
ESET Research White papers // October 2019

CONNECTING
THE DOTS
Exposing the arsenal and methods
of the Winnti Group

Marc-Etienne M.Léveillé
Mathieu Tartare

12
3
4 5 6

7
8

1011
12
131415

16
17

19
20

21

22

23

2425
26

27 28

29
30
31

32 33
34

3637

383940

4142

43

44

45

46
47

48
49

50

51
52

53

54

55

57

58

59
60

61

62

63

64 65

66

67 68
69

70

71
72

73

74

75

76

77

78

79

80

81

82
83
84

85

86

87

88

89

90

91

93

94

95

96
97

98

99

100

101

102103

104

105106

108

109110
111

112

113

114

115

116

117

118

119
120

121

122

123

124

126

127

128

129

130

131

132

133

TABLE OF CONTENTS

1. Executive summary . 4

2. Overview of latest Winnti activities. 4

2.1 Naming . 4

2.2 Court cases . 5

2.3 Targets . 5

3. The Winnti Group arsenal 6

4. Winnti’s custom packer . 7

5. PortReuse backdoor . 8

5.1 Modular architecture 8

5.2 Distribution . 9

5.3 InnerLoader . 9

5.4 NetAgent and raw TCP hooking 10

5.5 SK3 . 11

5.6 UserFunction and ProcTran 12

5.7 Passive HTTP listening 13

5.8 Multiple variants to target different ports 14

5.9 Finding victims of PortReuse 15

6. VMProtected packer used in targeted organizations 15

6.1 PortReuse backdoor 16

6.2 ShadowPad . 16

6.3 Persistence . 19

7. Winnti variants . 20

7.1 Several variants, same dropper 20

7.2 Dropper (Install.exe) 20

7.3 Payloads . 20

7.4 C&C servers and campaign ID 20

7.5 PlugX-like encryption 21

7.6 Use of custom AceHash builds 21

8. 3rd stage of the 2018 supply-chain attacks:
 Win64/Winnti.BN’s encrypted payload 21

8.1 Same cryptography implementation 21

8.2 Monero miner . 22

9. Conclusion . 22

10. References .23

11. Indicators of Compromise 24

11.1 ESET detection names 24

11.2 File names . . 24

11.3 C&C servers . 24

11.4 PortReuse HTTP response 24

11.5 PortReuse backdoor 24

LIST OF FIGURES

Figure 1 Overview of artefacts, techniques, events and their relationships
used by the Winnti Group 6

Figure 2 Structure used by the custom packer 7

Figure 3 PortReuse backdoor architecture 8

Figure 5 DNS structure of the magic packet 11

Figure 6 Decompiled PortReuse hooking procedure 11

Figure 7 Decompiled UrlPrefix registration procedure 13

Figure 8 Decompiled procedure for handling the HTTP response on GET requests . . . 14

Figure 9 History of a public Google Docs docuement containing encrypted C&C URL . . 19

Figure 10 Steam profile controlled by the operators 19

Figure 11 PlugX-like decryption used by a decrypted wmi2 .dat shellcode 21

Figure 12 Strings from a XMRig decrypted sample 22

11.6 VMProtected samples 25

11.7 ShadowPad backdoor 25

11.8 PortReuse backdoor 25

11.9 Winnti droppers (Install.exe). 26

11.10 Winnti . 26

11.11 AceHash . 26

11.12 XMRig . 26

12. MITRE ATT&CK techniques27

LIST OF TABLES

Table 1 Packer configurations found in video-games and gaming apps 7

Table 2 Inner-Loader packer embedded configuration 9

Table 3 NetAgent and SK3 packer embedded configuration 10

Table 4 Commands supported by SK3 12

Table 5 UserFunction and ProcTran packer configurations 12

Table 6 Commands supported by ProcTran 13

Table 7 Hooking techniques and targeted ports 14

Table 8 Module ID and their respective names and timestamps 17

Table 9 Module ID and their respective names and timestamps 17

Table 10 Updated module ID and their respective names and timestamps 17

Table 11 URL of pages containing encrypted C&C and their respective decrypted C&C . 18

Table 12 Winnti C&C servers and their corresponding campaign IDs 20

Connecting the dots Exposing the arsenal and methods of the Winnti Group4

1. EXECUTIVE SUMMARY
It seems the past few years have shown an increase in supply-chain attacks to distribute malware.
Is this a reality, or because the industry is getting better at detecting and documenting them? Regardless
of the answer, one of the groups that has been shown to be quite effective at conducting supply-chain
attacks is the Winnti Group. Not only they have compromised multiple high-profile targets, but in each case,
they were able to stay under the radar for many months before they were found and disrupted.

This report describes in detail some of the new malware used by this group in the organizations they target.
Another one of their backdoors, ShadowPad, was also updated recently. This report will also expose the new
techniques they use to hide their payloads.

By analyzing their tools and techniques, ESET researchers were able to infer some relationships between
each reported supply-chain incident.

Key Findings
• One of the goals of the group, or its subgroups, is cryptocurrency mining. The Winnti Group has deployed

cryptocurrency mining software using the backdoor they added in games and software in 2018.
• There are strong links in the tools and the techniques used in multiple major supply-chain attacks in past

years. These links indicate that the following incidents were likely performed by the same group:
CCleaner, NetSarang, Asus and games and software in 2018.

• This report documents a previously unanalyzed backdoor used by the Winnti Group. Called PortReuse
by its authors, this Windows backdoor is a passive network implant that injects itself into a process that is
already listening on a network port and waits for an incoming magic packet to trigger the malicious code.

• With the help of Censys, ESET researchers identified and notified a victim of PortReuse: a major Asian
mobile hardware and software vendor.

• The ShadowPad malware is still being updated by its author and was updated and used multiple times
in 2019. It has the same modular approach and includes additional obfuscation techniques.

2. OVERVIEW OF LATEST WINNTI ACTIVITIES
Since the original report by Kaspersky in 2013 “Winnti. More than just a game” [1], there have been numerous
reports on the Winnti Group activities.

2.1 Naming
When reading the multiple reports on the Winnti Group activities, it is sometime difficult to realize that
some discuss about the same malware family or component. This report tries to use existing names as much
as possible, by using the name as it was first reported. We understand that some of the names are different
due to the naming schemes used by different vendors or the fact that the visibility during research couldn’t
allow mapping an analysis to a specific existing name. There is also the problem of tools versus the name
of the operation, which sometimes bear the same name. It is worth spending some time to define the terms
we are going to use.

• Winnti Group: For ESET researchers, this is the group that performed the attacks on multiple organizations
using the tools and techniques described in this paper, regardless of their intent. Whether they are part
of a single group or multiple subgroups is of less importance. The relationships that can be drawn around
their different attacks is sufficient to show they were at least in contact.

Aliases:
• Winnti Umbrella — 401TRG
• Axiom — Novetta
• BARIUM and LEAD — Microsoft. According to Microsoft [2], BARIUM targets the gaming

and technology industry while LEAD’s objective is more to steal sensitive data.

https://www.welivesecurity.com/2019/03/11/gaming-industry-scope-attackers-asia/
https://blog.talosintelligence.com/2017/09/avast-distributes-malware.html
https://securelist.com/shadowpad-in-corporate-networks/81432/
https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/
https://www.welivesecurity.com/2019/03/11/gaming-industry-scope-attackers-asia/
https://censys.io/

Connecting the dots Exposing the arsenal and methods of the Winnti Group5

• Group 72 — Cisco Talos
• Blackfly and Suckfly — Symantec
• APT41 — FireEye

• Winnti malware: A malware family described by Kaspersky in 2013 [3]. This malware uses a rootkit
component to hide its activity.

Aliases:
• RbDoor (name seen in PDB path of early Winnti variants)
• RibDoor — Microsoft’s detection name
• HIGHNOON — FireEye

• ShadowPad: A malware family used at a later stage in targeted attacks performed by the Winnti Group.
It was first described by Kaspersky in the NetSarang incident in 2017 [4].

