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INTRODUCTION
UEFI (Unified Extensible Firmware Interface) security has been a hot topic for the last few years  Several 
high-impact vulnerabilities have been found, and even a few rootkits exposed  Finding such rootkits in 
the wild is a very challenging task, comparable to finding a needle in a haystack  In this paper, we share 
the results of our year-long research looking for unsafe UEFI components based on a data pool of over 
two million unique samples  We describe the techniques that we used to filter the sample set down to 
the most promising candidates for human analysis  We also provide a comprehensive analysis of the 
most interesting unsafe components we identified 

In the first part of the paper, dedicated to the outlier identification, we describe the process of 
extracting UEFI executables’ features from the results of both static and behavioral analysis  Then, we 
detail the inner workings of the custom, real-time pipeline used to cluster samples and put outliers 
under the spotlight  This has led to the creation of an internal tool that can be used by analysts to 
leverage the pipeline output and concentrate their efforts towards the most relevant samples to 
investigate 

The second part of the paper focuses on the analysis of the most interesting outliers, which we classified 
in two distinct categories: UEFI firmware backdoors, and persistence components for OS-level software  
We provide technical details about the various techniques used by the components to achieve their goal, 
such as using the Windows Platform Binary Table (WPBT) mechanism to drop and run executables, or 
replacing Windows binaries by writing directly to the file system 

BASICS OF UEFI
Since a significant part of this paper is dedicated to processing UEFI executables, we begin with a 
brief introduction to UEFI firmware  UEFI is a specif ication defining the interface that exists between 
the OS and the device’s firmware  There is an open source reference implementation called EDK II 
that is maintained by TianoCore and hosted on GitHub  The specification defines a set of standardized 
services, called “boot services” and “runtime services”, that are the core APIs available in UEFI firmware  
Additionally, firmware functionalities can be extended by registering new services called “protocols” that 
can be retrieved by other firmware components  Bootloaders can then use these standardized interfaces 
to boot the OS 

High-level overview of a UEFI-compliant firmware boot flow
A device with UEFI-compliant firmware will go through multiple phases when it boots  It will first 
go through the SEC (security) phase which is the root of trust of the boot chain  Then, the boot goes 
through the PEI (Pre-EFI Initialization) phase where core hardware initialization occurs  After this, 
the system transitions to the DXE (Driver eXecution Environment) phase  During this phase, the DXE 
dispatcher loads all the DXE drivers it can find in the firmware volumes  That’s when the boot services 
and runtime services are populated and additional protocols are created  Finally, the volume where the 
bootloader is located is chosen and the OS loader is executed  The UEFI executables that we processed 
in the course of this research are those that run from the DXE phase onwards 

https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf
https://github.com/tianocore/edk2


A MACHINE-LEARNING METHOD TO EXPLORE THE UEFI LANDSCAPE3 TLP: WHITE

UEFI firmware layout
The UEFI firmware is stored in SPI flash memory, which is a chip soldered on the system’s motherboard  
Thus, replacing one of the drives or formatting the system doesn’t affect the firmware code 

UEFI firmware is very modular: it usually contains dozens, if not hundreds, of executables  To store all 
these separates files, the firmware is laid out in volumes using the Firmware File System (FFS), a file 
system specifically designed to store firmware images  The volumes contain files that are identified 
by GUIDs and each of these files contain one or more sections holding the data  One of these sections 
contains the actual executable image  Figure 1 shows an example UEFI FFS listing  We used UEFITool, an 
open source project for manipulating UEFI firmware images, to help visualize this 

UEFI executable file format
There are two executable file formats that are supported by UEFI firmware  The first one is Microsoft’s 
Portable Executable (PE) format  That’s the most common one, especially when it comes to DXE drivers 
and OS loaders  This is very beneficial for binary analysis since this means that the tooling built upon 
Windows executables will most likely work with UEFI executables as well  The Subsystem field of the 
structure IMAGE_OPTIONAL_HEADERS tells if the PE is a UEFI executable  There are four values that 
are used by UEFI executables:

• IMAGE_SUBSYSTEM_EFI_APPLICATION

• IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER

• IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER

• IMAGE_SUBSYSTEM_EFI_ROM

Figure 1 // Example UEFI firmware as displayed in UEFITool

https://github.com/LongSoft/UEFITool
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The second format is called the Terse Executable (TE) format; it is used by Pre-EFI Initialization Modules 
(PEIM) that are loaded during the Pre-EFI Initialization phase  A lot of the PE header fields are unused 
by UEFI executables  For instance, most of the Data Directories are never used, Windows-specific 
fields such as MajorOperatingSystemVersion and MinorOperatingSystemVersion are set to 0, the MZ 
header is useless and so on  Because of this and the limited space available to store firmware images, 
a new executable file format was included in the specification  It is an aggressively stripped version of 
the PE format  The MZ header, the COFF header and the optional headers are replaced by the single 
structure displayed in Figure 2, thus giving a very compact file format specifically tailored for the UEFI 
environment 

BUILDING A PROCESSING PIPELINE FOR UEFI EXECUTABLES
In this part of the paper, we cover the specifics of the processing pipeline that we built to drastically 
reduce the number of samples that require human attention  We first explain the motivations behind 
this project  Then, we go through the different choices that we made regarding the feature extraction 
process  Finally, we cover our experimentation with various algorithms to compute a similarity score 
between UEFI executables and hence to identify outliers 

