file format 3

BUILDING A PROCESSING PIPELINE FOR UEFI EXECUTABLES 4

Motivations 4

Analyzing UEFI executables in the context of machine learning 5

Feature engineering 6

Strings representation 6

Multidimensional sequential data 7

Product of the feature engineering 9

Data representation and processing pipeline 9

Nearest neighbors 10

Similarity score 11

Lessons learned designing our processing pipeline 12

DISCOVERIES 13

UEFI firmware backdoors 13

What is a UEFI firmware backdoor? 13

Prevalence of UEFI firmware backdoors 13

Case study: ASUS backdoor 14

Case study: HP Backdoor 15

OS-level persistence modules 17

Overview of known software with firmware persistence 17

Observed techniques 18

Case study: Lenovo Service Engine 18

Case study: Samsung’s SecureGuard 22

Case study: HP Sure Run 25

Security implications 26

CONCLUSION 27

Authors: Filip Mazán and Frédéric Vachon

September 2019

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE2 TLP: WHITE

INTRODUCTION
UEFI (Unified Extensible Firmware Interface) security has been a hot topic for the last few years Several
high-impact vulnerabilities have been found, and even a few rootkits exposed Finding such rootkits in
the wild is a very challenging task, comparable to finding a needle in a haystack In this paper, we share
the results of our year-long research looking for unsafe UEFI components based on a data pool of over
two million unique samples We describe the techniques that we used to filter the sample set down to
the most promising candidates for human analysis We also provide a comprehensive analysis of the
most interesting unsafe components we identified

In the first part of the paper, dedicated to the outlier identification, we describe the process of
extracting UEFI executables’ features from the results of both static and behavioral analysis Then, we
detail the inner workings of the custom, real-time pipeline used to cluster samples and put outliers
under the spotlight This has led to the creation of an internal tool that can be used by analysts to
leverage the pipeline output and concentrate their efforts towards the most relevant samples to
investigate

The second part of the paper focuses on the analysis of the most interesting outliers, which we classified
in two distinct categories: UEFI firmware backdoors, and persistence components for OS-level software
We provide technical details about the various techniques used by the components to achieve their goal,
such as using the Windows Platform Binary Table (WPBT) mechanism to drop and run executables, or
replacing Windows binaries by writing directly to the file system

BASICS OF UEFI
Since a significant part of this paper is dedicated to processing UEFI executables, we begin with a
brief introduction to UEFI firmware UEFI is a specif ication defining the interface that exists between
the OS and the device’s firmware There is an open source reference implementation called EDK II
that is maintained by TianoCore and hosted on GitHub The specification defines a set of standardized
services, called “boot services” and “runtime services”, that are the core APIs available in UEFI firmware
Additionally, firmware functionalities can be extended by registering new services called “protocols” that
can be retrieved by other firmware components Bootloaders can then use these standardized interfaces
to boot the OS

High-level overview of a UEFI-compliant firmware boot flow
A device with UEFI-compliant firmware will go through multiple phases when it boots It will first
go through the SEC (security) phase which is the root of trust of the boot chain Then, the boot goes
through the PEI (Pre-EFI Initialization) phase where core hardware initialization occurs After this,
the system transitions to the DXE (Driver eXecution Environment) phase During this phase, the DXE
dispatcher loads all the DXE drivers it can find in the firmware volumes That’s when the boot services
and runtime services are populated and additional protocols are created Finally, the volume where the
bootloader is located is chosen and the OS loader is executed The UEFI executables that we processed
in the course of this research are those that run from the DXE phase onwards

https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf
https://github.com/tianocore/edk2

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE3 TLP: WHITE

UEFI firmware layout
The UEFI firmware is stored in SPI flash memory, which is a chip soldered on the system’s motherboard
Thus, replacing one of the drives or formatting the system doesn’t affect the firmware code

UEFI firmware is very modular: it usually contains dozens, if not hundreds, of executables To store all
these separates files, the firmware is laid out in volumes using the Firmware File System (FFS), a file
system specifically designed to store firmware images The volumes contain files that are identified
by GUIDs and each of these files contain one or more sections holding the data One of these sections
contains the actual executable image Figure 1 shows an example UEFI FFS listing We used UEFITool, an
open source project for manipulating UEFI firmware images, to help visualize this

UEFI executable file format
There are two executable file formats that are supported by UEFI firmware The first one is Microsoft’s
Portable Executable (PE) format That’s the most common one, especially when it comes to DXE drivers
and OS loaders This is very beneficial for binary analysis since this means that the tooling built upon
Windows executables will most likely work with UEFI executables as well The Subsystem field of the
structure IMAGE_OPTIONAL_HEADERS tells if the PE is a UEFI executable There are four values that
are used by UEFI executables:

• IMAGE_SUBSYSTEM_EFI_APPLICATION

• IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER

• IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER

• IMAGE_SUBSYSTEM_EFI_ROM

Figure 1 // Example UEFI firmware as displayed in UEFITool

https://github.com/LongSoft/UEFITool

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE4 TLP: WHITE

The second format is called the Terse Executable (TE) format; it is used by Pre-EFI Initialization Modules
(PEIM) that are loaded during the Pre-EFI Initialization phase A lot of the PE header fields are unused
by UEFI executables For instance, most of the Data Directories are never used, Windows-specific
fields such as MajorOperatingSystemVersion and MinorOperatingSystemVersion are set to 0, the MZ
header is useless and so on Because of this and the limited space available to store firmware images,
a new executable file format was included in the specification It is an aggressively stripped version of
the PE format The MZ header, the COFF header and the optional headers are replaced by the single
structure displayed in Figure 2, thus giving a very compact file format specifically tailored for the UEFI
environment

BUILDING A PROCESSING PIPELINE FOR UEFI EXECUTABLES
In this part of the paper, we cover the specifics of the processing pipeline that we built to drastically
reduce the number of samples that require human attention We first explain the motivations behind
this project Then, we go through the different choices that we made regarding the feature extraction
process Finally, we cover our experimentation with various algorithms to compute a similarity score
between UEFI executables and hence to identify outliers