Aliases:
• Barlaiy — Microsoft
• POISONPLUG — FireEye

• ShadowHammer: Malware embedded in Asus Live Update in 2018 [5]. ShadowHammer triggers
its malicious behavior only if the computer it is running on has a network adapter with the MAC address
whitelisted by the attacker.

2.2 Court cases
There are currently two open court cases in the US against the alleged perpetrator behind this group.

The first one, dated October 26th 2017, not long after the NetSarang incident, is a civil case filed by Microsoft.
Without going into attribution, it describes how the ShadowPad malware operates and how it uses
legitimate web sites to store the address of its C&C server.

The second one has more details about attribution. The indictment was filed by US federal attorneys, in the
District Court of Southern California, in October 2018. It accuses ten Chinese individuals of compromising
companies mostly in the aerospace and technology industry. According to the indictment, the intentions
were to steal intellectual property from the victims. The incidents they describe go from 2010 to 2015,
where they used the Sakula, PlugX, and Winnti malware in the different organizations. Some of their attacks
involved compromising the DNS registrar to change the nameservers of their target. We cannot be certain
that the same individuals are behind the supply-chain attacks, but given that they were using the same
toolset, they probably belong to the same organization.

2.3 Targets
By following their activities over the years, it is intriguing to see that the Winnti Group has had victims
in a wide range of industries. They include:

• Aviation
• Gaming
• Pharmaceuticals
• Technology
• Telecommunication
• Software development

This shows that the group may have lot of different intents. For example, there is no explanation we can
think of to target the gaming industry to perform espionage operations. This is one of the reasons ESET
researchers and researchers for other vendors tend to agree that the Winnti Group may not be monolithic;
it is plausible that there are multiple subgroups and that operations are not conducted by the same group
that is authoring the malware they use.

Based on ESET’s telemetry and public reporting, it seems they focus their efforts to compromise private
organizations in Asia, with South Korea being one of the most targeted countries.

https://www.noticeofpleadings.net/barium/
https://www.justice.gov/opa/press-release/file/1106491/download

Connecting the dots Exposing the arsenal and methods of the Winnti Group6

3. THE WINNTI GROUP ARSENAL
During the course of our research, we were able to find different malware artifacts using the same
techniques or code. To better visualize the full picture, we have created a diagram showing the relationships
between all of them.

PE

PEPE

PE

PE

PE

PE

Uses

U
se

s

Control flow
obfuscation

First stage

Second stage

RC5 using volume
serial number

and static string

Custom packer
using RC4

ShadowPad

Hook in
C Runtime

Compromised
CCleaner

ShadowPad-like
Encryption

Compromised
Asus Live Update

ShadowHammer

PlugX-like
Encryption

Install64.exe

Compromised
NetSarang

Winnti backdoor
variant

Unpacks

Unpacks

Unpacks

Unpacks

U
se

s
U

se
s

Uses

Uses

Uses

Loads

Download
& install

Decrypts
& launch Seen in Piriform

infrastructure

Decrypts
& execute

Decrypts
& run

2017

2017

2017

Compromised
games

Embed

U
se

s

U
se

s

Uses

U
se

s

Uses

Uses

U
se

s

D
ro

p
s

Drops

{self}.dll.mui

xmrig

wcnapi.mui
(xmrig config)

PortReuse
backdoor

VMProtect packer

wmi2.dat

2017

INCIDENT

2017

2018

2018

ARTEFACT

PE Portable Executable (PE)Supply-chain incident

Position independent code

Technique

New

Updated

TIMELINE

Described in March 2019 article

2018

Figure 1 // Overview of artefacts, techniques, events and their relationships used by the Winnti Group

Some of the components shown in this graphic have already been documented before. This report will
dig into the new or updated ones. It will also describe techniques that are used and are important because
they allow to link several incidents together.

Connecting the dots Exposing the arsenal and methods of the Winnti Group7

4. WINNTI’S CUSTOM PACKER
In our previous research [1] on the Winnti Group, we discussed a custom packer used in payloads embedded
in compromised videogames and gaming application. It uses a unique structure seen in Figure 1 to embed
a PE file. In addition to an RC4 key and the encrypted PE, this structure contains encrypted metadata such as
path to the embedded PE file and a launch type value. The packer’s configuration structure is shown in Figure 2.

RC4 Key Packer
shellcode

size

RC4 key size

Legend
XOR-ed with 0x37

Encrypted with RC4

16 20 24

Payload
original file

name lenght

28

Payload
original file

name lenght
(wide)

32

Payload size

36

Payload type
(DLL or EXE)

400

40

Payload
original file

name

...

Payload
original file

name (wide)

Payload

Figure 2 // Structure used by the custom packer

The RC4 key (which is XOR-ed with 0x37) contained in the structure is used to decrypt the PE as well
as the encrypted file name and path. The launch type value can be either 1 or 2 and indicates to the unpack-
ing code, to be able to load it properly, whether the PE is an executable or a DLL. It’s interesting to note that
the RC4 key contains only digits.

It is also worth noting that there are 32- and 64-bits versions of this packer. Examples of the packer’s
configuration found in video-games and gaming apps discussed in our previous blogpost [1] are shown
in Table 1.

Table 1 Packer configurations found in video-games and gaming apps

Parent SHA-1 0f31ed081ccc18816ca1e3c87fe488c9b360d02f

Payload SHA-1 dde82093decde6371eb852a5e9a1aa4acf3b56ba

RC4 key 17858542

File name 111.bin.tmp

Launch type 2 (DLL)

Parent SHA-1 42f2fc15aa8b9ed896c92fed22a27df9ef9db0ad

Payload SHA-1 a260dcf193e747cee49ae83568eea6c04bf93cb3

RC4 key 165122939

File name 111.bin.tmp

Launch type 2 (DLL)

Parent SHA-1 7cf41b1acfb05064518a2ad9e4c16fde9185cd4b

Payload SHA-1 8272c1f41f7c223316c0d78bd3bd5744e25c2e9f

RC4 key 1729131071

File name 111.bin.tmp

Launch type 1 (PE)

We developed a standalone unpacking Python script that can be found in our GitHub repository.

https://github.com/eset/malware-research/tree/master/winnti_group

Connecting the dots Exposing the arsenal and methods of the Winnti Group8

5. PORTREUSE BACKDOOR
After analyzing the custom packer used by the Winnti Group, we started hunting for more executable
files with this packer, in the hope of unearthing other compromised software used in supply-chain attacks.
What we’ve found is not exactly what we were looking for to begin with. Instead of finding compromised
software, we discovered a new listening-mode modular backdoor that uses the same packer. We believe
its author call it PortReuse. This is not a random name: this backdoor injects into a running process already
listening on a TCP port, “reusing” an already open port. It hooks the receiving function and waits for
a “magic” packet to trigger the malicious behavior. The legitimate traffic is forwarded to the real application,
so it is effectively not blocking any legitimate activity on the compromised server. This type of backdoor
is sometimes called a passive network implant.

As we mentioned, this backdoor is using the same packing structure as the one used in 2018. It’s actually
using it in a recursive way: packed components also contain packed components. The metadata of the
packed PE files are actually interesting here: the file name field contains meaningful values and even absolute
paths in some cases. In this report, we will be describing each component using the names the malware
authors have given to these components.

5.1 Modular architecture
The PortReuse backdoor exhibits a modular architecture, since all its components are separate processes
communicating through named pipes, as shown in Figure 3. This allows reusing existing binary components
and replacing only the components that need customization. For instance, we have seen multiple PortReuse
variants with a different NetAgent but using the same SK3. ProcTran and UserFunction exist in 32- and 64-bits
versions but can communicate with any SK3 regardless of its version, since they share a common protocol
through the named pipe.