Motivations
Very little UEFI-based malware has been found in the past  One of the reasons for that is that, until 
recently, no security products had visibility into the firmware  Thanks to the telemetry gathered by 
ESET’s UEFI scanner, we were in a favorable position to start hunting for such malware 

The first problem we faced when looking at this task was the large amount of data we needed to dig 
through  To give an idea of the scale, in the past two years, we’ve seen over 5 5 billion UEFI executables 
out of which 2 5 million are unique  These files were not only collected from our customers, but also 
from public sources such as trusted vendor updates, GitHub repositories and so on  Since we had limited 
staff resources available to process these samples, it quickly became obvious that we needed some 
automated system to reduce this to something that could realistically be processed by a few analysts 

Hence we decided to build a system tailored to highlight outlier samples by finding unusual 
characteristics in UEFI executables  By building this system, we were able to reduce the analysts’ 
workload by as much as 90% had the analysts been required to analyze all the new samples we 
receive  Let’s now look at our journey creating this system by demonstrating some of the aspects we 
investigated 

Figure 2 // Definition of the TE image header from the PI specification 1 6
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Analyzing UEFI executables in the context of machine learning
Although in recent times artificial intelligence (AI) and, more concretely (ML) are very widely and 
commonly used terms and are often presented as a silver bullet, they are under no circumstances a 
solution for every kind of problem and every kind of input data  It is the data scientist’s job first to assess 
the situation, next to study the domain, and then work iteratively and in small steps in order to finally 
achieve a desired outcome 

The first step in every ML-based approach is to understand the data we are working with – in our 
case, UEFI executables – and try to find a way to transform the data into a form that machine learning 
algorithms can easily understand and work with  This meant that we had to devise a process that takes 
UEFI executable as inputs and that outputs so-called features  In ML jargon, we can understand features 
as individually measurable properties or characteristics of observed data, usually in a numeric format  
Choosing the correct and descriptive features are crucial factors to the success of every ML-based 
solution 

In the context of UEFI executable files we have identified two distinct ways how to look at them:

• static analysis – looking at the executable as is, its structure (PE header, sections, procedures, strings), 
disassembly, calculated statistics (entropies, occurrences, ratios)

• behavioral analysis – how the sample behaves when executed in an emulation engine, inspecting code 
and data flows, gathering statistics about the execution

By extracting information about the executable files using both static and behavioral analysis, we 
can gather thousands of distinct artifacts associated with every single executable file  Some of these 
artifacts are already numeric and can be easily treated as features (e g  file size, some of the PE header 
entries, number of procedures, strings count), but there are many artifacts that are not in a numeric 
format and need to be converted 

Figure 3 // The process behind extraction of UEFI executables from SPI flash and extraction of artifacts
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Feature engineering
As was previously mentioned, not all artifacts extracted from both static and behavioral analysis of 
executable UEFI files can be simply converted to numeric format, which most of the learning algorithms 
require 

As an example of this kind of artifact transformation we demonstrate the process behind transforming 
retrieved strings from the binaries and embedding multidimensional sequential data into numeric 
vectors 

Strings representation
Strings transformation and representation is a well-known topic in natural language processing and 
many different techniques have been devised for distinct applications  The most commonly used 
techniques for this task, ordered by increasing complexity, are:

• term frequency vectorizer

• tf-idf – (term frequency – inverse document frequency (tf-idf ) statistic

• latent semantic analysis (LSA)1 described and patented in 1988 based on singular value decomposition (SVD)

• word2vec2, doc2vec3

For the purpose of transforming strings found by the analysis of UEFI executable files, we have chosen 
the third technique – latent semantic analysis  This approach was chosen mainly due to the ease of 
use of the LSA transformation and its satisfactory performance on our dataset  In the future we plan 
to experiment also with the other techniques and compare their impact on the final outlier detection 
solution 

At first, all the strings retrieved from all the binaries are transformed to n-grams (n=3), then term 
frequency and tf-idf statistics are computed and finally a truncated SVD is performed on the whole 
training dataset  From our testing results we concluded that the tf-idf statistic was less performant in 
terms of cumulative explained variance than pure term frequency  This comparison can be seen in the 
figure below 

1 DEERWESTER, Scott, et al  Indexing by latent semantic analysis  Journal of the American society for information science, 1990, 
 41 6: 391-407 
2 MIKOLOV, Tomas, et al  Efficient estimation of word representations in vector space  arXiv preprint arXiv:1301 3781, 2013 
3 LE, Quoc; MIKOLOV, Tomas  Distributed representations of sentences and documents  In: International conference on machine learning  
 2014  p  1188-1196 

Figure 4 // Cumulative explained variance plotted against increasing number of embedding dimensions

https://en.wikipedia.org/wiki/Tf%E2%80%93idf#Term_frequency
https://en.wikipedia.org/wiki/Tf–idf
https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec#Extensions
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The process of transformation of every new binary sample begins with string extraction, n-gram 
creation, term frequency calculation and application of truncated an n-dimensional vector that can 
fairly accurately describe the content of all the retrieved strings  The cumulative explained variance 
ratio, depending on the length of the resulting vector, is shown in Figure 4  Based on the tradeoff 
between the space requirements for storing the vectors and explained variance, we have chosen an 
appropriate dimension count 

Multidimensional sequential data
During the analysis of UEFI executables, many sequential artifacts can be extracted – that means it’s 
crucial to utilize not just their value, but also the order in which they appear  As an example, we are 
showing 2 cases – one with three selected statistics about PE sections in the UEFI binary and the other 
with a 66x4 other type of statistics extracted from the binary 