Motivations
Very little UEFI-based malware has been found in the past One of the reasons for that is that, until
recently, no security products had visibility into the firmware Thanks to the telemetry gathered by
ESET’s UEFI scanner, we were in a favorable position to start hunting for such malware

The first problem we faced when looking at this task was the large amount of data we needed to dig
through To give an idea of the scale, in the past two years, we’ve seen over 5 5 billion UEFI executables
out of which 2 5 million are unique These files were not only collected from our customers, but also
from public sources such as trusted vendor updates, GitHub repositories and so on Since we had limited
staff resources available to process these samples, it quickly became obvious that we needed some
automated system to reduce this to something that could realistically be processed by a few analysts

Hence we decided to build a system tailored to highlight outlier samples by finding unusual
characteristics in UEFI executables By building this system, we were able to reduce the analysts’
workload by as much as 90% had the analysts been required to analyze all the new samples we
receive Let’s now look at our journey creating this system by demonstrating some of the aspects we
investigated

Figure 2 // Definition of the TE image header from the PI specification 1 6

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE5 TLP: WHITE

Analyzing UEFI executables in the context of machine learning
Although in recent times artificial intelligence (AI) and, more concretely (ML) are very widely and
commonly used terms and are often presented as a silver bullet, they are under no circumstances a
solution for every kind of problem and every kind of input data It is the data scientist’s job first to assess
the situation, next to study the domain, and then work iteratively and in small steps in order to finally
achieve a desired outcome

The first step in every ML-based approach is to understand the data we are working with – in our
case, UEFI executables – and try to find a way to transform the data into a form that machine learning
algorithms can easily understand and work with This meant that we had to devise a process that takes
UEFI executable as inputs and that outputs so-called features In ML jargon, we can understand features
as individually measurable properties or characteristics of observed data, usually in a numeric format
Choosing the correct and descriptive features are crucial factors to the success of every ML-based
solution

In the context of UEFI executable files we have identified two distinct ways how to look at them:

• static analysis – looking at the executable as is, its structure (PE header, sections, procedures, strings),
disassembly, calculated statistics (entropies, occurrences, ratios)

• behavioral analysis – how the sample behaves when executed in an emulation engine, inspecting code
and data flows, gathering statistics about the execution

By extracting information about the executable files using both static and behavioral analysis, we
can gather thousands of distinct artifacts associated with every single executable file Some of these
artifacts are already numeric and can be easily treated as features (e g file size, some of the PE header
entries, number of procedures, strings count), but there are many artifacts that are not in a numeric
format and need to be converted

Figure 3 // The process behind extraction of UEFI executables from SPI flash and extraction of artifacts

SPI UEFI
IMAGE

UEFI
EXE

UEFI
EXE

UEFI
EXE

Behavioral analysisStatic analysis

APIs

GUIDs

Strings

...

...

Entropies

Structures

Statistics

Strings

GUIDs

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE6 TLP: WHITE

Feature engineering
As was previously mentioned, not all artifacts extracted from both static and behavioral analysis of
executable UEFI files can be simply converted to numeric format, which most of the learning algorithms
require

As an example of this kind of artifact transformation we demonstrate the process behind transforming
retrieved strings from the binaries and embedding multidimensional sequential data into numeric
vectors

Strings representation
Strings transformation and representation is a well-known topic in natural language processing and
many different techniques have been devised for distinct applications The most commonly used
techniques for this task, ordered by increasing complexity, are:

• term frequency vectorizer

• tf-idf – (term frequency – inverse document frequency (tf-idf) statistic

• latent semantic analysis (LSA)1 described and patented in 1988 based on singular value decomposition (SVD)

• word2vec2, doc2vec3

For the purpose of transforming strings found by the analysis of UEFI executable files, we have chosen
the third technique – latent semantic analysis This approach was chosen mainly due to the ease of
use of the LSA transformation and its satisfactory performance on our dataset In the future we plan
to experiment also with the other techniques and compare their impact on the final outlier detection
solution

At first, all the strings retrieved from all the binaries are transformed to n-grams (n=3), then term
frequency and tf-idf statistics are computed and finally a truncated SVD is performed on the whole
training dataset From our testing results we concluded that the tf-idf statistic was less performant in
terms of cumulative explained variance than pure term frequency This comparison can be seen in the
figure below

1 DEERWESTER, Scott, et al Indexing by latent semantic analysis Journal of the American society for information science, 1990,
 41 6: 391-407
2 MIKOLOV, Tomas, et al Efficient estimation of word representations in vector space arXiv preprint arXiv:1301 3781, 2013
3 LE, Quoc; MIKOLOV, Tomas Distributed representations of sentences and documents In: International conference on machine learning
 2014 p 1188-1196

Figure 4 // Cumulative explained variance plotted against increasing number of embedding dimensions

https://en.wikipedia.org/wiki/Tf%E2%80%93idf#Term_frequency
https://en.wikipedia.org/wiki/Tf–idf
https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec#Extensions

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE7 TLP: WHITE

The process of transformation of every new binary sample begins with string extraction, n-gram
creation, term frequency calculation and application of truncated an n-dimensional vector that can
fairly accurately describe the content of all the retrieved strings The cumulative explained variance
ratio, depending on the length of the resulting vector, is shown in Figure 4 Based on the tradeoff
between the space requirements for storing the vectors and explained variance, we have chosen an
appropriate dimension count

Multidimensional sequential data
During the analysis of UEFI executables, many sequential artifacts can be extracted – that means it’s
crucial to utilize not just their value, but also the order in which they appear As an example, we are
showing 2 cases – one with three selected statistics about PE sections in the UEFI binary and the other
with a 66x4 other type of statistics extracted from the binary