.NET injector

Winnti packer
shellcode

Inner-Loader.dll

NetAgent.exe

SK3.x.exe
a1aed6...

UserFunction.dll
a08922...

ProcTran.dll
44ddbfv...

Injects

TCP

NamedPipe

NamedPipe

NamedPipe

Injects

Injects

Figure 3 // PortReuse backdoor architecture

There is no C&C server in the backdoor. We have only seen NetAgent listening on open sockets. The attacker
needs to connect directly to the compromised host.

Connecting the dots Exposing the arsenal and methods of the Winnti Group9

5.2 Distribution
Only a single file is written to disk to start PortReuse. All other components exist in memory only.
The initial launch file was found in different formats:

• Embedded in a .NET application launching the initial Winnti packer shellcode
• In a VB script that deserializes and invokes a .NET object that launches the shellcode
• In an executable that has the shellcode directly at the entry point

5.3 InnerLoader
InnerLoader is the first component to be decrypted and launched. As InnerLoader.dll is found packed
with the custom packer, we were able to extract the packer metadata. The metadata from the packer,
including absolute file path when it was packed, is shown in Table 2.

Table 2 Inner-Loader packer embedded configuration

Parent SHA-1 395e87c5bd00f78bf4c63880c6982a7941a2ecd0

Payload SHA-1 97709d62531d12a6994bce5787d519db52435a62

RC4 key 761775049

File name
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\
v1.3-WSAAccept\Inner-Loader\x64\Release\In-
ner-Loader.dll

Launch type 2

Parent SHA-1 7e9dba96adb34daf2f11d30272d9462bbfc6b321

Payload SHA-1 252640016faeff97fa22eb2b736973ed16d73fbe

RC4 key 876426830

File name
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\
v1.3-53\Inner-Loader\x64\Release\Inner-Loader.dll

Launch type 2

As shown in the absolute file path, the name of the project from which InnerLoader belongs is called
PortReuse. InnerLoader will look for a given process to inject two payloads. In the case of the .NET injector,
InnerLoader targets a process called GameServer_NewPoker.exe and in the case of the VBS injector
it will look for a process listening on port 53 (DNS). These payloads are, again, packed using the same packer
and are called NetAgent and SK3 according the packer configuration. These packer configurations are shown
in Table 3.

Connecting the dots Exposing the arsenal and methods of the Winnti Group10

Table 3 NetAgent and SK3 packer embedded configuration

Parent SHA-1 97709d62531d12a6994bce5787d519db52435a62

Payload SHA-1 e14a6a8447ce1d45494e613d6327430d9025a2e5

RC4 key 761595243

File name
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\
v1.3-WSAAccept\NetAgent\x64\Release\NetAgent.exe

Launch type 1

Parent SHA-1 97709d62531d12a6994bce5787d519db52435a62

Payload SHA-1 a1aed6fd6990a74590864f9d2a6e714a715fce3e

RC4 key 761595211

File name
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\
v1.3-WSAAccept\SK3.x\x64\Release\SK3.x.exe

Launch type 1

Parent SHA-1 252640016faeff97fa22eb2b736973ed16d73fbe

Payload SHA-1 74a68dad4bc87eacca93106832f8b4aee82843a2

RC4 key 7125922

File name
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\
v1.3-53\NetAgent\x64\Release\NetAgent.exe

Launch type 1

Parent SHA-1 252640016faeff97fa22eb2b736973ed16d73fbe

Payload SHA-1 e0f276ed16027ed2953a7b0e5274d3f563a75a9d

RC4 key 250574172

File name
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\
v1.3-53\SK3.x\x64\Release\SK3.x.exe

Launch type 1

5.4 NetAgent and raw TCP hooking
NetAgent is the module responsible for handling TCP hooking. Depending on the NetAgent version,
two different hooking techniques are used.

NetAgent will hook either WSARecv or NtDeviceIoControlFile. In both cases, the hook will first check
if the received packet complies to a given magic packet format as already seen in the case of the Winnti
malware [6].

The magic packet should contain the following binary data (14 bytes):

2c af da 56 16 3b 3a 76 27 73 59 54 96 b9

This format was also observed in samples hooking data received on port 53 (DNS) (12 bytes):

ff ff 01 00 00 01 00 00 00 00 00 00

This packet is actually a valid DNS request header with transaction ID 65535 (0xFFFF), the recursion desired
flag set (Flags = 0x0100) and one question, as shown in Figure 5.

Connecting the dots Exposing the arsenal and methods of the Winnti Group11

Transaction ID

2

Flags

4

Question count

6

Answer count

8

NS count

10

AR count

120 0xFFFF 0x0100 0x0001 0x0000 0x0000 0x0000

Figure 5 // DNS structure of the magic packet

This allows blending into the network traffic to avoid detection. A request to the backdoor must have
the specific transaction ID to trigger which, in normal circumstances, should be chosen at random
by DNS clients.

After having received the magic packet, the hook will start forwarding network traffic through the named
pipe “Microsoft Ole Object {30000-7100-12985-00000-00002}” to the SK3 module. Until the magic
packet is received, the hook passes the execution to the hooked function.

One of the NetAgent variants also tries to hide its activity by disabling Event Tracing for Windows (ETW)
for the injected process by patching the beginning of EtwEventWrite function with “MOV RAX, 0; RET”
which will then always blindly return zero as shown in Figure 6.

Figure 6 // Decompiled PortReuse hooking procedure

5.5 SK3
The communication between the backdoor and its client is RC4-encrypted using the key “CreateThread”
and XOR-encoded with 0x77. The SK3 module is responsible for decrypting and processing the traffic
forwarded by NetAgent through the named pipe. The decrypted command format is CMD_ID CMD_ARGS
where CMD_ID is an integer. The list of the supported commands is shown in Table 4.

Connecting the dots Exposing the arsenal and methods of the Winnti Group12

Table 4 Commands supported by SK3

CMD_ID CMD_ARGS Behavior

200

cd path Set current working directory

dir List file in the current directory

copy from_path to_path Copy file

move from_path to_path Move file

del path Remove file

systeminfo Execute systeminfo.exe

201 PID
Inject UserFunction.dll to the process with the PID provided as
argument and send the command to it through named pipe, otherwise
execute the command directly with cmd.exe

202 FilePath DataToWrite Write data to the file provided as argument

203 FilePath Read data from file

207 N/A Close the named pipe with ProcTran and all the connections

210 Hostname Port
Connect to Hostname:Port via TCP and forward the received traffic via
HTTP. Map the connection with an ID

211 Id Data
Send data through the named pipe connected to ProcTran if present;
otherwise, use the connection mapped with the provided ID

214 Id Shutdown the connection mapped to the provided ID

250 N/A List processes and their modules

251 PID Kill the process with the given PID

252 Timestamp Change the timestamp of the file

253 N/A
Execute the following WQL query: SELECT Name,ProcessId,Session-
Id,CommandLine,ExecutablePath FROM Win32_Process

261 PID
Inject ProcTran to the process with the PID provided as argument and
send back the traffic received through the named pipe via HTTP

Except in the case of systeminfo, the commands with ID 200 are custom implementations of standard
Windows commands.

5.6 UserFunction and ProcTran
The SK3 module also contains two packed executables with the following packer configuration:

Table 5 UserFunction and ProcTran packer configurations

Parent SHA-1 A1AED6FD6990A74590864F9D2A6E714A715FCE3E

Payload SHA-1 A08922372042B4C3C0FAA120E9DD626823CDB3C7

RC4 key 852676270

File name UserFunction.dll

Launch type 2

Parent SHA-1 A1AED6FD6990A74590864F9D2A6E714A715FCE3E

Payload SHA-1 44DDBF7AA256A4B0E25DE585E95EA520BF2C4891

RC4 key 852679796

File name ProcTran.dll

Launch type 2

Connecting the dots Exposing the arsenal and methods of the Winnti Group13

UserFunction and ProcTran are started by SK3 and are responsible for executing commands in other
processes (see command 201) and proxying communications. Communication between SK3 and ProcTran
and UserFunction is done through the named pipes “Microsoft Ole Object {30000-7100-12985-
00000-00001}” and “Microsoft Ole Object {30000-7100-12985-00000-00000}” respectively.