It is widely known that PE-formatted executable files, which most UEFI binaries are, are composed of 
one or more sections  These sections represent logical and physical units of either code or data and 
various statistics can be computed from them  To name two statistics that are used in our approach, we 
utilize section size and section entropy 

Naturally, with an increasing number of statistics and observations for each PE section, the total 
number of dimensions rises  It is unwise to use the whole multidimensional vector in the final outlier 
computations due to y reduction 

Since our data in this case are multidimensional and sequential, we first experimented with convolutional 
n-dimensional auto-encoding neural networks  The goal of this kind of auto-encoder is to apply multiple 
kernels to reduce the dimensionality of the input, while trying to minimize the reconstruction error (this 
means to try to reconstruct the original data point from the latent space while keeping as much of the 
original information as possible) 

The training of the convolutional auto-encoder with Adam optimizer, loss defined by mean squared error 
and validation split of 20% converged very quickly, and the resulting reconstruction loss was minimal  
Figure 5 shows a random example from the 66x4 sized statistics being reduced to two different latent 
space sizes – 8 and 32 – and the model’s reconstruction attempt from it  Even by visual inspection, it 
can be clearly seen that the auto-encoder can successfully reduce dimensionality to a small fraction of 
the original data, which considerably increases the speed and lowers the memory usage of the whole 
outlier detection solution 

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
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We have also conducted a comparison of multidimensional convolutional auto-encoder with a simpler 
multi-layered perceptron (MLP) auto-encoder  With lower latent space size, the convolutional model 
performed better than the MLP model  With growing latent space, both models’ reconstruction loss 
converged  In the end, we decided to use the convolutional auto-encoder in order to reduce original 
data dimensionality more than the MLP would be able to with the same latent space size 

Figure 5 // Example of embedding original sequential data into 8 (left) and 32 (right) latent dimensions with the 
corresponding data reconstruction  In layman’s terms, the original data (visualized by grayscale image on the left) is 

transformed into a fixed-length latent space (represented by numbers), while keeping as much of the original information 
in it  This is demonstrated by reconstructing the original data from this latent space (visualized by grayscale image on 

the right) which should very closely resemble the original data  As we can see, the reconstruction from a 32-dimensional 
latent space was able to better capture even minor details compared to just 8-dimensional space 
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Product of the feature engineering
To sum it up, after the feature engineering phase, every executable UEFI binary can be transformed into 
a multidimensional vector by using various preprocessing steps, such as string transformations, 
auto-encoders, binnings, one-hot encodings and other techniques 

Data representation and processing pipeline
Our defined goal is to find oddities among incoming UEFI binaries  That means we have to define a 
metric by which we can tell how similar or close any two UEFI binaries are in their vector spaces, in 
order to examine whether any incoming UEFI binary is similar to what we have already seen and how 
similar it is  Many metrics were evaluated, like cosine distance, Manhattan distance and Euclidean distance  
The one that performed the best and that is compatible with the data structure we are using for storage 
and indexing was plain Euclidean distance 

As we previously outlined, the key component of determining whether a UEFI binary is an oddity is to 
find the binaries most similar to it and analyze their distances and the sample neighborhood as a whole 
in Euclidian space 

Figure 6 // Reconstruction losses for smaller dataset dimensionality (left) and a bigger one (right) for two distinct auto-
encoder architectures – convolutional (Conv2D) and multi-layered perceptron (MLP)

Figure 7 // High level overview behind the transformation of a UEFI executable into a vector space
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https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Data_binning
https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/Cosine_similarity
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
https://en.wikipedia.org/wiki/Euclidean_distance
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Nearest neighbors
There exist many algorithms for finding the nearest neighbors in Euclidean space, some of which we 
mention in this next section 

The naïve brute-force approach relies on sequential distance calculations for each sample in the dataset  
The performance of brute-forcing is, however, unsatisfactory, as it scales as O(DN2), where D represents 
number of dimensions and N the number of samples in the dataset  In early testing on our dataset, 
calculating the nearest neighborhood for one UEFI sample took over 2 5 seconds  This is a very high 
number, considering we are planning to use these neighborhood searches in real time and we will be 
making possibly millions of such calculations in our ever-growing dataset 

Instinctively we knew we had to look for other solutions not based on brute-force – ideally, tree-
based – as trees are well known data structures with beneficial performance characteristics  At first, 
we tried a simple k-dimensional tree, which can efficiently remove large parts of the search space while 
searching  The downside of k-d trees is their inability to handle higher dimensionality data efficiently  
Generally speaking, the number of samples, N, should be much larger than 2k, for k-dimensional space, 
or N >> 2k  If this condition is not met, their performance degrades drastically, beyond the point of 
efficiency of brute-force approach  Another downside of trees in general is that they take some time 
to construct, which in our case was 3 minutes and 26 seconds  Evaluation of k-d trees on our dataset 
yielded an average time needed for calculating nearest neighborhood of 0 027 seconds, which is already 
significantly less that the brute-force approach 

Another tree-based approach that should not suffer from performance degradation in higher 
dimensions is a ball tree  This tree gets its name from the fact that it organizes its nodes as high 
dimensional hyperspheres known as balls defined by their centroid and radius  Evaluation of ball trees 
on our dataset yielded an average time needed for calculating nearest neighborhood of 0 17 seconds and 
the construction time of over 8 minutes 