It is widely known that PE-formatted executable files, which most UEFI binaries are, are composed of
one or more sections These sections represent logical and physical units of either code or data and
various statistics can be computed from them To name two statistics that are used in our approach, we
utilize section size and section entropy

Naturally, with an increasing number of statistics and observations for each PE section, the total
number of dimensions rises It is unwise to use the whole multidimensional vector in the final outlier
computations due to y reduction

Since our data in this case are multidimensional and sequential, we first experimented with convolutional
n-dimensional auto-encoding neural networks The goal of this kind of auto-encoder is to apply multiple
kernels to reduce the dimensionality of the input, while trying to minimize the reconstruction error (this
means to try to reconstruct the original data point from the latent space while keeping as much of the
original information as possible)

The training of the convolutional auto-encoder with Adam optimizer, loss defined by mean squared error
and validation split of 20% converged very quickly, and the resulting reconstruction loss was minimal
Figure 5 shows a random example from the 66x4 sized statistics being reduced to two different latent
space sizes – 8 and 32 – and the model’s reconstruction attempt from it Even by visual inspection, it
can be clearly seen that the auto-encoder can successfully reduce dimensionality to a small fraction of
the original data, which considerably increases the speed and lowers the memory usage of the whole
outlier detection solution

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE8 TLP: WHITE

We have also conducted a comparison of multidimensional convolutional auto-encoder with a simpler
multi-layered perceptron (MLP) auto-encoder With lower latent space size, the convolutional model
performed better than the MLP model With growing latent space, both models’ reconstruction loss
converged In the end, we decided to use the convolutional auto-encoder in order to reduce original
data dimensionality more than the MLP would be able to with the same latent space size

Figure 5 // Example of embedding original sequential data into 8 (left) and 32 (right) latent dimensions with the
corresponding data reconstruction In layman’s terms, the original data (visualized by grayscale image on the left) is

transformed into a fixed-length latent space (represented by numbers), while keeping as much of the original information
in it This is demonstrated by reconstructing the original data from this latent space (visualized by grayscale image on

the right) which should very closely resemble the original data As we can see, the reconstruction from a 32-dimensional
latent space was able to better capture even minor details compared to just 8-dimensional space

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE9 TLP: WHITE

Product of the feature engineering
To sum it up, after the feature engineering phase, every executable UEFI binary can be transformed into
a multidimensional vector by using various preprocessing steps, such as string transformations,
auto-encoders, binnings, one-hot encodings and other techniques

Data representation and processing pipeline
Our defined goal is to find oddities among incoming UEFI binaries That means we have to define a
metric by which we can tell how similar or close any two UEFI binaries are in their vector spaces, in
order to examine whether any incoming UEFI binary is similar to what we have already seen and how
similar it is Many metrics were evaluated, like cosine distance, Manhattan distance and Euclidean distance
The one that performed the best and that is compatible with the data structure we are using for storage
and indexing was plain Euclidean distance

As we previously outlined, the key component of determining whether a UEFI binary is an oddity is to
find the binaries most similar to it and analyze their distances and the sample neighborhood as a whole
in Euclidian space

Figure 6 // Reconstruction losses for smaller dataset dimensionality (left) and a bigger one (right) for two distinct auto-
encoder architectures – convolutional (Conv2D) and multi-layered perceptron (MLP)

Figure 7 // High level overview behind the transformation of a UEFI executable into a vector space

Strings
transformation

...

n-dimensional
vector

Sequences
transformation

Static analysis

Behavioral
analysis

UEFI
EXE

https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Data_binning
https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/Cosine_similarity
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
https://en.wikipedia.org/wiki/Euclidean_distance

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE10 TLP: WHITE

Nearest neighbors
There exist many algorithms for finding the nearest neighbors in Euclidean space, some of which we
mention in this next section

The naïve brute-force approach relies on sequential distance calculations for each sample in the dataset
The performance of brute-forcing is, however, unsatisfactory, as it scales as O(DN2), where D represents
number of dimensions and N the number of samples in the dataset In early testing on our dataset,
calculating the nearest neighborhood for one UEFI sample took over 2 5 seconds This is a very high
number, considering we are planning to use these neighborhood searches in real time and we will be
making possibly millions of such calculations in our ever-growing dataset

Instinctively we knew we had to look for other solutions not based on brute-force – ideally, tree-
based – as trees are well known data structures with beneficial performance characteristics At first,
we tried a simple k-dimensional tree, which can efficiently remove large parts of the search space while
searching The downside of k-d trees is their inability to handle higher dimensionality data efficiently
Generally speaking, the number of samples, N, should be much larger than 2k, for k-dimensional space,
or N >> 2k If this condition is not met, their performance degrades drastically, beyond the point of
efficiency of brute-force approach Another downside of trees in general is that they take some time
to construct, which in our case was 3 minutes and 26 seconds Evaluation of k-d trees on our dataset
yielded an average time needed for calculating nearest neighborhood of 0 027 seconds, which is already
significantly less that the brute-force approach

Another tree-based approach that should not suffer from performance degradation in higher
dimensions is a ball tree This tree gets its name from the fact that it organizes its nodes as high
dimensional hyperspheres known as balls defined by their centroid and radius Evaluation of ball trees
on our dataset yielded an average time needed for calculating nearest neighborhood of 0 17 seconds and
the construction time of over 8 minutes

The last tree-based approach we evaluated for our nearest neighbor searching effort is a vantage-point
tree (vp-tree) By definition, vp-trees are similar to ball trees, as they divide space by using hyperspheres
The difference is that vp-trees partition the space using only one hypersphere per node and the data
points either lie in the hypersphere or out of it, whereas the ball trees partition the data points strictly
inside the defined hyperspheres, which may overlap Evaluation of vp-trees on our dataset yielded an
average time needed for calculating nearest neighborhood of 0 023 seconds and the construction time
of approximately 2 minutes and 54 seconds