Commands supported by ProcTran to handle network forwarding are shown in Table 6.

Table 6 Commands supported by ProcTran

Command ID Arguments Decription

210 Hostname Port
Initiate a new connection to Hostname:Port and start forwarding
received data. The connection is associated to an ID

211 ID Data
Send the data received through the named pipe to the connection
corresponding to the given ID

214 ID Close the connection corresponding to the given ID

5.7 Passive HTTP listening
In addition to the variants using NetAgent to handle the network hook and forwarding the traffic through
a named pipe to SK3, we also found PortReuse variants where NetAgent and SK3 were merged in one single
module responsible for both, it uses a Windows Server API functionality to route requests for a given
URL to the backdoor by using the following UrlPrefix:

http://+:[port]/requested.html

When routing traffic, the strong wildcard (+) matches all possible host names and will always be applied
first, since it takes precedence over the weak wildcard (*) and explicit hostnames [7]. Every connection
to this URL will then be redirected to SK3.

The decompiled procedure used to register a UrlPrefix is shown in Figure 7:

Figure 7 // Decompiled UrlPrefix registration procedure

In the case where a GET request matching the UrlPrefix is received, the backdoor will send back
a custom HTTP response faking a Microsoft IIS 10.0 response—Content-Length header being the result
of (GetTickCount() % 700 + 600) << 20:

HTTP/1.1 200 OK
Content-Length: 1034944512
Content-Type: application/octet-stream
Server: Microsoft-IIS/ 10.0 Microsoft-HTTPAPI/2.0
Date: Wed, 20 Mar 2019 20:02:49 GMT

Note that there is a space between Microsoft-IIS/ and 10.0 and that Microsoft-HTTPAPI/2.0
is appended to the server header—in Figure 8.

https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings

Connecting the dots Exposing the arsenal and methods of the Winnti Group14

Figure 8 // Decompiled procedure for handling the HTTP response on GET requests

In the case where a POST request matching the UrlPrefix is received, the backdoor will initiate
communication and execute commands.

5.8 Multiple variants to target different ports
The PortReuse backdoor is targeting various commonly used ports such as 53 (DNS over TCP), 80, 443,
3389 (Remote Desktop Protocol), and 5985 (Windows Remote Management). One of the variants
we found is also port-agnostic: it parses the TCP header and triggers only if the source port is less than 22.
The backdoor must first be injected into a running process that, in order to install the networking hook,
is already listening on the targeted port. In Table 7 are shown various targets of the PortReuse backdoor
along with their filenames from the custom packer and the port reuse technique used:

Table 7 Hooking techniques and targeted ports

SHA-1 and file name Target Port reuse technique

SHA-1
395e87c5bd00f78bf4c63880c6982a7941a2ecd0

File name
E:\code\PortReuse\3389-share\DeviceIO
Contrl-Hook\v1.3-WSAAccept\Inner-Loader\
x64\Release\Inner-Loader.dll

TCP with source port less
than 22

Inject into a process
named
GameServer_NewPoker
.exe

WSARecv hook

SHA-1
252640016faeff97fa22eb2b736973ed16d73fbe

File name
E:\code\PortReuse\3389-share\DeviceIO
Contrl-Hook\v1.3-53\Inner-Loader\x64\
Release\Inner-Loader.dll

Port 53

Inject into a process
listening on port 53

DeviceIOControl hook

Connecting the dots Exposing the arsenal and methods of the Winnti Group15

SHA-1 and file name Target Port reuse technique

SHA-1
f5ba05240b1609d4131d5dca7f5e6e90b5748004

File name
Inner-Loader.dll

Port 3389

Inject into a process
that have loaded
termsrv.dll RDP server

DeviceIOControl hook

SHA-1
52a8c38890360d0b32993a44c9e94e660f3fa8f4

File name
E:\code\PortReuse\iis-share\2.5\
IIS_Share\x64\Release\IIS_Share.dll

Port 80

Posing as Microsoft IIS 10.0

UrlPrefix

http://+:80/requested.html

SHA-1
dbe3eece00c255a3fdf924b82621394377b0e865

File name
80.dll

Port 80

Posing as Microsoft IIS 10.0

UrlPrefix

http://+:80/requested.html

SHA-1
A5B756F1EC956A00934D68940D4559694FAA8ED6

File name
N/A

Port 443

Posing as Microsoft IIS 10.0

UrlPrefix

http://+:443/requested
.html

SHA-1
1AECD365F5D0DEBA62026D84189BD180814D7292

File name
N/A

Port 5985

Posing as Microsoft IIS 10.0

UrlPrefix

http://+:5985/requested
.html

It is worth noting that the Winnti malware used a kernel driver to hijack network communications while
in that case the port reuse technique allows the backdoor to operate from userland.

5.9 Finding victims of PortReuse
Since the “magic” used to trigger the PortReuse code is now known, we can use it to find hosts connected
to the Internet that could be compromised by this backdoor. In the case of the variants injecting in IIS it can
be achieved by performing a GET request and inspecting the Server and Content-Length headers.

Since, based on all the samples we have analyzed, performing such a request does not produce any side
effects, we asked the help of Censys to perform an Internet-wide scan so to identify potential victims.

Thanks to the Censys team, we were able to identify eight IP addresses that replied with an HTTP response
matching the signature of PortReuse. We found that all eight of these IP addresses belonged to a single
organization: a major mobile hardware and software manufacturer based in Asia. We notified the company
and are working with the victim to remediate. It is possible that the Winnti Group was planning
a devastating supply-chain attack by compromising this organization.

6. VMPROTECTED PACKER USED IN TARGETED
ORGANIZATIONS
In addition to the Winnti malware, organizations targeted by Winnti were found to be compromised
with a VMProtected DLL. Kaspersky mentions this VMProtected technique in the detailed article about
ShadowHammer [5].

These VMProtected samples are actually responsible for decrypting a payload that is either embedded
in its PE file overlay or read from [Drive]:\$Recycle.Bin\COM1:NULL.DAT. This file (NULL.DAT)
is an NTFS Alternate Data Stream (ADS) on a file named “COM1”, which has the special meaning of being
the first serial port it is a reserved name not to be used as a filename [8]. This makes working with the file
a bit more difficult than usual.

Connecting the dots Exposing the arsenal and methods of the Winnti Group16

To be able to read COM1 from the command prompt, its path needs to be prefixed with “\\.\”.

Regardless of the location of the payload, the key derivation and decryption algorithms are always the same.
The payloads are encrypted using RC5 in ECB mode and the decryption key is derived from the volume ID
of the targeted machine as follows:

Generate RC5 key from volume serial number
import os

volume_serial_number = os.stat("C:").st_dev
secret_string = "f@Ukd!rCto R$."
rc5_key = ""
pos = 0
for char in secret_string:
 byte_from_serial = (volume_serial_number >> ((pos & 3)*8)) & 0xff
 xored_value = (ord(char) ^ byte_from_serial)
 if pos % 4 == 0:
 rc5_key += "%02X" % xored_value
 else:
 rc5_key += "%02x" % xored_value
 pos += 1

print rc5_key

In most of the VMProtected samples we found, the string used to derive the decryption key from the volume
ID is the same (“f@Ukd!rCto R$.”). In some more recent cases the derivation string was “d37lo{r”.
Once decrypted, the payload is position-independent codes executed in a separate thread.