The last tree-based approach we evaluated for our nearest neighbor searching effort is a vantage-point 
tree (vp-tree)  By definition, vp-trees are similar to ball trees, as they divide space by using hyperspheres  
The difference is that vp-trees partition the space using only one hypersphere per node and the data 
points either lie in the hypersphere or out of it, whereas the ball trees partition the data points strictly 
inside the defined hyperspheres, which may overlap  Evaluation of vp-trees on our dataset yielded an 
average time needed for calculating nearest neighborhood of 0 023 seconds and the construction time 
of approximately 2 minutes and 54 seconds 

Figure 8 // Comparison of construction and query time of four nearest neighborhood finding approaches on our dataset

https://scikit-learn.org/stable/modules/neighbors.html#brute-force
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Vantage-point_tree
https://en.wikipedia.org/wiki/Vantage-point_tree
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According to the results, the native vp-tree library performed the best in regards both to the 
construction time and query time, and that is why we have chosen to use it in the real-time process of 
searching nearest neighbors 

Similarity score
Now that we can quickly and efficiently retrieve the nearest neighborhood to any UEFI executable, we 
can analyze all the relevant neighbors and their relation to the target executable 

One of the factors we use to compute the final verdict about an incoming UEFI executable is the layout 
of its local neighborhood  At first, we analyze information about possible local clusters within the region  
To find out whether there are sample clusters present, we run DBSCAN4  An example visualization of a 
T-SNE projection5 of a sample neighborhood with clusters marked is presented in the Figure 8  Next, the 
distances to nearest files are processed, and the system then evaluates whether the target executable 
is likely to be known benign, known malicious, or an oddity that should be inspected by an analyst  The 
result of this process is, that each incoming executable is assigned a “similarity” score in the range of 
zero to one  Files with the lowest similarity score are then inspected by an analyst with the highest 
priority 

Finally, each new incoming UEFI executable file is added back to all the data structures and dataset, 
so the whole process can be running in real-time and the results can be up-to-date with each new 
incoming file  This achieves the correctness of the process in circumstances, when e g  new firmware is 
released and there is a burst of never-seen-before files, out of which the analysts need to inspect only 
the representative samples 

4 ESTER, Martin, et al  A density-based algorithm for discovering clusters in large spatial databases with noise  In: Kdd  1996  p  226-231 
5 MAATEN, Laurens van der; HINTON, Geoffrey  Visualizing data using t-SNE  In: Journal of machine learning research, 2008  p  2579-2605 

Figure 9 // Example of clusters found in samples’ local neighborhood

https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
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As a proof of concept, we tried to evaluate the whole system on known suspicious and malicious UEFI 
executables, most notably the LoJax DXE driver, which had not previously been included in our dataset  
The system successfully concluded that the LoJax executable was very dissimilar to anything we had 
ever seen before and assigned it a similarity score of 0  The closest UEFI executables to this LoJax 
executable were found to be NTFS drivers and other applications utilizing NTFS, but the distances to 
them were still fairly large  This is an expected result, LoJax executable embeds an NTFS driver to be able 
to drop malicious content  All in all, this test gives us a degree of confidence that if another similar UEFI 
threat emerged, we would be able to identify it as an oddity, so the analysts could investigate it with 
high priority 

Lessons learned designing our processing pipeline
In this part of the paper, we have presented ESET’s ML-based approach for discovering oddities in the 
vast landscape of UEFI executables  Given that we have seen over 2 5 million unique UEFI binaries in 
the past two years alone, the need for automating the process arose naturally  In our research efforts 
we have been examining and comparing multiple approaches of every part of the process, from feature 
extraction, text embedding, embedding multidimensional data through efficient storage and querying 
of samples’ neighborhoods to generate a final scoring algorithm  All of this was done while taking into 
account performance and real-time capabilities of the techniques chosen  

With an efficient method of retrieving the nearest neighbors to any incoming UEFI binary, we have set 
up a system of assigning similarity scores to these incoming executables, comparing them to previously 
seen files  Using the LoJax DXE driver – a known malicious file that was not included in our dataset – as 
a proof of concept, we demonstrated the system’s strong capabilities in identifying oddities in the sea of 
UEFI samples  Our findings make us confident that should a new UEFI threat emerge, we will be able to 
spot and promptly analyze it  

According to the statistics collected from the system, the ML-based approach can reduce the workload 
of our analysts by up to 90% (if they were to analyze every incoming sample)  Further, thanks to the 
fact that each new incoming UEFI executable file is added back to the data structures and dataset, our 
solution offers real-time monitoring of UEFI landscape 

Figure 10 // The pipeline behind each new incoming UEFI executable
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DISCOVERIES
In the second part of this paper, we present the results of our hunting using the system described above  
The interesting components that we found can be grouped in two categories: UEFI firmware backdoors 
and persistence for OS-level software  For each of these categories, we provide an explanation of what 
they are and we analyze the cases we deemed the most interesting  Finally, we discuss the security 
issues that are introduced by embedding such components in UEFI firmware 

UEFI firmware backdoors

What is a UEFI firmware backdoor?
The first group of firmware components that we cover here are UEFI firmware backdoors  Let’s first 
describe what they are  In most of the UEFI firmware setups, options are available to password protect 
the system from unauthorized access during the early stages of the boot process  The most common 
options allow setting passwords to protect access to the UEFI firmware setup, to prevent the system 
from booting and to access the disk  UEFI firmware backdoors are mechanisms that allow bypassing 
these protections without knowing the user-configured password  They are sometimes triggered by 
pressing a specific combination of keys when asked to enter the password and sometimes activated 
when a user enters multiple invalid passwords in a row  For the latter, the UEFI firmware setup is 
usually locked by displaying a code from which the backdoor password can be computed  Such a dialog 
is shown in Figure 11 