Figure 8 // Comparison of construction and query time of four nearest neighborhood finding approaches on our dataset

https://scikit-learn.org/stable/modules/neighbors.html#brute-force
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Vantage-point_tree
https://en.wikipedia.org/wiki/Vantage-point_tree

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE11 TLP: WHITE

According to the results, the native vp-tree library performed the best in regards both to the
construction time and query time, and that is why we have chosen to use it in the real-time process of
searching nearest neighbors

Similarity score
Now that we can quickly and efficiently retrieve the nearest neighborhood to any UEFI executable, we
can analyze all the relevant neighbors and their relation to the target executable

One of the factors we use to compute the final verdict about an incoming UEFI executable is the layout
of its local neighborhood At first, we analyze information about possible local clusters within the region
To find out whether there are sample clusters present, we run DBSCAN4 An example visualization of a
T-SNE projection5 of a sample neighborhood with clusters marked is presented in the Figure 8 Next, the
distances to nearest files are processed, and the system then evaluates whether the target executable
is likely to be known benign, known malicious, or an oddity that should be inspected by an analyst The
result of this process is, that each incoming executable is assigned a “similarity” score in the range of
zero to one Files with the lowest similarity score are then inspected by an analyst with the highest
priority

Finally, each new incoming UEFI executable file is added back to all the data structures and dataset,
so the whole process can be running in real-time and the results can be up-to-date with each new
incoming file This achieves the correctness of the process in circumstances, when e g new firmware is
released and there is a burst of never-seen-before files, out of which the analysts need to inspect only
the representative samples

4 ESTER, Martin, et al A density-based algorithm for discovering clusters in large spatial databases with noise In: Kdd 1996 p 226-231
5 MAATEN, Laurens van der; HINTON, Geoffrey Visualizing data using t-SNE In: Journal of machine learning research, 2008 p 2579-2605

Figure 9 // Example of clusters found in samples’ local neighborhood

https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE12 TLP: WHITE

As a proof of concept, we tried to evaluate the whole system on known suspicious and malicious UEFI
executables, most notably the LoJax DXE driver, which had not previously been included in our dataset
The system successfully concluded that the LoJax executable was very dissimilar to anything we had
ever seen before and assigned it a similarity score of 0 The closest UEFI executables to this LoJax
executable were found to be NTFS drivers and other applications utilizing NTFS, but the distances to
them were still fairly large This is an expected result, LoJax executable embeds an NTFS driver to be able
to drop malicious content All in all, this test gives us a degree of confidence that if another similar UEFI
threat emerged, we would be able to identify it as an oddity, so the analysts could investigate it with
high priority

Lessons learned designing our processing pipeline
In this part of the paper, we have presented ESET’s ML-based approach for discovering oddities in the
vast landscape of UEFI executables Given that we have seen over 2 5 million unique UEFI binaries in
the past two years alone, the need for automating the process arose naturally In our research efforts
we have been examining and comparing multiple approaches of every part of the process, from feature
extraction, text embedding, embedding multidimensional data through efficient storage and querying
of samples’ neighborhoods to generate a final scoring algorithm All of this was done while taking into
account performance and real-time capabilities of the techniques chosen

With an efficient method of retrieving the nearest neighbors to any incoming UEFI binary, we have set
up a system of assigning similarity scores to these incoming executables, comparing them to previously
seen files Using the LoJax DXE driver – a known malicious file that was not included in our dataset – as
a proof of concept, we demonstrated the system’s strong capabilities in identifying oddities in the sea of
UEFI samples Our findings make us confident that should a new UEFI threat emerge, we will be able to
spot and promptly analyze it

According to the statistics collected from the system, the ML-based approach can reduce the workload
of our analysts by up to 90% (if they were to analyze every incoming sample) Further, thanks to the
fact that each new incoming UEFI executable file is added back to the data structures and dataset, our
solution offers real-time monitoring of UEFI landscape

Figure 10 // The pipeline behind each new incoming UEFI executable

[0.12; -1.4; ...]

Target Number vector vp-tree

T-SNE visualization

DBSCAN clustering

Similarity score

2-D graph
1. [0.11; -1.3; ...]

2. [0.11; -1.25; ...]

3. ...

N. [0.4; 0.42; ...]

0.01

Dist.

0.2

13.2

Neighborhood

UEFI
EXE

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE13 TLP: WHITE

DISCOVERIES
In the second part of this paper, we present the results of our hunting using the system described above
The interesting components that we found can be grouped in two categories: UEFI firmware backdoors
and persistence for OS-level software For each of these categories, we provide an explanation of what
they are and we analyze the cases we deemed the most interesting Finally, we discuss the security
issues that are introduced by embedding such components in UEFI firmware

UEFI firmware backdoors

What is a UEFI firmware backdoor?
The first group of firmware components that we cover here are UEFI firmware backdoors Let’s first
describe what they are In most of the UEFI firmware setups, options are available to password protect
the system from unauthorized access during the early stages of the boot process The most common
options allow setting passwords to protect access to the UEFI firmware setup, to prevent the system
from booting and to access the disk UEFI firmware backdoors are mechanisms that allow bypassing
these protections without knowing the user-configured password They are sometimes triggered by
pressing a specific combination of keys when asked to enter the password and sometimes activated
when a user enters multiple invalid passwords in a row For the latter, the UEFI firmware setup is
usually locked by displaying a code from which the backdoor password can be computed Such a dialog
is shown in Figure 11

While it could be argued that these mechanisms would rather be called recovery mechanisms than
backdoors, we’re using the latter because that is how they were named by the firmware developers
themselves In a lot of the cases, the mechanism either used UEFI variables or filenames containing the
word “Backdoor”