The derivation string, key derivation from the volume ID and RC5 implementation are the same as used
in Win64/Winnti.BN, which is the known second stage of the compromised videogames and gaming
applications and are used to decrypt the third stage. Unlike the samples we are looking at here, Win64/
Winnti.BN is not packed with VMProtect, but uses exactly the same key derivation and encryption algorithm.

ESET researchers were able to decrypt several payloads packed using this custom VMProtected packer.
We found that the payload was either the PortReuse backdoor or the ShadowPad malware [4].

6.1 PortReuse backdoor
The PortReuse backdoors dropped by the VMProtected samples were all using the UrlPrefix technique
on various ports and the Server header of the backdoor response was Microsoft-IIS/ 10.0
Microsoft-HTTPAPI/2.0. The backdoor was observed to be in use at least two organizations.

Considering that the PortReuse backdoor was found in VMProtected droppers similar to what was previously
described by Kaspersky with Operation ShadowHammer [5], in addition to the fact that the same decryption
algorithm is used by the 2nd stage from the compromised video-games and also by the gaming application
uncovered by ESET, strongly suggests that Operation ShadowHammer and these supply-chain attacks
are connected and that the PortReuse backdoor is part of the Winnti Group arsenal.

6.2 ShadowPad
As mentioned previously, some of the payloads dropped by the VMProtected samples were similar
to the ShadowPad malware, using the same plugin architecture with identical module ID, similar embedded
configurations and encryption schemes.

Interestingly, if we look at the modules timestamps, we can see that public webpages to retrieve the C&C
server instead of DGA (Domain Generation Algorithm) started to be used from at least the 25th August 2017,
less than two weeks after the publication on the NetSarang compromise by Kaspersy [4]. The Module IDs
along with their names and timestamps from various samples are shown in Table 8, Table 9 and Table 10.

Connecting the dots Exposing the arsenal and methods of the Winnti Group17

Table 8 Module ID and their respective names and timestamps

Module ID Module name Module timestamp

100 Root Fri 25 Aug 2017 04:40:54 AM UTC

101 Plugins Fri 25 Aug 2017 04:39:02 AM UTC

102 Config Fri 25 Aug 2017 04:39:10 AM UTC

103 Install Fri 25 Aug 2017 04:40:15 AM UTC

104 Online Fri 25 Aug 2017 04:39:27 AM UTC

200 TCP Fri 25 Aug 2017 04:40:15 AM UTC

201 HTTP Fri 25 Aug 2017 04:35:45 AM UTC

202 UDP Fri 25 Aug 2017 04:35:54 AM UTC

Table 9 Module ID and their respective names and timestamps

Module ID Module name Module timestamp

100 Root Wed 21 Mar 2018 11:09:32 AM UTC

101 Plugins Wed 21 Mar 2018 10:53:13 AM UTC

102 Config Wed 21 Mar 2018 10:53:17 AM UTC

103 Install Wed 21 Mar 2018 10:54:07 AM UTC

104 Online Wed 21 Mar 2018 10:53:30 AM UTC

200 TCP Wed 21 Mar 2018 10:50:44 AM UTC

201 HTTP Wed 21 Mar 2018 10:50:52 AM UTC

202 HTTPS Wed 21 Mar 2018 10:50:58 AM UTC

In addition to these ShadowPad variants using the same IDs as described in [4], we found an updated version
with modules that, according to their timestamps, were compiled in 2019 according to their timestamps,
with additional obfuscations and using random module IDs.

Table 10 Updated module ID and their respective names and timestamps

Module ID Module name Module timestamp

58338 DNS Fri 15 Mar 2019 05:22:19 PM UTC

3331 TCP Fri 15 Mar 2019 05:21:40 PM UTC

22707 UDP Fri 15 Mar 2019 05:22:13 PM UTC

48503 HTTP Fri 15 Mar 2019 05:21:48 PM UTC

33173 HTTPS Fri 15 Mar 2019 05:21:56 PM UTC

4626 Root Fri 15 Mar 2019 05:23:15 PM UTC

12996 Config Fri 15 Mar 2019 05:23:26 PM UTC

61013 Plugins Fri 15 Mar 2019 05:23:21 PM UTC

5176 Online Fri 15 Mar 2019 05:23:49 PM UTC

35573 Install Fri 15 Mar 2019 05:23:43 PM UTC

The Config module maintains an encrypted string pool that contains two URLs of a public profile or publicly
posted document on legitimate websites, which are used to retrieve and decrypt the real C&C server URL.

Connecting the dots Exposing the arsenal and methods of the Winnti Group18

In addition to these URL, the string pool contains a string similar to a campaign identifier that was related
to the targeted victims. In previous versions of the backdoor, the string pool starts at offset 0x56 relative
to the beginning of the configuration block, while for the updated version, the offset is 0x5c.

The algorithm to decrypt the C&C address is similar to the one used in older versions of ShadowPad.
First, the string enclosed between consecutive ‘$’ delimiters from the publicly posted document is extracted.
Then each character is decremented by 0x61 (‘a’) and each resulting pair of four bits is then concatenated
into a byte and the resulting buffer decrypted using the decryption routine that is also used to decrypt
the strings from rest of the code.

The string decryption algorithms used differ between samples, but follows a pattern similar to the following
Python transcription:

decryption_buf = []
xor_key = (0xff & cyphertext[0]) | (0xff00 & (cyphertext[1] << 8))

for byte in cyphertext[2:]:
 decryption_buf.append((0xff & xor_key) ^ byte)
 xor_key = (0xffffffff & (0xffffffff & (0x8CC70000 * xor_key))
 - (0xffffffff & (0x1B507339 * ((xor_key >> 16))))
 - 0x70A927AC)

print "".join(map(chr, decryption_buf))

The pages used to retrieve the C&C from the payloads we decrypted are shown in Table 11.

Table 11 URL of pages containing encrypted C&C and their respective decrypted C&C

URL Decrypted C&C

URL://https://docs.google[.]com/
document/d/1jcRsFZM59x_4AKJabmz8sPFsKOZArV4bTn3WsYonUns

From document history:

HTTPS://154.223.131[.]237:443

UDP://117.16.142[.]9:443

UDP://103.19.3.109:443

URL://https://docs.google[.]com/
document/d/1KJ_RJRtkKhcuJjXOCKtEOLuwH3sRi72PUhtfukncyRc

Access denied

URL://https://docs.google[.]com/
document/d/1T5P3SS-QTO1nOS6IlKFA_chimnMPmhon8E_kuRSodWw

From document history:

UDP://110.45.146.253:443

UDP://110.45.146.254:443

TCP://110.45.146.254:443

UDP://117.16.142.69:443

UDP://122.10.117.206:443

UDP://207.148.125.56:443

UDP://118.193.236.206:443

UDP://167.88.176.205:443

UDP://167.88.176.205:443

UDP://103.224.83.95:443

UDP://103.19.3.21:443

TCP://103.19.3.21:443

URL://https://steamcommunity[.]com/id/869406565 C&C removed

URL://https://steamcommunity[.]com/id/61198869528 C&C altered

URL://https://raw.githubusercontent[.]com/Enterprise-
Backup/windows/master/Readme.html

C&C removed

Connecting the dots Exposing the arsenal and methods of the Winnti Group19

URL://https://pastebin[.]com/JgduT7NH C&C removed

URL://https://docs.google[.]com/
document/d/1-vFbL5nw85uJeS-X9sYEJ0CAsUzJE3kidJg6Gg_vZ7s

C&C removed

URL://https://social.msdn.microsoft[.]com/profile/Pf9Je@ C&C removed

Unfortunately, the attackers cleaned all the page content before we had access to the malware samples.
However, two documents hosted on Google Docs contained information in the document history that
enabled us to list the C&C servers they used for that campaign. The supported protocols to contact
the C&C server are HTTP, HTTPS, UDP, TCP and DNS.