While it could be argued that these mechanisms would rather be called recovery mechanisms than 
backdoors, we’re using the latter because that is how they were named by the firmware developers 
themselves  In a lot of the cases, the mechanism either used UEFI variables or filenames containing the 
word “Backdoor” 

Prevalence of UEFI firmware backdoors
UEFI firmware backdoors are very common  They are used as a recovery mechanism in case the 
computer’s owner forgets the password  Password generators for multiple OEMs firmware are available 
online  As an example, this blogpost contains generators for many vendors, such as HP, ASUS, Sony and 
Samsung  Most importantly, it also provides generators for Insyde Software and Phoenix Technologies’ 
firmware  Insyde Software, Phoenix Technologies and American Megatrends Incorporated are the three 
companies developing base implementations of UEFI firmware that they sell to OEMs who can then 
customize them to their needs  Having backdoors implemented at this level means that they are likely 
to be included in all the firmware of OEMs buying their base implementation from Insyde Software and 
Phoenix Technologies 

Figure 11 // Example of a backdoor access prompt

http://dogber1.blogspot.com/2009/05/table-of-reverse-engineered-bios.html
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We present two UEFI firmware backdoors that we analyzed during this research to illustrate the two 
types of backdoor we mentioned  We’ll cover a backdoor present in ASUS laptops and then another one 
that we found on some HP notebooks 

Case study: ASUS backdoor

Among all the backdoors we analyzed, the ASUS backdoor is by far the most prevalent  The name 
doesn’t come from us; it was used in some ASUS firmware where the executable responsible for 
validating the backdoor password was called AsusBackDoor  We found this backdoor in all the ASUS 
laptops we examined  Here’s the list of models we know are affected, but the list should be longer:

• Taichi 31

• ZenBook UX301LA

• ROG G550JK

• ROG ZEPHYRUS (GX501)

• ZenBook UX430UQ

• VivoBook Max X541UA

The ASUS UEFI firmware setup usually has three different type of protections that can be configured:

• Administrator password: Password prompt to access the UEFI firmware setup

• User password: Password prompt upon system boot

• HDD Password: Access to the disk is password protected

When prompted for one of these passwords, pressing ALT+R will open the backdoor prompt  Depending 
on the laptop models, entering the right password will either remove all of these passwords or only the 
administrator and user password 

In most of the cases we looked at, the UEFI executable responsible for validating the password is a DXE 
driver that installs a protocol identified by the GUID c3940226-bf56-4f4f-941b-dba05b7ec3c1  This 
protocol is then resolved by AMITSE, the UEFI executable implementing the UEFI firmware setup, also 
called the “Text Setup Environment” 

Figure 12 shows one implementation of the code executed when the backdoor prompt validates a 
password  This code is from the UEFI firmware version 300 of an ASUS ROG GL552VW  At first, the 
backdoor protocol is resolved using LocateProtocol, then the user input is validated using the API 
exposed via this protocol  If the validation succeeds, the first 0x50 bytes plus two additional fields of 
the AMITSESetup variable are zeroed out, thus disabling the user and administrator UEFI firmware 
passwords 

https://ami.com/ami_downloads/Aptio_TSE_Users_Guide.pdf
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We notified ASUS about this backdoor in April 2019 and they released f irmware updates on 14  June 
2019  We manually looked at the updates for models ROG G550JK, ZenBook UX301LA and VivoBook 
Max X541UA and can confirm that the backdoor we described here was removed  If you own any ASUS 
notebook, we strongly advise you to apply the latest firmware update from the ASUS website 

Case study: HP Backdoor

The other example of a UEFI firmware backdoor that we cover here was found on HP Pavilion 15 and 
HP Spectre x360 firmware  It’s very likely there are other HP notebooks affected as well  This backdoor 
is of the second type we mentioned earlier  It is activated when a user enters the wrong UEFI firmware 
password too many times 

When this happens, the UEFI firmware backdoor is activated and access to the UEFI firmware setup 
is blocked and a dialog displays a 32-bit value in its hexadecimal form as shown in Figure 13, which 
contains a picture taken by a user asking for help on the HP Community forum 

Figure 12 // Hex-Rays output of the password clearing code in AMITSE

Figure 13 // Example of an HP UEFI firmware setup locked after too many failed password attempts

https://www.asus.com/support/FAQ/1040162
https://www.asus.com/support/FAQ/1040162
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The user is then asked to enter the correct backdoor password derived from this value 

Under the hood, when too many incorrect passwords are entered, the system generates a value using 
the rdtsc instruction and stores it in a UEFI variable called BackDoor  Figure 14 shows the routine 
implementing this 

The generated value in the Backdoor variable is retrieved when the user submits a backdoor password  
The user input, which is the hexadecimal representation of a 32-bit value, is then converted to an 
integer  A checksum is computed based on a hardcoded key and the “Backdoor” value  If the result 
matches the user input, the system is unlocked  The code responsible for this is shown in Figure 15 

We have seen other similar, UEFI firmware backdoors during our research  The behavior being very 
similar to the ones we described, we have limited ourselves to describing only these two  Security issues 
related to these firmware components will be covered in the Security implications section  The following 
part of the paper is dedicated to firmware components used as persistence mechanisms for Windows 
software 

Figure 14 // Hex-Rays output of the routine generating the backdoor password value