Prevalence of UEFI firmware backdoors
UEFI firmware backdoors are very common They are used as a recovery mechanism in case the
computer’s owner forgets the password Password generators for multiple OEMs firmware are available
online As an example, this blogpost contains generators for many vendors, such as HP, ASUS, Sony and
Samsung Most importantly, it also provides generators for Insyde Software and Phoenix Technologies’
firmware Insyde Software, Phoenix Technologies and American Megatrends Incorporated are the three
companies developing base implementations of UEFI firmware that they sell to OEMs who can then
customize them to their needs Having backdoors implemented at this level means that they are likely
to be included in all the firmware of OEMs buying their base implementation from Insyde Software and
Phoenix Technologies

Figure 11 // Example of a backdoor access prompt

http://dogber1.blogspot.com/2009/05/table-of-reverse-engineered-bios.html

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE14 TLP: WHITE

We present two UEFI firmware backdoors that we analyzed during this research to illustrate the two
types of backdoor we mentioned We’ll cover a backdoor present in ASUS laptops and then another one
that we found on some HP notebooks

Case study: ASUS backdoor

Among all the backdoors we analyzed, the ASUS backdoor is by far the most prevalent The name
doesn’t come from us; it was used in some ASUS firmware where the executable responsible for
validating the backdoor password was called AsusBackDoor We found this backdoor in all the ASUS
laptops we examined Here’s the list of models we know are affected, but the list should be longer:

• Taichi 31

• ZenBook UX301LA

• ROG G550JK

• ROG ZEPHYRUS (GX501)

• ZenBook UX430UQ

• VivoBook Max X541UA

The ASUS UEFI firmware setup usually has three different type of protections that can be configured:

• Administrator password: Password prompt to access the UEFI firmware setup

• User password: Password prompt upon system boot

• HDD Password: Access to the disk is password protected

When prompted for one of these passwords, pressing ALT+R will open the backdoor prompt Depending
on the laptop models, entering the right password will either remove all of these passwords or only the
administrator and user password

In most of the cases we looked at, the UEFI executable responsible for validating the password is a DXE
driver that installs a protocol identified by the GUID c3940226-bf56-4f4f-941b-dba05b7ec3c1 This
protocol is then resolved by AMITSE, the UEFI executable implementing the UEFI firmware setup, also
called the “Text Setup Environment”

Figure 12 shows one implementation of the code executed when the backdoor prompt validates a
password This code is from the UEFI firmware version 300 of an ASUS ROG GL552VW At first, the
backdoor protocol is resolved using LocateProtocol, then the user input is validated using the API
exposed via this protocol If the validation succeeds, the first 0x50 bytes plus two additional fields of
the AMITSESetup variable are zeroed out, thus disabling the user and administrator UEFI firmware
passwords

https://ami.com/ami_downloads/Aptio_TSE_Users_Guide.pdf

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE15 TLP: WHITE

We notified ASUS about this backdoor in April 2019 and they released f irmware updates on 14 June
2019 We manually looked at the updates for models ROG G550JK, ZenBook UX301LA and VivoBook
Max X541UA and can confirm that the backdoor we described here was removed If you own any ASUS
notebook, we strongly advise you to apply the latest firmware update from the ASUS website

Case study: HP Backdoor

The other example of a UEFI firmware backdoor that we cover here was found on HP Pavilion 15 and
HP Spectre x360 firmware It’s very likely there are other HP notebooks affected as well This backdoor
is of the second type we mentioned earlier It is activated when a user enters the wrong UEFI firmware
password too many times

When this happens, the UEFI firmware backdoor is activated and access to the UEFI firmware setup
is blocked and a dialog displays a 32-bit value in its hexadecimal form as shown in Figure 13, which
contains a picture taken by a user asking for help on the HP Community forum

Figure 12 // Hex-Rays output of the password clearing code in AMITSE

Figure 13 // Example of an HP UEFI firmware setup locked after too many failed password attempts

https://www.asus.com/support/FAQ/1040162
https://www.asus.com/support/FAQ/1040162

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE16 TLP: WHITE

The user is then asked to enter the correct backdoor password derived from this value

Under the hood, when too many incorrect passwords are entered, the system generates a value using
the rdtsc instruction and stores it in a UEFI variable called BackDoor Figure 14 shows the routine
implementing this

The generated value in the Backdoor variable is retrieved when the user submits a backdoor password
The user input, which is the hexadecimal representation of a 32-bit value, is then converted to an
integer A checksum is computed based on a hardcoded key and the “Backdoor” value If the result
matches the user input, the system is unlocked The code responsible for this is shown in Figure 15

We have seen other similar, UEFI firmware backdoors during our research The behavior being very
similar to the ones we described, we have limited ourselves to describing only these two Security issues
related to these firmware components will be covered in the Security implications section The following
part of the paper is dedicated to firmware components used as persistence mechanisms for Windows
software

Figure 14 // Hex-Rays output of the routine generating the backdoor password value

Figure 15 // Hex-Rays output of the routine validating the backdoor password

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE17 TLP: WHITE

OS-level persistence modules
During the course of our research, we have uncovered multiple firmware components that were
responsible for installing software at the operating system level In this section, we give an overview of
the publicly known software that is installed from the UEFI firmware We then describe the techniques
that are used to achieve this goal Finally, we provide a technical analysis for the cases that stand out

Overview of known software with firmware persistence
Probably the most well-known software to have a persistence mechanism in the firmware is Absolute
Software’s LoJack, previously known as Computrace LoJack is anti-theft software that allows tracking
and helping to recover stolen devices

Since thieves are likely to format the disk of the stolen device: to be effective, the anti-theft solution
has to survive this kind of manipulation To achieve this goal, the persistence module was added to
the firmware Anti-theft software is the reference use-case for installing OS-level software from the
firmware

However, this technique was quickly adopted by some OEMs to provide additional persistence to
their preloaded software In 2015, it became known publicly that Lenovo had added a module to its
firmware to install Lenovo Service Engine (LSE) According to the Chinese company, this program was
used to send non-identifiable system information to their server It was also responsible for installing
Lenovo OneKey Optimizer, software they describe as “a powerful, next-generation system optimization
software designed specifically for Lenovo computers [that] can enhance your PC’s performance by
updating the firmware, drivers, and pre-installed apps [and] also provides power management schemes
that can extend the life of your battery ”6 LSE was quickly removed from the firmware after researchers
found that it was affected by vulnerabilities 7