Figure 9 // History of a public Google Docs document containing encrypted C&C URL

Figure 10 // Steam profile controlled by the operators

Connecting the dots Exposing the arsenal and methods of the Winnti Group20

6.3 Persistence
These VMProtected samples persist on the system by using a DLL hijacking technique [7] similar to what
was used by the 2nd stage of the CCleaner backdoor as described by CrowdStrike [8]. The DLL has an
exported function that is used to copy itself to C:\Windows\System32\TSVIPSrv.DLL. It will then be
loaded when the SessionEnv service which tries to load TSVIPSrv.DLL from the System32 directory.

7. WINNTI VARIANTS

7.1 Several variants, same dropper
Some of the victims in the gaming industry were found to be compromised by different Winnti
variants installed using the same dropper named Install.exe and Install64.exe for the 32- and 64-bits
versions respectively.

7.2 Dropper (Install.exe)
This dropper uses a decryption key from the command line argument to decrypt the payload as follows:

c:\Install.exe {AES key} {path to encrypted payload}

The decryption key was always the same regardless of the Winnti variant dropped or the victim,
and the decryption algorithm used by Install.exe is AES-256-CTR. This dropper has been used since
at least mid-2017 and is still in use as of the time of writing.

7.3 Payloads
Several different Winnti versions are dropped by Install.exe and exhibit similarities shared with other
variants previously uncovered such as:

• Decryption password of the dropper component is passed from command line argument [6]

• AES-encrypted payload [6].
• Use of DPAPI encryption [9] .
• Use of PlugX-like encryption [9].
• 32- and 64-bit versions of the rootkit are embedded in the loader [10].
• Copies itself to %WINDIR%\system32\wbem\wbemcomn.dll and replaces the original Windows DLL [9].
• Leverages the WMI performance adapter service (wmiAPSrv) [9].
• C&C URL and campaign ID are embedded in the configuration [6].

7.4 C&C servers and campaign ID
Winnti samples contain a configuration containing the C&C domain and a campaign ID. From the various
samples we collected that were dropped by Install.exe, we were able to extract the following C&Cs
and campaign IDs:

Table 12 Winnti C&C servers and their corresponding campaign IDs

C&C Campaign ID

xp101.dyn-dns[.]co:443 AA TT 0926

svn-dns.ahnlabinc[.]com:443 GRA KR 0629

dns1-1.7release[.]com:443 ENA KR2 0629

dns1-1.7release[.]com:443 EOS TW 0629

ssl.dyn-dns[.]co:80 gx DE 0705

Connecting the dots Exposing the arsenal and methods of the Winnti Group21

7.5 PlugX-like encryption
In some cases, the payload decrypted by Install.exe is a position-independent code with an embedded
encrypted payload. This embedded payload is decrypted using the PlugX decryption algorithm before
executing it, as shown in Figure 11.

Figure 11 // PlugX-like decryption used by a decrypted wmi2.dat shellcode

The PlugX-like encryption algorithm is similar to the one mentioned in the Operation ShadowHammer
blogpost, which suggests another link between the ShadowHammer campaign and the campaigns against
in the video game industry previously uncovered by ESET. Moreover, Trend Micro also mentioned the use
of PlugX-like encryption for the Winnti GitHub abuse campaign [9].

7.6 Use of custom AceHash builds
Winnti is also known to use custom AceHash builds [11]. 32- and 64-bit signed builds of this password
dumper were also found among several victims compromised by Winnti variants installed from
the Install.exe dropper, sometimes in conjunction with Mimikatz.

8. 3RD STAGE OF THE 2018 SUPPLY-CHAIN ATTACKS:
WIN64/WINNTI.BN’S ENCRYPTED PAYLOAD
In our previous research [1], we mentioned that the 2nd stage delivered to the victims appends
the extension .mui to its DLL path, reads that file and decrypts it using RC5 by deriving the decryption key
from the volume ID of the victim’s hard drive.

8.1 Same cryptography implementation
The RC5 and key derivation implementation are the same as the one used in the ShadowPad VMProtected
launcher. The string “f@Ukd!rCto R$.” is used to derive the decryption key from the volume ID ID – the
same key used by the PortReuse and ShadowPad VMProtected launcher. These findings add another
connection between operation ShadowHammer and compromise campaign in the video-game industry.

Connecting the dots Exposing the arsenal and methods of the Winnti Group22

8.2 Monero miner
We were able to obtain and decrypt the .mui files loaded by Win64/Winnti.BN. They were actually
XMRig executables, again packed using the same custom packer as the one used to pack the 1st stage
of compromised games as well as the PortReuse backdoor.

Figure 12 // Strings from a XMRig decrypted sample

XMRig is an open-source Monero (XMR) CPU miner and is launched with the following command line:

x -c wcnapi.mui

where wcnapi.mui is the configuration file provided to XMRig. Unfortunately, we do not have a sample
of the configuration file. In any event, this sheds some light on the financial motivation behind this campaign.

Even though we observed only XMRig as final payload, we cannot exclude the possibility that attackers
may have sent different payload to victims of interest based on the MAC addresses collected by the 1st stage.

9. CONCLUSION
The Winnti group is capable of breaching large organizations via many different means. Given how complex
the backdoor and methods they use are, we think they have significant resources and time allocated
to malicious activities.

There are a lot of discussions among malware researchers regarding attribution. More specifically,
whether or not the different attacks, both espionage and for financial gain, are performed by the same
people or organization. Given the amount of work required, we know these attacks aren’t performed by
a single individual. The perpetrators running the different operations may or may not be the authors
of the actual malware we see. They may share tools among different teams and what we see is only
a representation of what they accomplish as a team. Or is it multiple teams?

The fact that clustering is hard here doesn’t mean we can’t link the different incidents. Given the code
and techniques they reuse, we can make strong correlations between incidents. However, by looking only
at samples and events, it would be speculation to try to find out how the organization actually works.
Who profits from financial gain? Do they mine cryptocurrencies to finance their own activities or do they
use the same malware outside of their work hours? There is currently no evidence that would help answer
these questions with certainty.

The Winnti Group is still very active in 2019 and continues to target both gaming and other industries.
The update to the ShadowPad malware shows they are still developing and using it. The relatively new
PortReuse malware also shows they update their arsenal and give themselves an additional way
to compromise their victims for a long period of time.

Connecting the dots Exposing the arsenal and methods of the Winnti Group23

10. REFERENCES
 1 M-E. M.Léveillé, ESET, “Gaming industry still in the scope of attackers in Asia,” 11 March 2019. [Online].

Available: https://www .welivesecurity .com/2019/03/11/gaming-industry-scope-attackers-asia/.

 2 Microsoft Defender ATP Research Team, “Detecting threat actors in recent German industrial attacks
with Windows Defender ATP,” 25 January 2017. [Online]. Available: https://www .microsoft .com/security/
blog/2017/01/25/detecting-threat-actors-in-recent-german-industrial-attacks-with-windows-defender-atp/.

 3 GReAT, “Winnti. More than just a game,” 11 April 2013. [Online].
Available: https://securelist .com/winnti-more-than-just-a-game/37029/.

 4 GReAT, “ShadowPad: popular server management software hit in supply chain attack,” 15 August 2017.
[Online]. Available: https://media .kasperskycontenthub .com/wp-content/uploads/sites/43/2017/08/07172148/
ShadowPad_technical_description_PDF .pdf.

 5 GReAT, “Operation ShadowHammer: a high-profile supply chain attack,” 23 April 2019. [Online].
Available: https://securelist .com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/.

 6 T. Haruyama, “Winnti Polymorphism,” 2016. [Online].
Available: https://hitcon .org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymorphism .pdf.

 7 D. Hohnstein, “Lateral Movement — SCM and DLL Hijacking Primer,” 18 April 2019. [Online].
Available: https://posts .specterops .io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992.

 8 K. Sood, “CCleaner Stage 2: In-Depth Analysis of the Payload,” 10 November 2017. [Online]. Available:
https://www .crowdstrike .com/blog/in-depth-analysis-of-the-ccleaner-backdoor-stage-2-dropper-and-its-payload/.