Figure 15 // Hex-Rays output of the routine validating the backdoor password
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OS-level persistence modules
During the course of our research, we have uncovered multiple firmware components that were 
responsible for installing software at the operating system level  In this section, we give an overview of 
the publicly known software that is installed from the UEFI firmware  We then describe the techniques 
that are used to achieve this goal  Finally, we provide a technical analysis for the cases that stand out 

Overview of known software with firmware persistence
Probably the most well-known software to have a persistence mechanism in the firmware is Absolute 
Software’s LoJack, previously known as Computrace  LoJack is anti-theft software that allows tracking 
and helping to recover stolen devices  

Since thieves are likely to format the disk of the stolen device: to be effective, the anti-theft solution 
has to survive this kind of manipulation  To achieve this goal, the persistence module was added to 
the firmware  Anti-theft software is the reference use-case for installing OS-level software from the 
firmware 

However, this technique was quickly adopted by some OEMs to provide additional persistence to 
their preloaded software  In 2015, it became known publicly that Lenovo had added a module to its 
firmware to install Lenovo Service Engine (LSE)  According to the Chinese company, this program was 
used to send non-identifiable system information to their server  It was also responsible for installing 
Lenovo OneKey Optimizer, software they describe as “a powerful, next-generation system optimization 
software designed specifically for Lenovo computers [that] can enhance your PC’s performance by 
updating the firmware, drivers, and pre-installed apps [and] also provides power management schemes 
that can extend the life of your battery ”6 LSE was quickly removed from the firmware after researchers 
found that it was affected by vulnerabilities 7

6 https://support lenovo com/au/en/downloads/ds103119
7 https://support lenovo com/bo/sv/product_security/lse_bios_notebook

Figure 16 // Lenovo OneKey Optimizer screenshot from thinkwiki org

https://support.lenovo.com/au/en/downloads/ds103119
https://support.lenovo.com/bo/sv/product_security/lse_bios_notebook
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In 2018, an article from Tech Power Up revealed that ASUS was also installing software from a 
component located in the firmware  The software installed is called ASUS Armoury Crate  Details about 
this software can be found here 

In the course of our research, we’ve come across three other components installed from the firmware: 
Samsung’s Secure Guard, HP Sure Run agent, and Phoenix Failsafe  We discuss two of them in the 
section dedicated to the technical analysis 

Observed techniques
When Computrace was first created, no dedicated Windows mechanism existed for the firmware to tell 
Windows it wanted to install software  Thus, developers needed to find alternative ways to achieve this 
goal  The technique that was used back then was to replace a Windows executable that is launched at 
startup  To do so, the firmware needs to implement its own NTFS driver to get file-based access to the 
Windows partition and overwrite the targeted executable  We’ve seen two system executables targeted  

The first one is autochk.exe  Autochk is launched early during the Windows boot process and performs 
integrity checks on file systems  It is the most common scenario we observed  That’s the executable 
that Computrace/LoJack replaced for years  This is also the executable that was replaced by LoJax, a 
UEFI rootkit discovered by ESET researchers in 2018  The rootkit mimicked the architecture of LoJack to 
achieve persistence 

The other executable that is targeted is spoolsv.exe  Spoolsv is a component of the print spooler 
subsystem  It was used to install Phoenix Failsafe  Failsafe is anti-theft software that was acquired by 
Absolute Software Corporation back in 2010  It was also used by Samsung’s Secure Guard, which we 
cover in this paper 

For the sake of completeness, we should mention that Hacking Team’s UEFI rootkit achieved persistence 
by installing malicious OS-level components in the Start Menu folder 

Microsoft noticed that these techniques were used and introduced a mechanism that allows the 
firmware to notify the OS that it wants to install and launch an executable  This mechanism is called 
the Windows Platform Binary Table (WPBT)  The firmware needs to install a custom Advanced 
Configuration and Power Interface (ACPI) table of type WPBT that points to a Portable Executable 
binary loaded in physical memory  During the OS initialization, the session manager will write the binary 
to disk in \Windows\System32\Wpbbin.exe and run it  The binary must be digitally signed  Microsoft 
published the documentation for the WPBT that can be found here  With the introduction of this feature, 
OEMs have shifted to using this mechanism when supported 

Case study: Lenovo Service Engine
The first case study that we cover is software called Lenovo Service Engine (LSE) that used to have a 
persistence module embedded in the firmware  In 2015, following the disclosure of vulnerabilities by 
security researchers, Lenovo issued a firmware update where they removed LSE  While LSE’s firmware 
component uses the WPBT to install the OS-level software, it also uses some peculiar techniques to 
convey additional information from the firmware to the operating system  Since this way of doing 
things really stood out compared to other similar solutions, we decided to include a technical analysis of 
LSE in this paper 

https://www.techpowerup.com/248827/asus-z390-motherboards-automatically-push-software-into-your-windows-installation
https://www.asus.com/support/FAQ/1037690/
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-spooler-components
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-spooler-components
https://www.absolute.com/about/pressroom/press-releases/2010/absolute-software-acquires-failsafe-and-freeze-anti-theft-assets-from-phoenix-technologies/
https://download.microsoft.com/download/8/A/2/8A2FB72D-9B96-4E2D-A559-4A27CF905A80/windows-platform-binary-table.docx
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The firmware component that attracted our attention is called LSEInit efi  This UEFI executable contains 
the string WINDOWS\SYSTEM32\LSEF.exe  LSEInit only checks if this file exists on Windows partition, 
which we thought was interesting because LSEInit is a firmware component  Digging a little bit deeper, 
we found a second UEFI executable called LUFTSys efi  This one also references a lot of Windows-
related data such as PE executables and registry keys  All of this data is added in a custom ACPI table 
called LUFT  Interestingly, the string ‘LSEF’ was also added to that table  Figure 17 shows part of the 
code that initializes the 354786-byte long ACPI table  We knew we were on the right path, but yet had 
no clue as of how this LSEF exe file was written to the file system 