6 https://support lenovo com/au/en/downloads/ds103119
7 https://support lenovo com/bo/sv/product_security/lse_bios_notebook

Figure 16 // Lenovo OneKey Optimizer screenshot from thinkwiki org

https://support.lenovo.com/au/en/downloads/ds103119
https://support.lenovo.com/bo/sv/product_security/lse_bios_notebook

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE18 TLP: WHITE

In 2018, an article from Tech Power Up revealed that ASUS was also installing software from a
component located in the firmware The software installed is called ASUS Armoury Crate Details about
this software can be found here

In the course of our research, we’ve come across three other components installed from the firmware:
Samsung’s Secure Guard, HP Sure Run agent, and Phoenix Failsafe We discuss two of them in the
section dedicated to the technical analysis

Observed techniques
When Computrace was first created, no dedicated Windows mechanism existed for the firmware to tell
Windows it wanted to install software Thus, developers needed to find alternative ways to achieve this
goal The technique that was used back then was to replace a Windows executable that is launched at
startup To do so, the firmware needs to implement its own NTFS driver to get file-based access to the
Windows partition and overwrite the targeted executable We’ve seen two system executables targeted

The first one is autochk.exe Autochk is launched early during the Windows boot process and performs
integrity checks on file systems It is the most common scenario we observed That’s the executable
that Computrace/LoJack replaced for years This is also the executable that was replaced by LoJax, a
UEFI rootkit discovered by ESET researchers in 2018 The rootkit mimicked the architecture of LoJack to
achieve persistence

The other executable that is targeted is spoolsv.exe Spoolsv is a component of the print spooler
subsystem It was used to install Phoenix Failsafe Failsafe is anti-theft software that was acquired by
Absolute Software Corporation back in 2010 It was also used by Samsung’s Secure Guard, which we
cover in this paper

For the sake of completeness, we should mention that Hacking Team’s UEFI rootkit achieved persistence
by installing malicious OS-level components in the Start Menu folder

Microsoft noticed that these techniques were used and introduced a mechanism that allows the
firmware to notify the OS that it wants to install and launch an executable This mechanism is called
the Windows Platform Binary Table (WPBT) The firmware needs to install a custom Advanced
Configuration and Power Interface (ACPI) table of type WPBT that points to a Portable Executable
binary loaded in physical memory During the OS initialization, the session manager will write the binary
to disk in \Windows\System32\Wpbbin.exe and run it The binary must be digitally signed Microsoft
published the documentation for the WPBT that can be found here With the introduction of this feature,
OEMs have shifted to using this mechanism when supported

Case study: Lenovo Service Engine
The first case study that we cover is software called Lenovo Service Engine (LSE) that used to have a
persistence module embedded in the firmware In 2015, following the disclosure of vulnerabilities by
security researchers, Lenovo issued a firmware update where they removed LSE While LSE’s firmware
component uses the WPBT to install the OS-level software, it also uses some peculiar techniques to
convey additional information from the firmware to the operating system Since this way of doing
things really stood out compared to other similar solutions, we decided to include a technical analysis of
LSE in this paper

https://www.techpowerup.com/248827/asus-z390-motherboards-automatically-push-software-into-your-windows-installation
https://www.asus.com/support/FAQ/1037690/
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-spooler-components
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-spooler-components
https://www.absolute.com/about/pressroom/press-releases/2010/absolute-software-acquires-failsafe-and-freeze-anti-theft-assets-from-phoenix-technologies/
https://download.microsoft.com/download/8/A/2/8A2FB72D-9B96-4E2D-A559-4A27CF905A80/windows-platform-binary-table.docx

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE19 TLP: WHITE

The firmware component that attracted our attention is called LSEInit efi This UEFI executable contains
the string WINDOWS\SYSTEM32\LSEF.exe LSEInit only checks if this file exists on Windows partition,
which we thought was interesting because LSEInit is a firmware component Digging a little bit deeper,
we found a second UEFI executable called LUFTSys efi This one also references a lot of Windows-
related data such as PE executables and registry keys All of this data is added in a custom ACPI table
called LUFT Interestingly, the string ‘LSEF’ was also added to that table Figure 17 shows part of the
code that initializes the 354786-byte long ACPI table We knew we were on the right path, but yet had
no clue as of how this LSEF exe file was written to the file system

That’s where the final piece of the firmware-side of the puzzle comes to play Another UEFI executable
that we’ll refer to as the LSE dropper, identified by the GUID 31e5caf3-a471-4e73-9f93-6f59dd4424f1,
is responsible for adding a WPBT ACPI table Since it is a UEFI application and not a DXE Driver, it
is not loaded automatically by the DXE dispatcher It needs to be executed manually by a firmware
component Interestingly, the dropper is read from the firmware and executed by the Computrace
module

The LSE dropper also decompresses a native application embedded in its text section It then creates
a WPBT ACPI table pointing to the application in physical memory This is the final component of the
firmware side of LSE The firmware side of the architecture is shown in Figure 18

Figure 17 // Hex-Rays output of part of the LUFT ACPI table initialization

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE20 TLP: WHITE

Figure 18 // Architecture of Lenovo Service Engine (LSE): Firmware side

Figure 18 // Architecture of Lenovo Service Engine (LSE): Firmware side

LUFT ACPI Table

Registry keys

Create and install

Luft.sys UEFI Dropper

Executables

WPBT ACPI Table

Firmware
Environment

Native appEXE

Create and install

WPBT ACPI Table

Native app

OS Environment

Windows Session
manager

Read

Read

rpcnetp.exe

EXE

LSEF.exe

EXE

Native App

EXE

LSEDT.exe

EXE

LSEPreDownloader.exe

EXE

Lenovo Server

Extract archive, validate the binary
signature and execute it

[...]