 9 C. Pernet, “Winnti Abuses GitHub for C&C Communications,” 22 March 2017. [Online].
Available: https://blog .trendmicro .com/trendlabs-security-intelligence/winnti-abuses-github/.

 10 Macnica Networks, “Japan Security Analyst Conference 2018,” 25 January 2018. [Online].
Available: https://www .jpcert .or .jp/present/2018/JSAC2018_09_yanagishita-takeuchi .pdf.

 11 Hiroshi Takeuchi, Hajime Yanagishita - Macnica Networks, “Catch Painful TTPs for Adversaries,” 2018. [Online].
Available: https://hitcon .org/2018/pacific/downloads/1214-R2/1330-1400 .pdf.

 12 Novetta, “Winnti Analysis,” April 2015. [Online].
Available: https://www .novetta .com/wp-content/uploads/2015/04/novetta_winntianalysis .pdf.

 13 T. Hegel, “Burning Umbrella: An Intelligence Report on the Winnti Umbrella and Associated State-Sponsored
Attackers,” 3 May 2018. [Online]. Available: https://401trg .com/burning-umbrella/.

https://www.welivesecurity.com/2019/03/11/gaming-industry-scope-attackers-asia/
https://www.microsoft.com/security/blog/2017/01/25/detecting-threat-actors-in-recent-german-industrial-attacks-with-windows-defender-atp/
https://www.microsoft.com/security/blog/2017/01/25/detecting-threat-actors-in-recent-german-industrial-attacks-with-windows-defender-atp/
https://securelist.com/winnti-more-than-just-a-game/37029/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf
https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymorphism.pdf
https://posts.specterops.io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992
https://www.crowdstrike.com/blog/in-depth-analysis-of-the-ccleaner-backdoor-stage-2-dropper-and-its-payload/
https://blog.trendmicro.com/trendlabs-security-intelligence/winnti-abuses-github/
https://www.jpcert.or.jp/present/2018/JSAC2018_09_yanagishita-takeuchi.pdf
https://hitcon.org/2018/pacific/downloads/1214-R2/1330-1400.pdf
https://www.novetta.com/wp-content/uploads/2015/04/novetta_winntianalysis.pdf
https://401trg.com/burning-umbrella/