That’s where the final piece of the firmware-side of the puzzle comes to play  Another UEFI executable 
that we’ll refer to as the LSE dropper, identified by the GUID 31e5caf3-a471-4e73-9f93-6f59dd4424f1, 
is responsible for adding a WPBT ACPI table  Since it is a UEFI application and not a DXE Driver, it 
is not loaded automatically by the DXE dispatcher  It needs to be executed manually by a firmware 
component  Interestingly, the dropper is read from the firmware and executed by the Computrace 
module 

The LSE dropper also decompresses a native application embedded in its text section  It then creates 
a WPBT ACPI table pointing to the application in physical memory  This is the final component of the 
firmware side of LSE  The firmware side of the architecture is shown in Figure 18 

Figure 17 // Hex-Rays output of part of the LUFT ACPI table initialization
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Figure 18 // Architecture of Lenovo Service Engine (LSE): Firmware side

Figure 18 // Architecture of Lenovo Service Engine (LSE): Firmware side
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Let’s now look at what happens on the OS side  Figure 19 illustrates the execution flow as well as 
the components involved  Since a WPBT ACPI table exists, the Windows session manager writes the 
native application referenced in the table to \Windows\System32\Wpbbin.exe and executes it  This 
application decompresses rpcnetp exe, which is embedded in its text section, and writes it to disk  
Then, it retrieves the LUFT ACPI table and parses it  Figure 20 shows the code responsible for reading 
and extracting data from this custom ACPI table, which contains all the configuration and the PE 
executables that LSE installs 

LSE starts by installing a USB filter kernel driver  To support both versions of Windows, a 32-bit 
and a 64-bit version of the driver are in the LUFT table  Then, LSEF exe is written into WINDOWS\
SYSTEM32\ and persistence is added by modifying the BootExecute Registry key in HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager

LSEF exe embeds two other binaries (LSEDT exe and LSEPreDownloader exe), which are written 
to the System32 directory, and it installs LSEDT exe as a Windows service  LSEDT exe then runs 
LSEPreDownloader exe, which queries Lenovo’s server to get an additional executable that, once 
fetched, is written to disk and executed 

The communication is done over HTTP, allowing for a man–in-the-middle (MitM) attack  However, the 
signature of the binary is checked before execution  Figure 21 shows the code responsible for asserting 
that the signer certificate is issued by a trusted certificate  Additionally, it checks whether the Common 
Name (CN) or the Organization (O) field equals “Lenovo Ltd”  These security measures strongly mitigate 
the risk of an attacker delivering a malicious executable while spoofing the HTTP response 

Figure 20 // Hex-Rays output of the routine parsing the LUFT ACPI table
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Case study: Samsung’s SecureGuard
The second case we cover in this paper is Samsung’s SecureGuard  SecureGuard is a good example of 
how software installed by UEFI firmware can introduce an additional attack surface  SecureGuard is a 
solution installed by the firmware that is responsible for downloading and installing SW Update Guide, a 
utility tool to keep software up to date  The main issue is that one of the Windows executables installed 
by the firmware downloads and executes a file fetched over HTTP without validating it  Hence, an 
attacker in a MitM situation can send an arbitrary executable to the Samsung device  The vulnerable 
executable is embedded in the firmware image, thus making it difficult to issue a security fix 

Figure 22 shows the architecture of SecureGuard from the firmware components up to the final 
vulnerable executable running on Windows 

Figure 21 // Hex-Rays output of the signer’s certificate issuer validation
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SecureGuard has a component in the UEFI firmware  The UEFI executable is either called 
SecureGuardDxe or PhxSgDxe  This executable runs during the DXE phase of the platform initialization  
Its role is to load three PE binaries from the SPI flash into memory and write them to the Windows 
partition  To run during early Windows boot, SecureGuard backups the original spoolsv exe file and 
replaces it with its own file 

Figure 22 // Architecture of SecureGuard
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When Windows starts its services, SecureGuard’s version of spoolsv exe runs and creates a new process 
by running spoolsync exe  Spoolsync restores the original spoolsv exe and then launches Invoker exe 
impersonating the current user using the CreateProcessAsUser API call  Thus, Invoker exe doesn’t run 
as NT AUTHORITY\SYSTEM, but rather with the privileges of the current user 

Invoker exe is the vulnerable component in this solution  It queries Samsung’s server to retrieve a URL 
pointing to the executable to download  Figure 24 shows the first request that is performed over HTTP  
Let’s note that the “%20HTTP/1 1” is a mistake from the developers, who appended the HTTP string in 
the URL 

The response to this request is an XML document containing the URL of the executable as shown in 
Figure 25 

Figure 23 // Hex-Rays output of SecureGuard’s UEFI executable code responsible for writing files to disk

Figure 24 // First HTTP request to Samsung’s server

Figure 25 // XML response containing the URL to download

GET /ORCAIF.asmx/ORCALastSetupGuideFileURL?XMLVERSION=string%20HTTP/1.1 

HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; 

Trident/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 

3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)

Host: orcaservice.samsungmobile.com

Connection: Keep-Alive

<?xml version=”1.0” encoding=”utf-8”?>

<LastFileURLResp xmlns:xsd=”http://www.w3.org/2001/XMLSchema” 