[...]

UsbFilter
service

LUFT ACPI Table

Registry keys

ExecutablesInstall Install

Query archive over HTTP

Send archive

Extract and write
to disk

Write to disk
and execute

Write to disk

Check signature
and execute

Write to disk
and create service

EXE

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE21 TLP: WHITE

Let’s now look at what happens on the OS side Figure 19 illustrates the execution flow as well as
the components involved Since a WPBT ACPI table exists, the Windows session manager writes the
native application referenced in the table to \Windows\System32\Wpbbin.exe and executes it This
application decompresses rpcnetp exe, which is embedded in its text section, and writes it to disk
Then, it retrieves the LUFT ACPI table and parses it Figure 20 shows the code responsible for reading
and extracting data from this custom ACPI table, which contains all the configuration and the PE
executables that LSE installs

LSE starts by installing a USB filter kernel driver To support both versions of Windows, a 32-bit
and a 64-bit version of the driver are in the LUFT table Then, LSEF exe is written into WINDOWS\
SYSTEM32\ and persistence is added by modifying the BootExecute Registry key in HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager

LSEF exe embeds two other binaries (LSEDT exe and LSEPreDownloader exe), which are written
to the System32 directory, and it installs LSEDT exe as a Windows service LSEDT exe then runs
LSEPreDownloader exe, which queries Lenovo’s server to get an additional executable that, once
fetched, is written to disk and executed

The communication is done over HTTP, allowing for a man–in-the-middle (MitM) attack However, the
signature of the binary is checked before execution Figure 21 shows the code responsible for asserting
that the signer certificate is issued by a trusted certificate Additionally, it checks whether the Common
Name (CN) or the Organization (O) field equals “Lenovo Ltd” These security measures strongly mitigate
the risk of an attacker delivering a malicious executable while spoofing the HTTP response

Figure 20 // Hex-Rays output of the routine parsing the LUFT ACPI table

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE22 TLP: WHITE

Case study: Samsung’s SecureGuard
The second case we cover in this paper is Samsung’s SecureGuard SecureGuard is a good example of
how software installed by UEFI firmware can introduce an additional attack surface SecureGuard is a
solution installed by the firmware that is responsible for downloading and installing SW Update Guide, a
utility tool to keep software up to date The main issue is that one of the Windows executables installed
by the firmware downloads and executes a file fetched over HTTP without validating it Hence, an
attacker in a MitM situation can send an arbitrary executable to the Samsung device The vulnerable
executable is embedded in the firmware image, thus making it difficult to issue a security fix

Figure 22 shows the architecture of SecureGuard from the firmware components up to the final
vulnerable executable running on Windows

Figure 21 // Hex-Rays output of the signer’s certificate issuer validation

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE23 TLP: WHITE

SecureGuard has a component in the UEFI firmware The UEFI executable is either called
SecureGuardDxe or PhxSgDxe This executable runs during the DXE phase of the platform initialization
Its role is to load three PE binaries from the SPI flash into memory and write them to the Windows
partition To run during early Windows boot, SecureGuard backups the original spoolsv exe file and
replaces it with its own file

Figure 22 // Architecture of SecureGuard

SecureGuardDxe

C:\Windows\system32\spoolsv.exe

C:\Windows\system32\Spoolsync.exe

C:\Windows\system32\Invoker.exe

C:\Windows\system32\spoolsv.exe

C:\Windows\system32\spoolsv.exe.org

Copy

Drop

EXE

EXE

EXE

EXE

EXE

Firmware
Environment

spoolsv.exe

EXE

Spoolsync.exe

EXE

Invoker.exe

EXE

Original
spoolsv.exe

EXE
OS Environment

Samsung server

Create
scheduled task

Execute

GET/ORCAIF.asmx/ORCALastSetupGuideFileURL

URL to download

Send file

GET /<URL to download>

Restore
and execute

Execute

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE24 TLP: WHITE

When Windows starts its services, SecureGuard’s version of spoolsv exe runs and creates a new process
by running spoolsync exe Spoolsync restores the original spoolsv exe and then launches Invoker exe
impersonating the current user using the CreateProcessAsUser API call Thus, Invoker exe doesn’t run
as NT AUTHORITY\SYSTEM, but rather with the privileges of the current user

Invoker exe is the vulnerable component in this solution It queries Samsung’s server to retrieve a URL
pointing to the executable to download Figure 24 shows the first request that is performed over HTTP
Let’s note that the “%20HTTP/1 1” is a mistake from the developers, who appended the HTTP string in
the URL

The response to this request is an XML document containing the URL of the executable as shown in
Figure 25

Figure 23 // Hex-Rays output of SecureGuard’s UEFI executable code responsible for writing files to disk

Figure 24 // First HTTP request to Samsung’s server

Figure 25 // XML response containing the URL to download

GET /ORCAIF.asmx/ORCALastSetupGuideFileURL?XMLVERSION=string%20HTTP/1.1

HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64;

Trident/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR

3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)

Host: orcaservice.samsungmobile.com

Connection: Keep-Alive

<?xml version=”1.0” encoding=”utf-8”?>

<LastFileURLResp xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xmlns=”http://

orcaservice.samsungmobile.com/”>

 <SWINFO>

 <CISREV>BASW-13498A09</CISREV>

 <FURL>http://orcaservice.samsungmobile.com/dl/client/SecSWMgrGuide.exe_</

FURL>

 </SWINFO>

</LastFileURLResp>

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE25 TLP: WHITE

Invoker exe then downloads the given URL and creates a scheduled task so that it runs every time a
user is logged in Since all the communications are done over HTTP, an attacker in a MitM position could
easily modify or spoof the response pointing to a malicious binary that would be executed instead