Connecting the dots Exposing the arsenal and methods of the Winnti Group24

11. INDICATORS OF COMPROMISE

11.1 ESET detection names
Win32/Winnti trojan

Win64/Winnti trojan

MSIL/Injector.UNL trojan

Win32/CoinMiner.DV potentially unwanted application

Win32/Spy.Agent.ORQ trojan

Win64/Agent.HE trojan

Win64/Agent.HH trojan

Win64/Agent.NM trojan

Win64/CoinMiner.DN potentially unwanted application

Win64/Injector.BS trojan

Win64/Injector.BT trojan

Win64/Packed.VMProtect.FH trojan

Win64/Packed.VMProtect.FI trojan

Win64/Spy.Agent.F trojan

Win64/TrojanDropper.Agent.AM trojan

Win64/TrojanDropper.Agent.CJ trojan

11.2 File names
[Drive]:\$Recycle.Bin\Com1:NULL.DAT

wcnapi.mui

11.3 C&C servers
154.223.131[.]237

117.16.142[.]9

103.19.3[.]109

110.45.146[.]253

117.16.142[.]69

122.10.117[.]206

207.148.125[.]56

118.193.236[.]206

167.88.176[.]205

103.224.83[.]95

103.19.3[.]21

xp101.dyn-dns[.]com

svn-dns.ahnlabinc[.]com

dns1-1.7release[.]com

ssl.dyn-dns[.]com

11.4 PortReuse HTTP response
Server: Microsoft-IIS/ 10.0 Microsoft-HTTPAPI/2.0

11.5 PortReuse backdoor

.NET injector
395E87C5BD00F78BF4C63880C6982A7941A2ECD0

VBS injector
08B825C87171500E694798527E17A849160B0A72

Connecting the dots Exposing the arsenal and methods of the Winnti Group25

InnerLoader
97709D62531D12A6994BCE5787D519DB52435A62

252640016FAEFF97FA22EB2B736973ED16D73FBE

F5BA05240B1609D4131D5DCA7F5E6E90B5748004

NetAgent
E14A6A8447CE1D45494E613D6327430D9025A2E5

74A68DAD4BC87EACCA93106832F8B4AEE82843A2

5AB3461B17EE3806ABBB06B8966F6B0011F3D8F2

SK3
A1AED6FD6990A74590864F9D2A6E714A715FCE3E

E0F276ED16027ED2953A7B0E5274D3F563A75A9D

14C32D0C0346EF4A2B1993FDA9AAB670806B9284

Merged NetAgent & ProcTran
52A8C38890360D0B32993A44C9E94E660F3FA8F4

20CA6EAE9D6CF2275F9BFD24A0E07F75BEE119BA

DBE3EECE00C255A3FDF924B82621394377B0E865

UserFunction
A08922372042B4C3C0FAA120E9DD626823CDB3C7

93F623C91F579D33788F84A9A83478CD2E9646AA

ProcTran
44DDBF7AA256A4B0E25DE585E95EA520BF2C4891

75B7A4B7E01CECC9AFBDAB01C49E9D7FCCACFDC0

11.6 VMProtected samples

11.7 ShadowPad backdoor

Payload in Overlay
82072CB53416C89BFEE95B239F9A90677A0848DF

634344FAFD6E16F171B0857962149659639FDF41

ED0C9354D34D6E9F09B7038D391E846CDD9E0EAE

E6D43344A354EB17E0E0E76AD391FBCAF9C34119

22B82AE0819DA2FD887BE55A8508FFB46D02CA99

F14694BDDE921B31030300CC9BDC5574BA3D9F74

971BB08196BBA400B07CF213345F55CE0A6EEDC8

438178A5816D3EF6AC02D4DB929A48FA558E514C

4DC5FADECE500CCD8CC49CFCF8A1B59BAEE3382A

C44D06F79E5E42B08BE17A8A7DBAF61400F1DE28

672BB391B92681ADCFCFB4F2F728EDF32F2FB8FE

11.8 PortReuse backdoor

Payload in ADS
9E8883A6DE72D338E2C0C1A0E291D013A0CE9058

B09ADDDE1523C223C4F8FBF0E541C627E4A04400

Connecting the dots Exposing the arsenal and methods of the Winnti Group26

Payload in Overlay
BD1F1494B8D18DAF07DE7D47549A7E27FF3FFD05

757FF5EC3DC53ABBB62391B14883EF460F6FD404

BDBADB2E3EEDD72DD6F8D9235699A139CAB69AAE

4D090E6B749D4D3D8E413F44EB2DE6925C78CD82

B4446480813D3BFC8DE4049A32A72CC0EB0D8094

11.9 Winnti droppers (Install.exe)
95A41FDDDC8CAF097902B484F8440BDDAD0C5B32

D9A54F79CA15C7E363DBE62B4D1C5C8D103103A2

DAF1CD345F44CB2BF1CFA8D68EECAF1961CBD51F

3DF753F56BB53F72D3DF735A898D7221C3B5272E

6C10C9D46531FBC5F0C2372A116AB31C730ED4B7

D74F1C8257409AD964DB22087A559609C2D0D978

E6677E5E2D68BC544B210E69D9C8DF6A2752C20A

EC0E4A6E2E630267C13B449ED4CF3F04598E40DF

F61403E7730D17B967DA3143BC7CB33EEBE826C0

FD9DED44C47585541B89FFD25907A9A2ED41A995

E0B1005DA5B35E31F09FC82A694F188A92CCA85D

CD36CAF7F7CD9F161743348D2EA69A9E0254C3B5

2C35E28FBA5D05F10430C4D70E4938426F38E228

1AE6FBAD7AF15FB7E60DBBFEA964F0E49372AE53

1EC1B5A902869ED5D51012826A34FFA9225853CB

11.10 Winnti
B08D72576B93687DFC61ABFA740DD39490D6A262

DE197A5DC5B38E4B72BC37C14CF38E577DDEB8B5

4EA2ED895111A70B9A59DF37343440E4A3A97A47

DE197A5DC5B38E4B72BC37C14CF38E577DDEB8B5

C452BDF6FF99243A12789FF4B99AC71A5DA5F696

B08D72576B93687DFC61ABFA740DD39490D6A262

24AA07A0B3665BF97A1545B0F2749CD509F1B4CA

E26B59789029D23BD9232FA6B1C90EC9379B9066

C262D297EAEC622E3FB8E1FC2A0017E28168879A

645720EC88C993B28D982C0AD89A5ACA79CE7E16

B6819C870DF88A973EB48B572AD1CFEAEB6A655A

8DF84B01B08EE983C66BECC59C0F361D246A96ED

723B27ABA08CBB3A9CA42F7E8350451D00829E5A

55155C3A7B993584A07ACDBF92F2200804C00E02

5105F3020B5E680FA66D664C7F8C811F072933CF

D62A0BD08C5B435D1B8A0505E8018D58A9667B2C

C262D297EAEC622E3FB8E1FC2A0017E28168879A

7B0AAE2AA17BD5712DD682F35C7A8E3E1CDCC57C

11.11 AceHash
47A262BAE22BB77850A1E3E38F8E529189D291F6

35C026F8C35BFCEECD23EACE19F09D3DF2FD72DA

43FF18CEB3814F1DAE940AD977C59A96BB016E76

D24BBB898A4A301870CAB85F836090B0FC968163

11.12 XMRig
70B21E3AC69F0220784228375BA6BEF37FE0C488

9BFB1C92489DA812DBE53B2A8E2CC2724CF74B4E

EE5FEB8E9428A04C454966F6E19E202CCB33545F

Connecting the dots Exposing the arsenal and methods of the Winnti Group27

12. MITRE ATT&CK TECHNIQUES
Tactic ID Name Description

Initial
Access

T1195 Supply Chain Compromise
The Winnti Group has compromised multiple software
packages.

Persistence
T1038 DLL Search Order Hijacking

VMProtected samples persist on the system by using
a DLL hijacking technique similar to what was used
by the 2nd stage of the CCleaner backdoor.

T1179 Hooking PortReuse backdoor performs raw TCP hooking.

Defense
Evasion

T1116 Code Signing
The Winnti Group signs its malware using stolen
code-signing certificates.

T1140
Deobfuscate/Decode Files or
Information

The victim’s volume ID is used to decrypt payloads.

T1158 Hidden Files and Directories
Some VMProtected samples load their payloads
from Alternate Data Streams.

T1027 Obfuscated Files or Information
Several obfuscation techniques are used by the Winnti
Group, such as the use of VMProtect and a custom
packer.

T1055 Process Injection
PortReuse backdoor is injected into a process listening
on a given port.

T1045 Software Packing
The Winnti Group uses a custom packer for the PortReuse
backdoor and compromised software.

T1089 Disabling Security Tools PortReuse backdoor disables Event Tracing for Windows.

Discovery T1057 Process Discovery
PortReuse backdoor searches for processes listening
on a particular port.

Command
And Control

T1043 Commonly Used Port
PortReuse backdoor communicates through commonly
used ports.

T1024 Custom Cryptographic Protocol
Winnti malware and ShadowPad use custom cryptographic
protocols such as ZXShell-like encryption.

T1001 Data Obfuscation ShadowPad C&C server URL is hidden in public webpages.

T1104 Multi-Stage Channels
ShadowPad uses public web pages to retrieve
its second stage C&C server.

T1071
Standard Application Layer
Protocol

Standard Application Layer Protocols are used
by PortReuse and ShadowPad.

T1032 Standard Cryptographic Protocol
The Winnti Group uses standard cryptographic protocols
such as RC4, RC5 and AES.

T1041
Exfiltration Over Command and
Control Channel

PortReuse backdoor exfiltrates data over the Command
and Control Channel.

Impact
T1496 Resource Hijacking

The final stage of hijacked video games
is a Monero miner (XMRig).

T1492 Stored Data Manipulation
The Winnti Group introduces malicious code into
legitimate software.

https://attack.mitre.org/techniques/T1195/
https://attack.mitre.org/techniques/T1038/
https://attack.mitre.org/techniques/T1179/
https://attack.mitre.org/techniques/T1116/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1158/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1045/
https://attack.mitre.org/techniques/T1089/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/techniques/T1024/
https://attack.mitre.org/techniques/T1001/
https://attack.mitre.org/techniques/T1104/
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1032/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1492/

	1. Executive summary
	2. Overview of latest Winnti activities
	2.1 Naming
	2.2 Court cases
	2.3 Targets

	3. The Winnti Group arsenal
	4. Winnti’s custom packer
	5. PortReuse backdoor
	5.1 Modular architecture
	5.2 Distribution
	5.3 InnerLoader
	5.4 NetAgent and raw TCP hooking
	5.5 SK3
	5.6 UserFunction and ProcTran
	5.7 Passive HTTP listening
	5.8 Multiple variants to target different ports
	5.9 Finding victims of PortReuse

	6. VMProtected packer used in targeted organizations
	6.1 PortReuse backdoor
	6.2 ShadowPad
	6.3 Persistence

	7. Winnti variants
	7.1 Several variants, same dropper
	7.2 Dropper (Install.exe)
	7.3 Payloads
	7.4 C&C servers and campaign ID
	7.5 PlugX-like encryption
	7.6 Use of custom AceHash builds

	8. 3rd stage of the 2018 supply-chain attacks: Win64/Winnti.BN’s encrypted payload
	8.1 Same cryptography implementation
	8.2 Monero miner

	9. Conclusion
	10. References
	11. Indicators of Compromise
	11.1 ESET detection names
	11.2 File names
	11.3 C&C servers
	11.4 PortReuse HTTP response
	11.5 PortReuse backdoor
	11.6 VMProtected samples
	11.7 ShadowPad backdoor
	11.8 PortReuse backdoor
	11.9 Winnti droppers (Install.exe)
	11.10 Winnti
	11.11 AceHash
	11.12 XMRig

	12. MITRE ATT&CK techniques
	Table 1	Packer configurations found in video-games and gaming apps
	Table 2	Inner-Loader packer embedded configuration
	Table 3	NetAgent and SK3 packer embedded configuration
	Table 4	Commands supported by SK3
	Table 5	UserFunction and ProcTran packer configurations
	Table 6	Commands supported by ProcTran
	Table 7	Hooking techniques and targeted ports
	Table 8	Module ID and their respective names and timestamps
	Table 9	Module ID and their respective names and timestamps
	Table 10	Updated module ID and their respective names and timestamps
	Table 11	URL of pages containing encrypted C&C and their respective decrypted C&C
	Table 12	Winnti C&C servers and their corresponding campaign IDs
	Figure 1 // Overview of artefacts, techniques, events and their relationships used by the Winnti Group
	Figure 2 // Structure used by the custom packer
	Figure 3 // PortReuse backdoor architecture
	Figure 5 // DNS structure of the magic packet
	Figure 6 // Decompiled PortReuse hooking procedure
	Figure 7 // Decompiled UrlPrefix registration procedure
	Figure 8 // Decompiled procedure for handling the HTTP response on GET requests
	Figure 9 // History of a public Google Docs document containing encrypted C&C
	Figure 10 // Steam profile controlled by the operators
	Figure 11 // PlugX-like decryption used by a decrypted wmi2.dat shellcode
	Figure 12 // Strings from a XMRig decrypted sample