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xmlns=”http://

orcaservice.samsungmobile.com/”>

  <SWINFO>

    <CISREV>BASW-13498A09</CISREV>

    <FURL>http://orcaservice.samsungmobile.com/dl/client/SecSWMgrGuide.exe_</

FURL>

  </SWINFO>

</LastFileURLResp>
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Invoker exe then downloads the given URL and creates a scheduled task so that it runs every time a 
user is logged in  Since all the communications are done over HTTP, an attacker in a MitM position could 
easily modify or spoof the response pointing to a malicious binary that would be executed instead 

What makes this attack possible is the fact that the downloaded binary is not subject to any type of 
validation  While it is common for such software to download a URL over HTTP (we’ve seen this above 
with Lenovo Service Engine), it is unusual not to perform any integrity check on the binary before 
executing it  

We looked at the latest versions of the UEFI firmware for devices with SecureGuard  Samsung removed 
this solution in the latest firmware updates  Since Samsung uses an internal platform ID number to 
identify their devices before downloading the proper firmware update, we were unable to find what 
Samsung devices have SecureGuard installed  Hence, we strongly suggest that you download the latest 
firmware update for your Samsung devices 

Case study: HP Sure Run
The last case we cover is an HP agent that hasn’t been publicly analyzed before  HP provides a PDF 
document detailing the userland agent, but the fact that it is installed from the firmware wasn’t 
covered 

HP Sure Run agent has a firmware module that is responsible for installing an ACPI WPBT table pointing 
to a native application embedded in the firmware image  HP’s usage of the WPBT mechanism is more 
aggressive than what we’re used to seeing with other OEMs  Instead of solely installing the table, the 
firmware component registers a callback on ACPI table creation to stop other firmware components 
from installing a WPBT  Figure 26 shows the code of this callback  Furthermore, if a WPBT is already 
installed when the HP firmware component wants to create its own, it retrieves the existing table and 
replaces the binary pointed to by HP’s native application 

The native application installed by the firmware creates a Windows service as shown in Figure 27  
The service points to HP_SureRun exe, a  NET executable embedded in its resource section  The 
documentation provided by HP accessible here describes HP Sure Run as a “hardware-enforced 
application persistence solution”  We did not audit the solution for vulnerabilities 

Figure 26 // Hex-Rays output of the callback blocking WPBT creation

http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-2200ENW.pdf
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Security implications
In the final part of this paper, we discuss the security issues that arise from the inclusion of UEFI 
firmware backdoors and persistence modules in the firmware  

Let’s first look at the UEFI firmware backdoors  One of the main problems with them is that they 
allow an attacker to unlock the UEFI firmware setup where key security mechanisms are configured  
SecureBoot, for instance, is one of the most important mechanisms in the boot chain of trust  If an 
attacker gets physical access to a machine with a UEFI firmware backdoor, he can disable SecureBoot 
and replace the bootloader with a malicious one 

While it could be argued that SecureBoot is not a security mechanism against physical access, other 
security mechanisms specifically tailored against physical access are also configured via the UEFI 
firmware setup  For instance, it is possible to lock the device boot order and disable USB devices in the 
pre-OS environment from the UEFI firmware setup  Configuring both these settings is meant to reduce 
the risk of an attacker booting from an alternative source than the bootloader already installed on the 
machine  While the efficiency of such a mechanism against physical attack can be debated, it is clear 
that UEFI firmware backdoors allow bypassing it completely  The same can be said of other features 
such as fingerprint authentication and chassis intrusion detection 

Another side of it is the false sense of security it gives to the user  By configuring a password to prevent 
the system from booting, users may think their computers are unbootable by anyone who doesn’t 
possess the password  Because of UEFI firmware backdoors, this protection mechanism does not fulfill 
its duty  We believe it is important that users know the limits of the protections they use and hope this 
paper helps in that regard 

As for the persistence modules embedded in the firmware, the main problem resides in the fact that the 
delivery of firmware updates is fairly complicated  Most of computer users do not update their firmware, 
while the only way to fix vulnerable software stored in the firmware is to do so  This means that a 
computer shipped with a vulnerable firmware component will most likely remain vulnerable during the 
system’s complete lifetime 

LSE is a good example of such vulnerable software stored in the SPI flash memory  After security 
researchers disclosed vulnerabilities in this solution, Lenovo issued a firmware update in which LSE was 
removed  To patch their systems, users had to follow the steps mentioned in this security advisory  This 
is not an efficient mechanism to massively distribute a security fix and it illustrates how complicated 
delivering firmware security updates is  For this reason, we believe firmware persistence should be 
avoided as much as possible and limited to cases where it is strictly necessary as is the case with 
anti-theft solutions 

Figure 27 // Hex-Rays output of the service creation function call

https://support.lenovo.com/sk/sk/product_security/lse_bios_notebook
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CONCLUSION
While our UEFI executable processing pipeline did not allow us to find UEFI malware yet, the results it 
has produced so far are promising  Some of the identified outliers used techniques that could’ve been 
used by malware to achieve persistence at the OS level  The same heuristics that allowed us to catch 
Samsung SecureGuard would’ve caught Hacking Team and Sednit’s UEFI rootkits, which are both using 
an NTFS driver to deploy malware on Windows partition  Additionally, the similarity score computed on 
LoJax and public proof-of-concept UEFI malware were very low, assertively classifying them as outliers  
The future will tell if this story has another chapter 

Special thanks to Hamidreza Ebtehaj and Martin Smolár for their help in the analysis 
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