What makes this attack possible is the fact that the downloaded binary is not subject to any type of
validation While it is common for such software to download a URL over HTTP (we’ve seen this above
with Lenovo Service Engine), it is unusual not to perform any integrity check on the binary before
executing it

We looked at the latest versions of the UEFI firmware for devices with SecureGuard Samsung removed
this solution in the latest firmware updates Since Samsung uses an internal platform ID number to
identify their devices before downloading the proper firmware update, we were unable to find what
Samsung devices have SecureGuard installed Hence, we strongly suggest that you download the latest
firmware update for your Samsung devices

Case study: HP Sure Run
The last case we cover is an HP agent that hasn’t been publicly analyzed before HP provides a PDF
document detailing the userland agent, but the fact that it is installed from the firmware wasn’t
covered

HP Sure Run agent has a firmware module that is responsible for installing an ACPI WPBT table pointing
to a native application embedded in the firmware image HP’s usage of the WPBT mechanism is more
aggressive than what we’re used to seeing with other OEMs Instead of solely installing the table, the
firmware component registers a callback on ACPI table creation to stop other firmware components
from installing a WPBT Figure 26 shows the code of this callback Furthermore, if a WPBT is already
installed when the HP firmware component wants to create its own, it retrieves the existing table and
replaces the binary pointed to by HP’s native application

The native application installed by the firmware creates a Windows service as shown in Figure 27
The service points to HP_SureRun exe, a NET executable embedded in its resource section The
documentation provided by HP accessible here describes HP Sure Run as a “hardware-enforced
application persistence solution” We did not audit the solution for vulnerabilities

Figure 26 // Hex-Rays output of the callback blocking WPBT creation

http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-2200ENW.pdf

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE26 TLP: WHITE

Security implications
In the final part of this paper, we discuss the security issues that arise from the inclusion of UEFI
firmware backdoors and persistence modules in the firmware

Let’s first look at the UEFI firmware backdoors One of the main problems with them is that they
allow an attacker to unlock the UEFI firmware setup where key security mechanisms are configured
SecureBoot, for instance, is one of the most important mechanisms in the boot chain of trust If an
attacker gets physical access to a machine with a UEFI firmware backdoor, he can disable SecureBoot
and replace the bootloader with a malicious one

While it could be argued that SecureBoot is not a security mechanism against physical access, other
security mechanisms specifically tailored against physical access are also configured via the UEFI
firmware setup For instance, it is possible to lock the device boot order and disable USB devices in the
pre-OS environment from the UEFI firmware setup Configuring both these settings is meant to reduce
the risk of an attacker booting from an alternative source than the bootloader already installed on the
machine While the efficiency of such a mechanism against physical attack can be debated, it is clear
that UEFI firmware backdoors allow bypassing it completely The same can be said of other features
such as fingerprint authentication and chassis intrusion detection

Another side of it is the false sense of security it gives to the user By configuring a password to prevent
the system from booting, users may think their computers are unbootable by anyone who doesn’t
possess the password Because of UEFI firmware backdoors, this protection mechanism does not fulfill
its duty We believe it is important that users know the limits of the protections they use and hope this
paper helps in that regard

As for the persistence modules embedded in the firmware, the main problem resides in the fact that the
delivery of firmware updates is fairly complicated Most of computer users do not update their firmware,
while the only way to fix vulnerable software stored in the firmware is to do so This means that a
computer shipped with a vulnerable firmware component will most likely remain vulnerable during the
system’s complete lifetime

LSE is a good example of such vulnerable software stored in the SPI flash memory After security
researchers disclosed vulnerabilities in this solution, Lenovo issued a firmware update in which LSE was
removed To patch their systems, users had to follow the steps mentioned in this security advisory This
is not an efficient mechanism to massively distribute a security fix and it illustrates how complicated
delivering firmware security updates is For this reason, we believe firmware persistence should be
avoided as much as possible and limited to cases where it is strictly necessary as is the case with
anti-theft solutions

Figure 27 // Hex-Rays output of the service creation function call

https://support.lenovo.com/sk/sk/product_security/lse_bios_notebook

A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE27 TLP: WHITE

CONCLUSION
While our UEFI executable processing pipeline did not allow us to find UEFI malware yet, the results it
has produced so far are promising Some of the identified outliers used techniques that could’ve been
used by malware to achieve persistence at the OS level The same heuristics that allowed us to catch
Samsung SecureGuard would’ve caught Hacking Team and Sednit’s UEFI rootkits, which are both using
an NTFS driver to deploy malware on Windows partition Additionally, the similarity score computed on
LoJax and public proof-of-concept UEFI malware were very low, assertively classifying them as outliers
The future will tell if this story has another chapter

Special thanks to Hamidreza Ebtehaj and Martin Smolár for their help in the analysis

ABOUT ESET
For 30 years, ESET® has been developing industry-leading IT security software and services for

businesses and consumers worldwide With solutions ranging from endpoint and mobile security,

to encryption and two-factor authentication, ESET’s high-performing, easy-to-use products give

consumers and businesses the peace of mind to enjoy the full potential of their technology ESET

unobtrusively protects and monitors 24/7, updating defenses in real time to keep users safe and

businesses running without interruption Evolving threats require an evolving IT security company

Backed by R&D centers worldwide, ESET becomes the first IT security company to earn 100 Virus

Bulletin VB100 awards, identifying every single “in-the-wild” malware without interruption since 2003

For more information, visit www eset com or follow us on LinkedIn, Facebook and Twitter

http://www.eset.com/int/
https://www.eset.com/int/about/newsroom/awards/eset-first-to-break-magical-100-vb100-awards-threshold/
https://www.eset.com/int/about/newsroom/awards/eset-first-to-break-magical-100-vb100-awards-threshold/
https://www.linkedin.com/company/28967?trk=tyah&trkInfo=tarId%3A1402921556545%2Ctas%3AESET%2Cidx%3A2-1-4
https://www.facebook.com/eset?ref=br_tf
https://twitter.com/ESET

